Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5037, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424450

RESUMO

The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.


Assuntos
Saccharum , Thermoascus , Poligalacturonase/metabolismo , Thermoascus/metabolismo , Celulose , Enzimas Multifuncionais , Saccharum/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
2.
Biotechnol Lett ; 46(2): 201-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280177

RESUMO

OBJECTIVES: Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS: The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION: This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.


Assuntos
Microbiota , Polissacarídeos , Oligossacarídeos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Monossacarídeos
3.
Exp Biol Med (Maywood) ; 248(22): 2053-2061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38057942

RESUMO

Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.


Assuntos
Quitinases , Humanos , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Proteínas , Quitina/química , Quitina/metabolismo , Biotecnologia , Fungos
4.
Carbohydr Res ; 532: 108901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487384

RESUMO

Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially ß-xylosidases. In this study, ß-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of ß-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-ß-d-xylopyranoside. The specific activity on p-nitrophenyl-ß-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other ß-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.


Assuntos
Xilose , Xilosidases , Xilose/química , Xilanos/metabolismo , Escherichia coli/metabolismo , Xilosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato
5.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1358-1372, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322419

RESUMO

Glycoside hydrolase family 5 (GH5) harbors diverse substrate specificities and modes of action, exhibiting notable molecular adaptations to cope with the stereochemical complexity imposed by glycosides and carbohydrates such as cellulose, xyloglucan, mixed-linkage ß-glucan, laminarin, (hetero)xylan, (hetero)mannan, galactan, chitosan, N-glycan, rutin and hesperidin. GH5 has been divided into subfamilies, many with higher functional specificity, several of which have not been characterized to date and some that have yet to be discovered with the exploration of sequence/taxonomic diversity. In this work, the current GH5 subfamily inventory is expanded with the discovery of the GH5_57 subfamily by describing an endo-ß-mannanase (CapGH5_57) from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota. Biochemical characterization showed that CapGH5_57 is active on glucomannan, releasing oligosaccharides with a degree of polymerization from 2 to 6, indicating it to be an endo-ß-mannanase. The crystal structure, which was solved using single-wavelength anomalous diffraction, revealed a massively redesigned catalytic interface compared with GH5 mannanases. The typical aromatic platforms and the characteristic α-helix-containing ß6-α6 loop in the positive-subsite region of GH5_7 mannanases are absent in CapGH5_57, generating a large and open catalytic interface that might favor the binding of branched substrates. Supporting this, CapGH5_57 contains a tryptophan residue adjacent and perpendicular to the cleavage site, indicative of an anchoring site for a substrate with a substitution at the -1 glycosyl moiety. Taken together, these results suggest that despite presenting endo activity on glucomannan, CapGH5_57 may have a new type of substituted heteromannan as its natural substrate. This work demonstrates the still great potential for discoveries regarding the mechanistic and functional diversity of this large and polyspecific GH family by unveiling a novel catalytic interface sculpted to recognize complex heteromannans, which led to the establishment of the GH5_57 subfamily.


Assuntos
Glicosídeo Hidrolases , beta-Manosidase , Glicosídeo Hidrolases/química , beta-Manosidase/química , beta-Manosidase/metabolismo , Mananas/química , Mananas/metabolismo , Especificidade por Substrato , Catálise
6.
Front Physiol ; 13: 861620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262251

RESUMO

Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14-20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.

