Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.747
Filtrar
1.
Environ Toxicol Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988284

RESUMO

Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;00:1-15. © 2024 SETAC.

2.
Gene ; 928: 148746, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004322

RESUMO

Gestational Diabetes Mellitus (GDM) is a medical complication during the gestational period in which woman who had never been diagnosed with diabetes develops hyperglycemia. Prior studies have demonstrated that the advancement of GDM and its consequences arises from a disparity between oxidants and antioxidants in the cells. The observed outcomes can be attributed to an excessive formation of reactive oxygen species (ROS) within the cells, coupled with a reduced activity of anti-oxidative enzymes. Glutathione S-transferase (GSTs) is recognized as an antioxidant enzyme that is belong to as a phase II family member of detoxifying enzymes. These metabolic multigene catalysts are found into the cytoplasm of the cell. GSTs play a vital part in the elimination of cellular ROS or free radicals. The study involves total 300 pregnant women, (150 GDM cases and 150 healthy controls). The polymorphism study of GSTs genes (GSTM1 and GSTT1) was determined by conventional Polymerase Chain Reaction (PCR). The mRNA expression study of GSTM1 and GSTT1 genes analysed by qPCR/ RT-PCR (quantitative PCR/Real-Time PCR) followed by statistical analysis done using Prism8 software (version 8.01). The study revealed statistically significant variations in biochemical parameters between GDM cases and controls. It was found GSTM1-null (GSTM1-/-) polymorphism significantly (P < 0.0001) most prevalent in GDM cases (56.7%) when compared to healthy control (28%). However, no significant difference was observed for GSTT1 null and present polymorphism (P = 0.906). The gene expression levels of both GSTM1 and GSTT1 were found considerably downregulated in individuals with GDM as compared to the control group (P < 0.0001). The downregulation of gene expression has a significant (P<0.0001) association with the null/deletion polymorphism of both GSTM1/ GSTT1 genes respectively. Null/deletion genotype of GSTM1 gene and its expression showed significant association with GDM. Therefore, this gene variant has the potential to be used as a prognostic biomarker for GDM. However, there is need to study this gene variant in larger sample size and different ethnicity.

3.
Technol Health Care ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39031395

RESUMO

BACKGROUND: Low-grade gliomas (LGG) are a variety of brain tumors that show different clinical outcomes. The methylation of the GSTM5 gene has been noted in the development of LGG, however, its prognostic importance remains uncertain. OBJECTIVE: The objective of this study was to examine the correlation between GSTM5 DNA methylation and clinical outcomes in individuals diagnosed with LGG. METHODS: Analysis of GSTM5 methylation levels in LGG samples was conducted using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The overall survival based on GSTM5 methylation status was evaluated using Kaplan-Meier curves. The DNA methylation heatmap for particular CpG sites in the GSTM5 gene was visualized using the "pheatmap" R package. RESULTS: The study analyzed that LGG tumors had higher levels of GSTM5 methylation than normal tissues. There was an inverse relationship discovered between GSTM5 expression and methylation. LGG patients with hypermethylation of GSTM5 promoter experienced a positive outcome. Age, grade, and GSTM5 methylation were determined as independent prognostic factors in LGG through both univariate and multivariate Cox regression analyses. CONCLUSION: Methylation of GSTM5 DNA, specifically at certain CpG sites, is linked to a positive outlook in patients with LGG. Utilizing the "pheatmap" R package to visualize GSTM5 methylation patterns offers important information for identifying prognostic markers and therapeutic targets in low-grade gliomas.

