Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.741
Filtrar
1.
Biochem Pharmacol ; : 116454, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069137

RESUMO

Given the significance of the intrauterine lipid environment in glucose metabolic homeostasis in offspring, the present study was undertaken to investigate the feasibility and efficacy of pemafibrate, a triglyceride-lowering peroxisome proliferator-activated agent, for maternal high-fat diet (HFD) intake-induced glucose metabolic dysfunction in offspring. A mouse model of HFD-induced gestational obesity was employed, and pemafibrate was orally administered from day 10 of gestation until delivery. The influences of maternal pemafibrate treatment on biological processes and toxicity were evaluated in both newborns and 12-week-old offspring. The findings of a dose-dependent decrease of ß cell islet mass and of impairment of glucose tolerance and insulin sensitivity in offspring suggest that maternal pemafibrate intervention can prevent maternal HFD-intake-induced diabetes in offspring. Of particular interest in the prevention of future glucose metabolic dysfunction in offspring, low-dose maternal pemafibrate treatment (0.02 mg/kg/day) had sufficient efficacy and appeared to be safe in offspring. Therefore, pemafibrate may be a potential agent for the prevention of maternal high-fat exposure-induced diabetes in offspring. Abbreviations: CD, control diet; DEG, differentially expressed genes; GTT, glucose tolerance test; HFD, high-fat diet; ITT, insulin tolerance test; MC, 0.5w/v% methyl cellulose 400 solution; PPAR, triglyceride-lowering peroxisome proliferator-activated receptor; RNA-seq, RNA sequencing; TC, total cholesterol; TG, triglycerides.

2.
Brain Sci ; 14(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39061420

RESUMO

The differential diagnosis between atypical Parkinsonian syndromes may be challenging and critical. We aimed to proposed a radiomics-guided deep learning (DL) model to discover interpretable DL features and further verify the proposed model through the differential diagnosis of Parkinsonian syndromes. We recruited 1495 subjects for 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning, including 220 healthy controls and 1275 patients diagnosed with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA), or progressive supranuclear palsy (PSP). Baseline radiomics and two DL models were developed and tested for the Parkinsonian diagnosis. The DL latent features were extracted from the last layer and subsequently guided by radiomics. The radiomics-guided DL model outperformed the baseline radiomics approach, suggesting the effectiveness of the DL approach. DenseNet showed the best diagnosis ability (sensitivity: 95.7%, 90.1%, and 91.2% for IPD, MSA, and PSP, respectively) using retained DL features in the test dataset. The retained DL latent features were significantly associated with radiomics features and could be interpreted through biological explanations of handcrafted radiomics features. The radiomics-guided DL model offers interpretable high-level abstract information for differential diagnosis of Parkinsonian disorders and holds considerable promise for personalized disease monitoring.

3.
Antioxidants (Basel) ; 13(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061903

RESUMO

The aim of this work was to test whether we can treat cholestasis with dietary approaches applied after the onset of the disease. The effects of intermittent fasting and dietary restriction on liver damage caused by common bile duct ligation (BDL) in rats were studied, with particular attention paid to changes in the activity of enzymes of energy metabolism and antioxidant protection. Morphological changes in liver tissue and serum markers of liver damage were assessed in rats with BDL kept for one month on ad libitum diet, intermittent fasting, or 35% dietary restriction. We studied parameters of glucose metabolism (activity of glycolysis and gluconeogenesis enzymes), TCA cycle, and indicators of oxidative stress and redox status of the liver tissue. Dietary restriction resulted in an increase in gluconeogenesis activity, antioxidant capacity, and autophagy activation. When implemented after BDL, none of the dietary restriction protocols reduced the level of oxidative stress, detrimental morphological and biochemical alterations, or the fibrosis progression. Thus, under severe damage and oxidative stress developing in cholestasis, dietary restrictions are not hepatoprotective and can only be used in a pre-treatment mode.