7.
Front Microbiol ; 13: 911269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711755

RESUMO

Rahnella sp. ChDrAdgB13 is a dominant member of the gut bacterial core of species of the genus Dendroctonus, which is one of the most destructive pine forest bark beetles. The objectives of this study were identified in Rahnella sp. ChDrAdgB13 genome the glycosyl hydrolase families involved in carbohydrate metabolism and specifically, the genes that participate in xylan hydrolysis, to determine the functionality of a putative endo-1,4-ß-D-xylanase, which results to be bifunctional xylanase-ferulic acid esterase called R13 Fae and characterize it biochemically. The carbohydrate-active enzyme prediction revealed 25 glycoside hydrolases, 20 glycosyl transferases, carbohydrate esterases, two auxiliary activities, one polysaccharide lyase, and one carbohydrate-binding module (CBM). The R13 Fae predicted showed high identity to the putative esterases and glycosyl hydrolases from Rahnella species and some members of the Yersiniaceae family. The r13 fae gene encodes 393 amino acids (43.5 kDa), containing a signal peptide, esterase catalytic domain, and CBM48. The R13 Fae modeling showed a higher binding affinity to ferulic acid, α-naphthyl acetate, and arabinoxylan, and a low affinity to starch. The R13 Fae recombinant protein showed activity on α-naphthyl acetate and xylan, but not on starch. This enzyme showed mesophilic characteristics, displaying its optimal activity at pH 6.0 and 25°C. The enzyme was stable at pH from 4.5 to 9.0, retaining nearly 66-71% of its original activity. The half-life of the enzyme was 23 days at 25°C. The enzyme was stable in the presence of metallic ions, except for Hg2+. The products of R13 Fae mediated hydrolysis of beechwood xylan were xylobiose and xylose, manifesting an exo-activity. The results suggest that Rahnella sp. ChDrAdgB13 hydrolyze xylan and its products could be assimilated by its host and other gut microbes as a nutritional source, demonstrating their functional role in the bacterial-insect interaction contributing to their fitness, development, and survival.

8.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1387333

RESUMO

ABSTRACT Blastocystis sp. is a common intestinal microorganism. The α-L-fucosidase (ALFuc) is an enzyme long associated with the colonization of the gut microbiota. However, this enzyme has not been experimentally identified in Blastocystis cultures. The objective of the present study was to identify ALFuc in supernatants of axenic cultures of Blastocystis subtype (ST)1 ATCC-50177 and ATCC-50610 and to compare predicted ALFuc proteins of alfuc genes in sequenced STs1-3 isolates in human Blastocystis carriers. Excretion/secretion (Es/p) and cell lysate proteins were obtained by processing Blastocystis ATCC cultures and submitting them to SDS-PAGE and immunoblotting. In addition, 18 fecal samples from symptomatic Blastocystis human carriers were analyzed by sequencing of amplification products for subtyping. A complete identification of the alfuc gene and phylogenetic analysis were performed. Immunoblotting showed that the amplified band corresponding to ALFuc (~51 kDa) was recognized only in the ES/p. Furthermore, prediction analysis of ALFuc 3D structures revealed that the domain α-L-fucosidase and the GH29 family's catalytic sites were conserved; interestingly, the galactose-binding domain was recognized only in ST1 and ST2. The phylogenetic inferences of ALFuc showed that STs1-3 were clearly identifiable and grouped into specific clusters. Our results show, for the first time through experimental data that ALFuc is a secretion product of Blastocystis sp., which could have a relevant role during intestinal colonization; however, further studies are required to clarify this condition. Furthermore, the alfuc gene is a promising candidate for a phylogenetic marker, as it shows a conserved classification with the SSU-rDNA gene.