4.
Environ Sci Technol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012182

RESUMO

Plastic pollution is a significant environmental concern globally. Plastics are normally considered chemically inert and resistant to biodegradation. Although many papers have reported enzyme-induced biodegradation of plastics, these studies are primarily limited to enzymes of microbial origin or engineered enzymes. This study reveals that poly(ethylene terephthalate) (PET, ∼6000 Da and 100 kDa) particles and plastic bottle debris (PBD, 24.9 kDa) can be efficiently degraded by a mammal-origin natural phase II metabolic isozyme, glutathione S-transferase (GST), under mild conditions. The degradation efficiency of PET plastics reached 98.9%, with a degradation rate of 2.6 g·L-1·h-1 under ambient or physiological conditions at 1 atm. PET plastics can be degraded by GST with varying environmental or biological factors (i.e., temperature, light irradiation, pH, and presence of humic acid or protein). We suggest a novel mechanism for PET degradation other than hydrolysis, i.e., the mechanism of cleavage and release of PET plastic monomers via nitridation and oxidation. This finding also reveals a novel function of GST, previously thought to only degrade small molecules (<1000 Da). This method has been successfully applied in real human serum samples. Additionally, we have tested and confirmed the ability to degrade PET of a mammal-origin natural digestive enzyme (trypsin) and a human-derived natural metabolic enzyme (CYP450). Overall, our findings provide a potential new route to plastic pollution control and contribute to our understanding of the metabolism and fate of plastics in organisms.

5.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000460

RESUMO

Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson's disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.


Assuntos
Glutationa Transferase , Estresse Oxidativo , Ubiquitinas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Regulação para Cima , Transporte Proteico , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica
6.
Plant Dis ; 108(7): 2197-2205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956749

RESUMO

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.


Assuntos
Dactylis , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Puccinia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/genética , Puccinia/fisiologia , Dactylis/genética , Dactylis/microbiologia , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Glutationa Transferase/genética , Genes de Plantas/genética , Transcriptoma , Basidiomycota/fisiologia , Basidiomycota/genética
7.
J Comp Physiol B ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958740

RESUMO

The present study investigated the best photoperiod for culturing pacu (Piaractus mesopotamicus) in recirculation aquaculture systems (RAS) based on its growth performance and hematological and oxidative stress responses. Juveniles (∼ 5 g) were subjected to five treatments (in triplicate): 24 L (light):0D (dark), 15 L: 09D, 12 L:12D, 9 L:15D, and 0 L:24D for 45 days. A total of 225 pacu individuals were randomly distributed among 15 tanks of 210 L (n = 15 per tank). Zootechnical, hematological (glucose, lactate, hematocrit, and hemoglobin), and antioxidant and oxidative stress parameters (glutathione S-transferase (GST), total antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were analyzed. The zootechnical parameters (e.g., weight gain, Fulton's condition factor, and specific growth rate) were better and worse with 9 L:15D and 24 L:0D photoperiods, respectively. The hepatosomatic index was higher and lower in the 0 L:24D and 9 L:15D photoperiods. Blood lactate levels and antioxidant and oxidative stress responses were increased in the longest photoperiods (15 L:9D and 24 L:0D). In contrast, the treatments that showed lower oxidative damage (liver, gills, brain, and muscle) were 9 L:15D and 12 L:12D. In conclusion, manipulating artificial light is one way to improve fish growth and health, where the best photoperiod for pacu farming in RAS is 9 L:15D.

8.
Insects ; 15(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921124

RESUMO

Honeybees (Apis mellifera L.) have to face many challenges, including Varroa destructor infestation, associated with viral transmission. Oxalic acid is one of the most common treatments against Varroa. Little is known about the physiological effects of oxalic acid, especially those on honeybees' immune systems. In this study, the short-term effects (0-96 h) of oxalic acid treatment on the immune system components (i.e., glucose oxidase, phenoloxidase, glutathione S-transferase, catalase activities, and vitellogenin contents) of house bees were preliminarily investigated. Oxalic acid contents of bee bodies and haemolymphs were also measured. The results confirm that oxalic acid is constitutively present in bee haemolymphs and its concentration is not affected by treatment. At 6 h after the treatment, a maximum peak of oxalic acid content was detected on bees' bodies, which gradually decreased after that until physiological levels were reached at 48 h. In the immune system, the oxalic acid treatment determined a peak in glucose oxidase activity at 48 h, indicating a potential defence response and an increase in vitellogenin content at 24 h. No significant changes were recorded in phenoloxidase, glutathione S-transferase, and catalase activities. These results suggest a time-dependent response to oxalic acid, with potential immune system activation in treated bees.

9.
Int J Biol Macromol ; 273(Pt 2): 133072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885861

RESUMO

Plants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.