4.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062577

RESUMO

Glucose and lipid metabolism are essential energy sources for the body. Dysregulation in these metabolic pathways is a significant risk factor for numerous acute and chronic diseases, including type 2 diabetes (T2DM), Alzheimer's disease (AD), obesity, and cancer. Post-translational modifications (PTMs), which regulate protein structure, localization, function, and activity, play a crucial role in managing cellular glucose and lipid metabolism. Among these PTMs, lysine methylation stands out as a key dynamic modification vital for the epigenetic regulation of gene transcription. Emerging evidence indicates that lysine methylation significantly impacts glucose and lipid metabolism by modifying key enzymes and proteins. This review summarizes the current understanding of lysine methylation's role and regulatory mechanisms in glucose and lipid metabolism. We highlight the involvement of methyltransferases (KMTs) and demethylases (KDMs) in generating abnormal methylation signals affecting these metabolic pathways. Additionally, we discuss the chemical biology and pharmacology of KMT and KDM inhibitors and targeted protein degraders, emphasizing their clinical implications for diseases such as diabetes, obesity, neurodegenerative disorders, and cancers. This review suggests that targeting lysine methylation in glucose and lipid metabolism could be an ideal therapeutic strategy for treating these diseases.


Assuntos
Glucose , Metabolismo dos Lipídeos , Lisina , Processamento de Proteína Pós-Traducional , Humanos , Lisina/metabolismo , Metilação , Glucose/metabolismo , Animais , Epigênese Genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico
5.
Life Sci ; : 122932, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067659

RESUMO

Diabetes mellitus (DM) is a significant public health problem. Diabetic kidney disease (DKD) is the most common complication of DM, and its incidence has been increasing with the increasing prevalence of DM. Given the association between DKD and mortality in patients with DM, DKD is a significant burden on public health resources. Despite its significance in DM progression, the pathogenesis of DKD remains unclear. Aberrant glucose uptake by cells is an important pathophysiological mechanism underlying DKD renal injury. Glucose is transported across the bilayer cell membrane by a glucose transporter (GLUT) located on the cell membrane. Multiple GLUT proteins have been identified in the kidney, and GLUT1 is one of the most abundantly expressed isoforms. GLUT1 is a crucial regulator of intracellular glucose metabolism and plays a key pathological role in the phenotypic changes in DKD mesangial cells. In an attempt to understand the pathogenesis of DKD better, we here present a review of studies on the role of GLUT1 in the development and progression of DKD.

6.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063084

RESUMO

Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic ß-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6-/-) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6-/- and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing.


Assuntos
Proteína Morfogenética Óssea 6 , Glucose , Células Secretoras de Insulina , Insulina , Serotonina , Animais , Serotonina/metabolismo , Glucose/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Proteína Morfogenética Óssea 6/genética , Camundongos , Ratos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Camundongos Knockout , Linhagem Celular Tumoral , Masculino , Secreção de Insulina/efeitos dos fármacos
7.
Microorganisms ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39065139

RESUMO

The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes.

8.
Healthcare (Basel) ; 12(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057535

RESUMO

Glucose control in postmenopausal women is influenced by many factors, such as hormones, lifestyle variables, and genetics. Limited data exist on the effect of whole flaxseed on glucose status in postmenopausal Native American women. The aim of this study was to investigate the glucose management effect of a flaxseed dietary intervention on postmenopausal Native American women. In this study, 55 Native American postmenopausal women (aged 47-63 years) with borderline hyperglycemia (>100 and <126 mg/dL) and mild to moderate hypercholestorolemia (≥200 to ≤380 mmol/L), who were not on hormone replacement therapy, were enrolled. Participants were randomly assigned to one of the three dietary regimens (control, flaxseed, and flaxseed + fiber) for three months, receiving interventions in the form of bread, muffins, and flaxseed powder. Despite daily consumption of flaxseed across diverse food formats, no significant changes in glucose (p = 0.3, p = 0.2), insulin levels (p = 0.59, p = 0.9), or HOMA-IR (p = 0.84, p = 0.66) were observed compared to their respective baseline values within the flaxseed and flaxseed + fiber groups, respectively. Conversely, the control group showed a significant rise in final glucose values from baseline (p = 0.01). However, the incorporation of ground flaxseed into low-glycemic foods holds potential for beneficial effects through maintaining glucose status among postmenopausal Native American women. This research provides critical insights into the effects of flaxseed, emphasizing the need for continued exploration to understand its role in supporting glucose management among postmenopausal Native American women. Further exploration is required to investigate the potential long-term impact and the use of flaxseed in managing glucose levels in this demographic.