9.
Front Physiol ; 12: 635633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897451

RESUMO

Sugar-rich food sources are essential for sandflies to meet their energy demands, achieving more prolonged survival. The digestion of carbohydrates from food is mainly realized by glycoside hydrolases (GH). To identify genes coding for α-glycosidases and α-amylases belonging to Glycoside Hydrolase Family 13 (GH13) and Glycoside Hydrolase Family 31 (GH31) in Lutzomyia longipalpis, we performed an HMMER search against its genome using known sequences from other dipteran species. The sequences retrieved were classified based on BLASTP best hit, analysis of conserved regions by alignment with sequences of proteins with known structure, and phylogenetic analysis comparing with orthologous proteins from other dipteran species. Using RT-PCR analysis, we evaluated the expression of GH13 and GH31 genes, in the gut and rest of the body of females, in four different conditions: non-fed, sugar-fed, blood-fed, and Leishmania mexicana infected females. L. longipalpis has GH13/31 genes that code for enzymes involved in various aspects of sugar metabolism, as carbohydrate digestion, storage, and mobilization of glycogen reserves, proteins involved in transport, control of N-glycosylation quality, as well as others with a putative function in the regulation of myogenesis. These proteins are representatives of GH13 and GH31 families, and their roles seem to be conserved. Most of the enzymes seem to be active with conserved consense sequences, including the expected catalytic residues. α-amylases also demonstrated the presence of calcium and chloride binding sites. L. longipalpis genome shows an expansion in the α-amylase gene family, with two clusters. In contrast, a retraction in the number of α-glucosidases occurred. The expansion of α-amylases is probably related to the specialization of these proteins for different substrates or inhibitors, which might correlate with the higher diversity of plant foods available in the natural habitat of L. longipalpis. The expression of α-glucosidase genes is higher in blood-fed females, suggesting their role in blood digestion. Besides that, in blood-fed females infected with the parasite Leishmania mexicana, these genes were also modulated. Glycoside Hydrolases from families 13 and 31 are essential for the metabolism of L. longipalpis, and GH13 enzymes seem to be involved in the interaction between sandflies and Leishmania.

10.
Electron. j. biotechnol ; Electron. j. biotechnol;50: 10-15, Mar. 2021. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1292308

RESUMO

BACKGROUND: LXYL-P1-2 is the first reported glycoside hydrolase that can catalyze the transformation of 7-b-xylosyl-10-deacetyltaxol (XDT) to 10-deacetyltaxol (DT) by removing the D-xylosyl group at the C7 position. Successful synthesis of paclitaxel by one-pot method combining the LXYL-P1-2 and 10- deacetylbaccatin III-10-b-O-acetyltransferase (DBAT) using XDT as a precursor, making LXYL-P1-2 a highly promising enzyme for the industrial production of paclitaxel. The aim of this study was to investigate the catalytic potential of LXYL-P1-2 stabilized on magnetic nanoparticles, the surface of which was modified by Ni2+-immobilized cross-linked Fe3O4@Histidine. RESULTS: The diameter of matrix was 20­40 nm. The Km value of the immobilized LXYL-P1-2 catalyzing XDT (0.145 mM) was lower than that of the free enzyme (0.452 mM), and the kcat/Km value of immobilized enzyme (12.952 mM s 1 ) was higher than the free form (8.622 mM s 1 ). The immobilized form maintained 50% of its original activity after 15 cycles of reuse. In addition, the stability of immobilized LXYL-P1-2, maintained 84.67% of its initial activity, improved in comparison with free form after 30 d storage at 4 C. CONCLUSIONS: This investigation not only provides an effective procedure for biocatalytic production of DT, but also gives an insight into the application of magnetic material immobilization technology.


Assuntos
Paclitaxel/biossíntese , Glicosídeo Hidrolases/metabolismo , Cinética , Enzimas Imobilizadas , Nanopartículas , Imãs
11.
J Biol Chem ; 296: 100385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556371