Assuntos
Glutationa Transferase , Larva , Metabolômica , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Extratos Vegetais , Glutationa Transferase/metabolismo , Animais , Metabolômica/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos , Culex/efeitos dos fármacos , Culex/enzimologia , Inseticidas/química , Inseticidas/farmacologia , Metaboloma/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38824270

RESUMO

BACKGROUND: Drug resistance is one of the major reasons of the poor prognosis and recurs frequently in glioma. Ferroptosis is considered to be a new therapeutic strategy for glioma. METHODS: Microsomal glutathione S-transferase 1 (MGST1) expression in glioma samples was ensured through GAPIA database, qRT-PCR, western blotting assay and immunohistochemistry. The interaction between zinc finger protein 384 (ZNF384) and MGST1 promoter was analyzed through UCSC and JASPAR databases and further verified by ChIP and luciferase reporter assay. Cell viability and IC50 value of temozolomide (TMZ) was measured by CCK-8 assay. The production of MDA, GSH and ROS and the level of Fe2+ were determined using the corresponding kit. RESULTS: MGST1 expression was increased in clinical glioma tissues and glioma cells. MGST1 expression was increased but ferroptosis was suppressed in TMZ-resistant cells when contrasted to parent cells. MGST1 silencing downregulated IC50 value of TMZ and cell viability but facilitated ferroptosis in TMZ-resistant cells and parent glioma cells. Moreover, our data indicated that ZNF384 interacted with MGST1 promoter and facilitated MGST1 expression. ZNF384 was also increased expression in TMZ-resistant cells, and showed a positive correlation with MGST1 expression in clinical level. ZNF384 decreasing enhanced the sensitivity of resistant cells to TMZ, while the effect of ZNF384 could be reversed by overexpression of MGST1. CONCLUSION: MGST1 transcription is regulated by transcription factor ZNF384 in TMZ-resistant cells. ZNF384 confers the resistance of glioma cells to TMZ through inhibition of ferroptosis by positively regulating MGST1 expression. The current study may provide some new understand to the mechanism of TMZ resistance in glioma.

11.
J Nanobiotechnology ; 22(1): 307, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825668

RESUMO

Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.


Assuntos
Vesículas Extracelulares , Fibroblastos , Glutationa Transferase , RNA Mensageiro , Envelhecimento da Pele , Cicatrização , Animais , Camundongos , Fibroblastos/metabolismo , Glutationa Transferase/metabolismo , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Epiderme/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pele/metabolismo , Masculino , Humanos , Células Epidérmicas/metabolismo , Células Cultivadas
12.
J Agric Food Chem ; 72(26): 14547-14556, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38907715

RESUMO

Global warming, heat waves, and seasonal drought pose serious threats to crops, such as grapevine, that are valued for their secondary metabolites, which are of primary importance for the wine industry. Discriminating the effects of distinct environmental factors in the open field is challenging. In the present study, in vitro cultured berries of Sauvignon Blanc were exposed to individual and combined stress factors to investigate the effects on the biosynthesis of the thiol precursors. Our results confirm the complexity and extreme reactivity of the accumulation process in grapes. However, they also indicate that heat stress has a positive effect on the production of the Cys-3SH precursor. Moreover, we identified several candidate genes, such as VvGSTs and VvGGT that are potentially involved in biosynthesis and consistently modulated. Nonetheless, we were unable to conclusively determine the effects of stresses on the biosynthesis of other precursors nor could we formulate hypotheses regarding their regulation.


Assuntos
Ácido Abscísico , Frutas , Temperatura Alta , Compostos de Sulfidrila , Vitis , Vitis/metabolismo , Vitis/química , Vitis/genética , Frutas/metabolismo , Frutas/química , Frutas/genética , Compostos de Sulfidrila/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
13.
Plant Sci ; 346: 112170, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906181