9.
Fish Physiol Biochem ; 50(4): 1667-1682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963582

RESUMO

The present study, as one part of a larger project that aimed to investigate the effects of dietary berberine (BBR) on fish growth and glucose regulation, mainly focused on whether miRNAs involve in BBR's modulation of glucose metabolism in fish. Blunt snout bream Megalobrama amblycephala (average weight of 20.36 ± 1.44 g) were exposed to the control diet (NCD, 30% carbohydrate), the high-carbohydrate diet (HCD, 43% carbohydrate) and the berberine diet (HCB, HCD supplemented with 50 mg/kg BBR). After 10 weeks' feeding trial, intraperitoneal injection of glucose was conducted, and then, the plasma and liver were sampled at 0 h, 1 h, 2 h, 6 h, and 12 h. The results showed the plasma glucose levels in all groups rose sharply and peaked at 1 h after glucose injection. Unlike the NCD and HCB groups, the plasma glucose in the HCD group did not decrease after 1 h, while remained high level until at 2 h. The NCD group significantly increased liver glycogen content at times 0-2 h compared to the other two groups and then liver glycogen decreased sharply until at times 6-12 h. To investigate the role of BBR that may cause the changes in plasma glucose and liver glycogen, miRNA high-throughput sequencing was performed on three groups of liver tissues at 2 h time point. Eventually, 20 and 12 differentially expressed miRNAs (DEMs) were obtained in HCD vs NCD and HCB vs HCD, respectively. Through function analyzing, we found that HCD may affect liver metabolism under glucose loading through the NF-κB pathway; and miRNAs regulated by BBR mainly play roles in adipocyte lipolysis, niacin and nicotinamide metabolism, and amino acid transmembrane transport. In the functional exploration of newly discovered novel:Chr12_18892, we found its target gene, adenylate cyclase 3 (adcy3), was widely involved in lipid decomposition, amino acid metabolism, and other pathways. Furthermore, a targeting relationship of novel:Chr12_18892 and adcy3 was confirmed by double luciferase assay. Thus, BBR may promote novel:Chr12_18892 to regulate the expression of adcy3 and participate in glucose metabolism.


Assuntos
Berberina , Cyprinidae , Glucose , Fígado , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Berberina/farmacologia , Cyprinidae/genética , Cyprinidae/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Glicemia , Dieta/veterinária , Ração Animal/análise
10.
Peptides ; 179: 171271, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002758

RESUMO

Tirzepatide (LY3298176), a GLP-1 and GIP receptor agonist, is fatty-acid-modified and 39-amino acid linear peptide, which ameliorates learning and memory impairment in diabetic rats. However, the specific molecular mechanism remains unknown. In the present study, we investigated the role of tirzepatide in the neuroprotective effects in Alzheimer's disease (AD) model mice. Tirzepatide was administrated intraperitoneal (i.p.) APP/PS1 mice for 8 weeks with at 10 nmol/kg once-weekly, it significantly decreased the levels of GLP-1R, and GFAP protein expression and amyloid plaques in the cortex, it also lowered neuronal apoptosis induced by amyloid-ß (Aß), but did not affect the anxiety and cognitive function in APP/PS1 mice. Moreover, tirzepatide reduced the blood glucose levels and increased the mRNA expression of GLP-1R, SACF1, ATF4, Glu2A, and Glu2B in the hypothalamus of APP/PS1 mice. Tirzepatide increased the mRNA expression of glucose transporter 1, hexokinase, glucose-6-phosphate dehydrogenase, and phosphofructokinase in the cortex. Lastly, tirzepatide improved the energetic metabolism by regulated reactive oxygen species production and mitochondrial membrane potential caused by Aß, thereby decreasing mitochondrial function and ATP levels in astrocytes through GLP-1R. These results provide valuable insights into the mechanism of brain glucose metabolism and mitochondrial function of tirzepatide, presenting potential strategies for AD treatment.