RESUMO

Glycoside hydrolases (GHs) are involved in the degradation of a wide diversity of carbohydrates and present several biotechnological applications. Many GH families are composed of enzymes with a single well-defined specificity. In contrast, enzymes from the GH16 family can act on a range of different polysaccharides, including ß-glucans and galactans. SCLam, a GH16 member derived from a soil metagenome, an endo-ß-1,3(4)-glucanase (EC 3.2.1.6), can cleave both ß-1,3 and ß-1,4 glycosidic bonds in glucans, such as laminarin, barley ß-glucan, and cello-oligosaccharides. A similar cleavage pattern was previously reported for other GH16 family members. However, the molecular mechanisms for this dual cleavage activity on (1,3)- and (1,4)-ß-D-glycosidic bonds by laminarinases have not been elucidated. In this sense, we determined the X-ray structure of a presumably inactive form of SCLam cocrystallized with different oligosaccharides. The solved structures revealed general bound products that are formed owing to residual activities of hydrolysis and transglycosylation. Biochemical and biophysical analyses and molecular dynamics simulations help to rationalize differences in activity toward different substrates. Our results depicted a bulky aromatic residue near the catalytic site critical to select the preferable configuration of glycosidic bonds in the binding cleft. Altogether, these data contribute to understanding the structural basis of recognition and hydrolysis of ß-1,3 and ß-1,4 glycosidic linkages of the laminarinase enzyme class, which is valuable for future studies on the GH16 family members and applications related to biomass conversion into feedstocks and bioproducts.


Assuntos
Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Glucanos/metabolismo , Proteínas de Bactérias/química , Sequência de Carboidratos , Domínio Catalítico , Celulases/química , Cristalografia por Raios X/métodos , Glucanos/classificação , Glicosídeos/química , Glicosídeos/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Microbiologia do Solo , Especificidade por Substrato
12.
Electron. j. biotechnol ; 49: 64-71, Jan. 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1291923

RESUMO

BACKGROUND: Manno-oligosaccharides (MOS) is known as a kind of prebiotics. Mannanase plays a key role for the degradation of mannan to produce MOS. In this study, the mannanases of glycoside hydrolase (GH) families 5 Man5HJ14 and GH26 ManAJB13 were employed to prepare MOS from locust bean gum (LBG) and palm kernel cake (PKC). The prebiotic activity and utilization of MOS were assessed in vitro using the probiotic Lactobacillus plantarum strain. RESULTS: Galactomannan from LBG was converted to MOS ranging in size from mannose up to mannoheptose by Man5HJ14 and ManAJB13. Mannoheptose was got from the hydrolysates produced by Man5HJ14, which mannohexaose was obtained from LBG hydrolyzed by ManAJB13. However, the same components of MOS ranging in size from mannose up to mannotetrose were observed between PKC hydrolyzed by the mannanases mentioned above. MOS stability was not affected by high-temperature and high-pressure condition at their natural pH. Based on in vitro growth study, all MOS from LBG and PKC was effective in promoting the growth of L. plantarum CICC 24202, with the strain preferring to use mannose to mannotriose, rather than above mannotetrose. CONCLUSIONS: The effect of mannanases and mannan difference on MOS composition was studied. All of MOS hydrolysates showed the stability in adversity condition and prebiotic activity of L. plantarum, which would have potential application in the biotechnological applications.


Assuntos
Oligossacarídeos/metabolismo , beta-Manosidase/metabolismo , Gomas Vegetais/química , Mananas , Técnicas In Vitro , Estabilidade Enzimática , Sphingomonas , Prebióticos , Fermentação
13.
Front Microbiol ; 11: 2058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983042

RESUMO

Cryptococcosis is a fungal infection caused mainly by the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii. The infection initiates with the inhalation of propagules that are then deposited in the lungs. If not properly treated, cryptococci cells can disseminate and reach the central nervous system. The current recommended treatment for cryptococcosis employs a three-stage regimen, with the administration of amphotericin B, flucytosine and fluconazole. Although effective, these drugs are often unavailable worldwide, can lead to resistance development, and may display toxic effects on the patients. Thus, new drugs for cryptococcosis treatment are needed. Recently, an iridoid named plumieridine was found in Allamanda polyantha seed extract; it exhibited antifungal activity against C. neoformans with a MIC of 250 µg/mL. To address the mode of action of plumieridine, several in silico and in vitro experiments were performed. Through a ligand-based a virtual screening approach, chitinases were identified as potential targets. Confirmatory in vitro assays showed that C. neoformans cell-free supernatant incubated with plumieridine displayed reduced chitinase activity, while chitinolytic activity was not inhibited in the insoluble cell fraction. Additionally, confocal microscopy revealed changes in the distribution of chitooligomers in the cryptococcal cell wall, from a polarized to a diffuse cell pattern state. Remarkably, further assays have shown that plumieridine can also inhibit the chitinolytic activity from the supernatant and cell-free extracts of bacteria, insect and mouse-derived macrophage cells (J774.A1). Together, our results suggest that plumieridine can be a broad-spectrum chitinase inhibitor.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32500063