RESUMO

Plant tau glutathione S-transferase (GSTU) is a kind of multiple functions enzyme, but its specific roles in poplar disease resistance remain uncertain. In this study, 27 PdbGSTU-encoding genes from Populus davidiana × P. bollena were cloned and their protein architectures and phylogenetic relationships were subsequently analyzed. Expression analysis revealed that PdbGSTUs were differentially expressed under Alternaria alternate infection. Then, the PdbGSTU10 was further induced by phytohormones and H2O2, especially salicylic acid (SA), indicating its potential role in the pathogen defense of poplar. Subsequently, gain- and loss-of-function assays showed that overexpressed PdbGSTU10 activated antioxidant enzymes and significantly decreased reactive oxygen species (ROS) content, ultimately improving the resistance to A. alternate in poplar. Conversely, silencing PdbGSTU10 had the opposite effect. Moreover, overexpressed PdbGSTU10 also increased the content of SA and induced the expression of SA signal-related genes. These results showed that PdbGSTU10 may enhance disease resistance in poplar by scavenging ROS and affecting the SA signaling pathway. Our findings contribute to the understanding of the functions of GSTU in woody plants, particularly in disease resistance.


Assuntos
Alternaria , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/microbiologia , Populus/enzimologia , Populus/metabolismo , Populus/imunologia , Alternaria/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
14.
Int Immunopharmacol ; 137: 112363, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851161

RESUMO

Intestinal dysfunction plays a pivotal role in the development of acute pancreatitis (AP), however, the underlying mechanisms of intestinal dysfunction on severity of hyperlipidemic acute pancreatitis (HLAP) are still unclear. Herein, we explored the role of intestinal function on the severity of HLAP. We found that HLAP patients exhibit higher lipid and inflammatory response than AP patients. Hyperlipidemia significantly elevates serum lipids and worsen pancreatic damage in AP mice. In addition, significant exacerbated intestinal barrier damage and inflammation were observed in experimental HLAP mice, as evidenced by increased serum amylase and lipase levels, and pancreatic edema. Further, RNA-Seq showed that a markedly decrease of glutathione S-transferase pi (GSTpi) in colonic tissue of HLAP mice compared with AP mice, accompanied with increased serum lipopolysaccharides level. However, colonic GSTpi overexpression by adeno-associated virus significantly attenuated intestinal damage and subsequent pancreatic inflammation in HLAP mice. Mechanistically, GSTpi mitigated HLAP-mediated colonic NLRP3 inflammasome activation and barrier dysfunction. These results suggest that intestinal GSTpi deficiency exacerbates the severity of experimental HLAP, providing new insights for the clinical treatment of HLAP.


Assuntos
Hiperlipidemias , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Pancreatite/patologia , Humanos , Camundongos , Masculino , Modelos Animais de Doenças , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Índice de Gravidade de Doença , Inflamassomos/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Intestinos/patologia , Camundongos Knockout , Feminino , Colo/patologia , Pâncreas/patologia
15.
Genes (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927631

RESUMO

Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to its relatively strong tolerance to salt. This characteristic renders it a valuable subject for investigating the molecular mechanisms underlying plant salt tolerance and for identifying genes that confer salt tolerance. In this study, focus was placed on examining a salt-tolerant variety, E991, and a salt-sensitive variety, ZM24. A combined analysis of transcriptomic data from these cotton varieties led to the identification of potential salt stress-responsive genes within the glutathione S-transferase (GST) family. These versatile enzyme proteins, prevalent in animals, plants, and microorganisms, were demonstrated to be involved in various abiotic stress responses. Our findings indicate that suppressing GhGSTF9 in cotton led to a notably salt-sensitive phenotype, whereas heterologous overexpression in Arabidopsis plants decreases the accumulation of reactive oxygen species under salt stress, thereby enhancing salt stress tolerance. This suggests that GhGSTF9 serves as a positive regulator in cotton's response to salt stress. These results offer new target genes for developing salt-tolerant cotton varieties.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Arabidopsis/genética , Gossypium/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Espécies Reativas de Oxigênio/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Estresse Fisiológico/genética , Plantas Tolerantes a Sal/genética
16.
Pestic Biochem Physiol ; 202: 105944, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879301