Assuntos
Doença de Alzheimer , Glucose , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Glucose/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Camundongos Transgênicos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Masculino , Peptídeos beta-Amiloides/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Fator 4 Ativador da Transcrição
11.
J Clin Invest ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954588

RESUMO

Cytomegalovirus (CMV) is one of the most common and relevant opportunistic pathogens in immunocompromised individuals such as kidney transplant recipients (KTRs). The exact mechanisms underlying the disability of cytotoxic T cells to provide sufficient protection against CMV in immunosuppressed individuals have not been identified yet. Here, we performed in-depth metabolic profiling of CMV-specific CD8+ T cells in immunocompromised patients and show the development of metabolic dysregulation at the transcriptional, protein, and functional level of CMV-specific CD8+ T cells in KTRs with non-controlled CMV infection. These dysregulations comprise impaired glycolysis and increased mitochondrial stress, which is associated with an intensified expression of the nicotinamide adenine dinucleotide nucleotidase (NADase) CD38. Inhibiting NADase activity of CD38 reinvigorated the metabolism and improved cytokine production of CMV-specific CD8+ T cells. These findings were corroborated in a mouse model of CMV infection under conditions of immunosuppression. Thus, dysregulated metabolic states of CD8+ T cells could be targeted by inhibiting CD38 to reverse hypo-responsiveness in individuals who fail to control chronic viral infection.

12.
World J Clin Pediatr ; 13(2): 92127, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38947990

RESUMO

Prediabetes in children and adolescents is on the rise which has drawn significant attention over the past decade. It is an early warning sign of the underlying pathophysiological changes which in due course of time might compound into type II diabetes mellitus. The incidence of prediabetes in adolescents ranges from 4%-23% which is alarmingly high and requires active intervention from the system. We have discussed early identification of high-risk patients, prompt screening and active intervention to manage this growing problem.

13.
Front Endocrinol (Lausanne) ; 15: 1386230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962676

RESUMO

Background: Despite the evidence that energy balance is regulated differently in females and that the endocannabinoid system is sexually dimorphic, previous studies on the endocannabinoid system and energy balance predominantly used male models. Here, we characterize the effects of cannabinoid receptor deletion on body weight gain and glucose metabolism in female C57BL mice. Methods: Female mice lacking the cannabinoid-1 receptor (CB1R-/-), cannabinoid-2 receptor (CB2R-/-), or both receptors (CB1R-/-/CB2R-/-) and wild-type (WT) mice were fed with a low (LFD; 10% of calories from fat) or high-fat diet (HFD; 45% of calories from fat) for six weeks. Results: Female WT mice fed with HFD gained significantly more weight than WT mice fed with LFD (p < 0.001). Similar pattern was observed for CB2/- mice fed with HFD compared to CB2R-/- mice fed with LFD (p < 0.001), but not for CB1R-/- fed with HFD vs. LFD (p = 0.22) or CB1R-/-/CB2R-/- fed with HFD vs. LFD (p = 0.96). Comparing the 4 groups on LFD, weight gain of CB1R-/- mice was greater than all other genotypes (p < 0.05). When fed with HFD, the deletion of CB1R alone in females did not attenuate weight gain compared to WT mice (p = 0.72). Female CB1R-/-/CB2R-/- mice gained less weight than WT mice when fed with HFD (p = 0.007) despite similar food intake and locomotor activity, potentially owing to enhanced thermogenesis in the white adipose tissue. No significant difference in weight gain was observed for female CB2R-/- and WT mice on LFD or HFD. Fasting glucose, however, was higher in CB2R-/- mice fed with LFD than all other groups (p < 0.05). Conclusion: The effects of cannabinoid receptor deletion on glucose metabolism in female mice were similar to previously published findings on male mice, yet the effects on body weight gain and thermogenesis were attenuated in CB1R-/- mice.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Aumento de Peso , Animais , Feminino , Camundongos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/deficiência , Dieta Hiperlipídica/efeitos adversos , Aumento de Peso/genética , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/deficiência , Peso Corporal
14.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950317