RESUMO

The glycoside hydrolase family 39 (GH39) is a functionally expanding family with limited understanding about the molecular basis for substrate specificity and extremophilicity. In this work, we demonstrate the key role of the positive-subsite region in modulating substrate affinity and how the lack of a C-terminal extension impacts on oligomerization and structural stability of some GH39 members. The crystallographic and SAXS structures of a new GH39 member from the phytopathogen Xanthomonas citri support the importance of an extended C-terminal to promote oligomerization as a molecular strategy to enhance thermal stability. Comparative structural analysis along with site-directed mutagenesis showed that two residues located at the positive-subsite region, Lys166 and Asp167, are critical to substrate affinity and catalytic performance, by inducing local changes in the active site for substrate binding. These findings expand the molecular understanding of the mechanisms involved in substrate recognition and structural stability of the GH39 family, which might be instrumental for biological insights, rational enzyme engineering and utilization in biorefineries.

15.
Protein Sci ; 29(9): 1879-1889, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32597558

RESUMO

In this work, we investigated how activity and oligomeric state are related in a purified GH1 ß-glucosidase from Spodoptera frugiperda (Sfßgly). Gel filtration chromatography coupled to a multiple angle light scattering detector allowed separation of the homodimer and monomer states and determination of the dimer dissociation constant (KD ), which was in the micromolar range. Enzyme kinetic parameters showed that the dimer is on average 2.5-fold more active. Later, we evaluated the kinetics of homodimerization, scanning the changes in the Sfßgly intrinsic fluorescence over time when the dimer dissociates into the monomer after a large dilution. We described how the rate constant of monomerization (koff ) is affected by temperature, revealing the enthalpic and entropic contributions to the process. We also evaluated how the rate constant (kobs ) by which equilibrium is reached after dimer dilution behaves when varying the initial Sfßgly concentration. These data indicated that Sfßgly dimerizes through the conformational selection mechanism, in which the monomer undergoes a conformational exchange and then binds to a similar monomer, forming a more active homodimer. Finally, we noted that conformational selection reports and experiments usually rely on a ligand whose concentration is in excess, but for homodimerization, this approach does not hold. Hence, since our approach overcomes this limitation, this study not only is a new contribution to the comprehension of GH1 ß-glucosidases, but it can also help to elucidate protein interaction pathways.


Assuntos
Glicosídeo Hidrolases/química , Proteínas de Insetos/química , Multimerização Proteica , Spodoptera/enzimologia , Animais , Glicosídeo Hidrolases/genética , Proteínas de Insetos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Spodoptera/genética
16.
J Biol Chem ; 295(15): 5012-5021, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139511

RESUMO

ß-Mannanases from the glycoside hydrolase 26 (GH26) family are retaining hydrolases that are active on complex heteromannans and whose genes are abundant in rumen metagenomes and metatranscriptomes. These enzymes can exhibit distinct modes of substrate recognition and are often fused to carbohydrate-binding modules (CBMs), resulting in a molecular puzzle of mechanisms governing substrate preference and mode of action that has not yet been pieced together. In this study, we recovered a novel GH26 enzyme with a CBM35 module linked to its N terminus (CrMan26) from a cattle rumen metatranscriptome. CrMan26 exhibited a preference for galactomannan as substrate and the crystal structure of the full-length protein at 1.85 Å resolution revealed a unique orientation of the ancillary domain relative to the catalytic interface, strategically positioning a surface aromatic cluster of the ancillary domain as an extension of the substrate-binding cleft, contributing to galactomannan preference. Moreover, systematic investigation of nonconserved residues in the catalytic interface unveiled that residues Tyr195 (-3 subsite) and Trp234 (-5 subsite) from distal negative subsites have a key role in galactomannan preference. These results indicate a novel and complex mechanism for substrate recognition involving spatially remote motifs, distal negative subsites from the catalytic domain, and a surface-associated aromatic cluster from the ancillary domain. These findings expand our molecular understanding of the mechanisms of substrate binding and recognition in the GH26 family and shed light on how some CBMs and their respective orientation can contribute to substrate preference.