RESUMO

Contamination of food products with mycotoxins such as aflatoxin B1 (AFB1) poses a severe risk to human health. Larvae of the black soldier fly (BSFL), Hermetia illucens (Diptera: Stratiomyidae), can successfully metabolize AFB1 without any negative consequences on their survival or growth. Organic waste streams contaminated with mycotoxins can be upcycled into protein-rich BSFL as an alternative feed for livestock and the left-over feed residue into nutrient-rich crop fertilizers. However, the underlying mechanisms that allow BSFL to metabolize AFB1 are unknown. In this study, five-day-old BSFL were fed with either a control or an AFB1-spiked (20 µg/kg) diet to elucidate the underlying mechanisms. Larval samples were collected at three timepoints (6 h, 24 h and 72 h) and subjected to RNA-Seq analysis to determine gene expression patterns. Provision of an AFB1-spiked diet resulted in an up-regulation of 357 and a down-regulation of 929 unique genes. Upregulated genes include multiple genes involved in AFB1 metabolism in other (insect) species. Downregulated genes were generally involved in the insects' growth, development, and immunity. BSFL possesses a diverse genetic arsenal that encodes for enzymes capable of metabolizing AFB1 without trade-offs on larval survival. In conclusion, the adverse impact of AFB1 exposure on immunity-related processes is observed in the transcriptomic response, and is indicative of a trade-off between detoxification and immune responses.


Assuntos
Aflatoxina B1 , Dípteros , Larva , Animais , Aflatoxina B1/toxicidade , Dípteros/efeitos dos fármacos , Dípteros/genética , Dípteros/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
17.
Pestic Biochem Physiol ; 202: 105939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879330

RESUMO

The brown planthopper (BPH), Nilaparvata lugens is a devastating agricultural pest of rice, and they have developed resistance to many pesticides. In this study, we assessed the response of BPH nymphs to nitenpyram, imidacloprid, and etofenprox using contact and dietary bioassays, and investigated the underlying functional diversities of BPH glutathione-S-transferase (GST), carboxylesterase (CarE) and cytochrome P450 monooxygenase (P450) against these insecticides. Both contact and ingestion toxicity of nitenpyram to BPH were significantly higher than either imidacloprid or etofenprox. Under the LC50 concentration of each insecticide, they triggered a distinct response for GST, CarE, and P450 activities, and each insecticide induced at least one detoxification enzyme activity. These insecticides almost inhibited the expression of all tested GST, CarE, and P450 genes in contact bioassays but induced the transcriptional levels of these genes in dietary bioassays. Silencing of NlGSTD2 expression had the greatest effect on BPH sensitivity to nitenpyram in contact test and imidacloprid in dietary test. The sensitivities of BPH to insecticide increased the most in the contact test was etofenprox after silencing of NlCE, while the dietary test was nitenpyram. Knockdown of NlCYP408A1 resulted in BPH sensitivities to insecticide increasing the most in the contact test was nitenpyram, while the dietary test was imidacloprid. Taken together, these findings reveal that NlGSTD2, NlCE, and NlCYP408A1 play an indispensable role in the detoxification of the contact and ingestion toxicities of different types of insecticides to BPH, which is of great significance for the development of new strategies for the sucking pest control.


Assuntos
Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Glutationa Transferase , Hemípteros , Inseticidas , Neonicotinoides , Nitrocompostos , Piretrinas , Interferência de RNA , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/farmacologia , Nitrocompostos/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Carboxilesterase/genética , Carboxilesterase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Piretrinas/toxicidade , Piretrinas/farmacologia , Inativação Metabólica , Ninfa/efeitos dos fármacos , Ninfa/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Piridinas/toxicidade , Piridinas/farmacologia
18.
Plant Physiol Biochem ; 212: 108766, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797011