RESUMO

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Insulina , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Humanos , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Insulina/metabolismo , Secreção de Insulina , Camundongos Knockout , Masculino , Adaptação Fisiológica
15.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000541

RESUMO

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Hiperlipidemias , Metabolismo dos Lipídeos , Fígado , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Termitomyces/metabolismo , Glicemia/metabolismo , Polissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000586

RESUMO

Visceral adipose tissue (VAT) dysfunction has been recently recognized as a potential contributor to the development of Alzheimer's disease (AD). This study aimed to explore the relationship between VAT metabolism and cerebral glucose metabolism in patients with cognitive impairment. This cross-sectional prospective study included 54 patients who underwent 18F-fluorodeoxyglucose (18F-FDG) brain and torso positron emission tomography/computed tomography (PET/CT), and neuropsychological evaluations. VAT metabolism was measured by 18F-FDG torso PET/CT, and cerebral glucose metabolism was measured using 18F-FDG brain PET/CT. A voxel-based analysis revealed that the high-VAT-metabolism group exhibited a significantly lower cerebral glucose metabolism in AD-signature regions such as the parietal and temporal cortices. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that VAT metabolism was negatively associated with cerebral glucose metabolism in AD-signature regions. In addition, higher VAT metabolism was correlated with poorer outcomes on cognitive assessments, including the Korean Boston Naming Test, Rey Complex Figure Test immediate recall, and the Controlled Oral Word Association Test. In conclusion, our study revealed significant relationships among VAT metabolism, cerebral glucose metabolism, and cognitive function. This suggests that VAT dysfunction actively contributes to the neurodegenerative processes characteristic of AD, making VAT dysfunction targeting a novel AD therapy approach.


Assuntos
Encéfalo , Disfunção Cognitiva , Fluordesoxiglucose F18 , Glucose , Gordura Intra-Abdominal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/diagnóstico por imagem , Glucose/metabolismo , Idoso , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Estudos Transversais , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Testes Neuropsicológicos
17.
Cancers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39001392

RESUMO

Rapidly proliferative processes in mammalian tissues including tumorigenesis and embryogenesis rely on the glycolytic pathway for energy and biosynthetic precursors. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) plays an important regulatory role in glycolysis by activating the key rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase (PFK-1). We have previously determined that decreased PFKFB3 expression reduced glycolysis and growth in transformed cells in vitro and suppressed xenograft growth in vivo. In earlier studies, we created a constitutive knockout mouse to interrogate the function of PFKFB3 in vivo but failed to generate homozygous offspring due to the requirement for PFKFB3 for embryogenesis. We have now developed a novel transgenic mouse model that exhibits inducible homozygous pan-tissue Pfkfb3 gene deletion (Pfkfb3fl/fl). We have induced Pfkfb3 genomic deletion in these mice and found that it effectively decreased PFKFB3 expression and activity. To evaluate the functional consequences of Pfkfb3 deletion in vivo, we crossed Cre-bearing Pfkfb3fl/fl mice with oncogene-driven tumor models and found that Pfkfb3 deletion markedly decreased their glucose uptake and growth. In summary, our studies reveal a critical regulatory function for PFKFB3 in glycolysis and tumorigenesis in vivo and characterize an effective and powerful model for further investigation of its role in multiple biological processes.