RESUMO

Glutathione S-transferases (GSTs) constitute a protein superfamily encoded by a large gene family and play a crucial role in plant growth and development. However, their precise functions in wood plant responses to abiotic stress are not fully understood. In this study, we isolated a Phi class glutathione S-transferase-encoding gene, PtrGSTF8, from poplar (Populus alba × P. glandulosa), which is significantly up-regulated under salt stress. Moreover, compared with wild-type (WT) plants, transgenic tobacco plants exhibited significant salt stress tolerance. Under salt stress, PtrGSTF8-overexpressing tobacco plants showed a significant increase in plant height and root length, and less accumulation of reactive oxygen species. In addition, these transgenic tobacco plants exhibited higher superoxide dismutase, peroxidase, and catalase activities and reduced malondialdehyde content compared with WT plants. Quantitative real-time PCR experiments showed that the overexpression of PtrGSTF8 increased the expression of numerous genes related to salt stress. Furthermore, PtrMYB108, a MYB transcription factor involved in salt resistance in poplar, was found to directly activate the promoter of PtrGSTF8, as demonstrated by yeast one-hybrid assays and luciferase complementation assays. Taken together, these findings suggest that poplar PtrGSTF8 contributes to enhanced salt tolerance and confers multiple growth advantages when overexpressed in tobacco.


Assuntos
Glutationa Transferase , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Populus , Espécies Reativas de Oxigênio , Tolerância ao Sal , Populus/genética , Populus/enzimologia , Populus/metabolismo , Tolerância ao Sal/genética , Nicotiana/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino/genética
19.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791319

RESUMO

Glutathione S-transferase omega 1 (GstO1) catalyzes deglutathionylation and plays an important role in the protein glutathionylation cycle in cells. GstO1 contains four conserved cysteine residues (C32, C90, C191, C236) found to be mutated in patients with associated diseases. In this study, we investigated the effects of cysteine mutations on the structure and function of GstO1 under different redox conditions. Wild-type GstO1 (WT) was highly sensitive to hydrogen peroxide (H2O2), which caused precipitation and denaturation at a physiological temperature. However, glutathione efficiently inhibited the H2O2-induced denaturation of GstO1. Cysteine mutants C32A and C236A exhibited redox-dependent stabilities and enzyme activities significantly different from those of WT. These results indicate that C32 and C236 play critical roles in GstO1 regulation by sensing redox environments and explain the pathological effect of cysteine mutations found in patients with associated diseases.


Assuntos
Cisteína , Glutationa Transferase , Glutationa , Peróxido de Hidrogênio , Oxirredução , Cisteína/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Humanos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Mutação
20.
Wellcome Open Res ; 9: 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813466

RESUMO

Background: The effectiveness of long-lasting insecticidal nets (LLINs) are being threatened by growing resistance to pyrethroids. To restore their efficacy, a synergist, piperonyl butoxide (PBO) which inhibits cytochrome P450s has been incorporated into pyrethroid treated nets. A trial of PBO-LLINs was conducted in Uganda from 2017 and we attempted to characterize mechanisms of resistance that could impact intervention efficacy. Methods: We established an Anopheles gambiae s.s colony in 2018 using female mosquitoes collected from Busia district in eastern Uganda. We first assessed the phenotypic resistance profile of this colony using WHO tube and net assays using a deltamethrin dose-response approach. The Busia colony was screened for known resistance markers and RT-qPCR targeting 15 genes previously associated with insecticide resistance was performed. Results: The Busia colony had very high resistance to deltamethrin, permethrin and DDT. In addition, the colony had moderate resistance to alpha-cypermethrin and lambda-cyhalothrin but were fully susceptible to bendiocarb and fenitrothion. Exposure to PBO in combination with permethrin and deltamethrin resulted in higher mortality rates in both net and tube assays, with a higher mortality observed in net assays than tube assays. The kdr marker, Vgsc-995S was at very high frequency (91.7-98.9%) whilst the metabolic markers Coeae1d and Cyp4j5-L43F were at very low (1.3% - 11.5%) and moderate (39.5% - 44.7%) frequencies respectively. Our analysis showed that gene expression pattern in mosquitoes exposed to deltamethrin, permethrin or DDT only were similar in comparison to the susceptible strain and there was significant overexpression of cytochrome P450s, glutathione-s-transferases (GSTs) and carboxyl esterases (COEs). However, mosquitoes exposed to both PBO and pyrethroid strikingly and significantly only overexpressed closely related GSTs compared to unexposed mosquitoes while major cytochrome P450s were underexpressed. Conclusions: The high levels of pyrethroid resistance observed in Busia appears associated with a wide range of metabolic gene families.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...