18.
World J Diabetes ; 15(6): 1353-1366, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38983830

RESUMO

BACKGROUND: Obesity in children and adolescents is a serious problem, and the efficacy of exercise therapy for these patients is controversial. AIM: To assess the efficacy of exercise training on overweight and obese children based on glucose metabolism indicators and inflammatory markers. METHODS: The PubMed, Web of Science, and Embase databases were searched for randomized controlled trials related to exercise training and obese children until October 2023. The meta-analysis was conducted using RevMan 5.3 software to evaluate the efficacy of exercise therapy on glucose metabolism indicators and inflammatory markers in obese children. RESULTS: In total, 1010 patients from 28 studies were included. Exercise therapy reduced the levels of fasting blood glucose (FBG) [standardized mean difference (SMD): -0.78; 95% confidence interval (CI): -1.24 to -0.32, P = 0.0008], fasting insulin (FINS) (SMD: -1.55; 95%CI: -2.12 to -0.98, P < 0.00001), homeostatic model assessment for insulin resistance (HOMA-IR) (SMD: -1.58; 95%CI: -2.20 to -0.97, P < 0.00001), interleukin-6 (IL-6) (SMD: -1.31; 95%CI: -2.07 to -0.55, P = 0.0007), C-reactive protein (CRP) (SMD: -0.64; 95%CI: -1.21 to -0.08, P = 0.03), and leptin (SMD: -3.43; 95%CI: -5.82 to -1.05, P = 0.005) in overweight and obese children. Exercise training increased adiponectin levels (SMD: 1.24; 95%CI: 0.30 to 2.18, P = 0.01) but did not improve tumor necrosis factor-alpha (TNF-α) levels (SMD: -0.80; 95%CI: -1.77 to 0.18, P = 0.11). CONCLUSION: In summary, exercise therapy improves glucose metabolism by reducing levels of FBG, FINS, HOMA-IR, as well as improves inflammatory status by reducing levels of IL-6, CRP, leptin, and increasing levels of adiponectin in overweight and obese children. There was no statistically significant effect between exercise training and levels of TNF-α. Additional long-term trials should be conducted to explore this therapeutic perspective and confirm these results.

19.
Theranostics ; 14(10): 3793-3809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994031

RESUMO

Rationale: CD8+ T cells undergo a series of metabolic reprogramming processes during their activation and proliferation, including increased glycolysis, decreased aerobic oxidation of sugars, increased amino acid metabolism and increased protein synthesis. However, it is still unclear what factors regulate these metabolic reprogramming processes in CD8+ T cells in the tumor immune microenvironment. Methods: T cell chromobox protein 4 (CBX4) knock-out mice models were used to determine the role of CBX4 in CD8+ T cells on the tumor immune microenvironment and tumor progression. Flow cytometry, Cut-Tag qPCR, Chip-seq, immunoprecipitation, metabolite detection, lentivirus infection and adoptive T cells transfer were performed to explore the underlying mechanisms of CBX4 knock-out in promoting CD8+ T cell activation and inhibiting tumor growth. Results: We found that CBX4 expression was induced in tumor-infiltrating CD8+ T cells and inhibited CD8+ T cell function by regulating glucose metabolism in tumor tissue. Mechanistically, CBX4 increases the expression of the metabolism-associated molecule aldolase B (Aldob) through sumoylation of trans-acting transcription factor 1 (SP1) and Krüppel-like factor 3 (KLF3). In addition, Aldob inhibits glycolysis and ATP synthesis in T cells by reducing the phosphorylation of the serine/threonine protein kinase (Akt) and ultimately suppresses CD8+ T cell function. Significantly, knocking out CBX4 may improve the efficacy of anti-PD-1 therapy by enhancing the function of CD8+ T cells in the tumor microenvironment. Conclusion: CBX4 is involved in CD8+ T cell metabolic reprogramming and functional persistence in tumor tissues, and serves as an inhibitor in CD8+ T cells' glycolysis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Glicólise , Camundongos Knockout , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Humanos , Reprogramação Celular
20.
Aquat Toxicol ; 273: 107015, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38996482

RESUMO

Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...