Assuntos
Mananas/metabolismo , Manosidases/química , Manosidases/metabolismo , Metagenoma , Mutação , Rúmen/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Galactose/análogos & derivados , Hidrólise , Manosidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Ligação Proteica , Homologia de Sequência , Especificidade por Substrato
17.
Appl Microbiol Biotechnol ; 103(23-24): 9493-9504, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31705182

RESUMO

AbstractDiglycosidases hydrolyze the heterosidic linkage of diglycoconjugates, releasing the disaccharide and the aglycone. Usually, these enzymes do not hydrolyze or present only low activities towards monoglycosylated compounds. The flavonoid degrading fungus Acremonium sp. DSM 24697 produced two diglycosidases, which were termed 6-O-α-rhamnosyl-ß-glucosidase I and II (αRßG I and II) because of their function of releasing the disaccharide rutinose (6-O-α-L-rhamnosyl-ß-D-glucose) from the diglycoconjugates hesperidin or rutin. In this work, the genome of Acremonium sp. DSM 24697 was sequenced and assembled with a size of ~ 27 Mb. The genes encoding αRßG I and II were expressed in Pichia pastoris KM71 and the protein products were purified with apparent molecular masses of 42 and 82 kDa, respectively. A phylogenetic analysis showed that αRßG I grouped in glycoside hydrolase family 5, subfamily 23 (GH5), together with other fungal diglycosidases whose substrate specificities had been reported to be different from αRßG I. On the other hand, αRßG II grouped in glycoside hydrolase family 3 (GH3) and thus is the first GH3 member that hydrolyzes the heterosidic linkage of rutinosylated compounds. The substrate scopes of the enzymes were different: αRßG I showed exclusive specificity toward 7-O-ß-rutinosyl flavonoids, whereas αRßG II hydrolyzed both 7-O-ß-rutinosyl- and 3-O-ß-rutinosyl- flavonoids. None of the enzymes displayed activity toward 7-O-ß-neohesperidosyl- flavonoids. The recombinant enzymes also exhibited transglycosylation activities, transferring rutinose from hesperidin or rutin onto various alcoholic acceptors. The different substrate scopes of αRßG I and II may be part of an optimized strategy of the original microorganism to utilize different carbon sources.


Assuntos
Acremonium/enzimologia , Acremonium/genética , Flavonoides/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/genética , Peso Molecular , Filogenia , Pichia/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato
18.
Biochimie ; 165: 275-284, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31472178

RESUMO

Glycoside hydrolase (GH) family 45 is one of the smallest and poorly studied endoglucanase family with a broad biotechnological application ranging from treatment of textiles to conversion of complex cell wall polysaccharides into simple oligo- and monosaccharides. In a present study, GH45 cellulase from Neurospora crassa OR74A (NcCel45A) was characterized both biochemically and structurally. HPLC analysis of the hydrolytic products confirmed the endo-ß(1,4) mode of action of the enzyme. Moreover, such pattern revealed that NcCel45A cannot hydrolyze efficiently oligosaccharides with a degree of polymerization smaller than six. The crystal structure of NcCel45A catalytic domain in the apo-form was determined at 1.9 Šresolution and the structure of the enzyme bound to cellobiose was solved and refined to 1.8 Šresolution. Comparative structural analyses and molecular dynamics simulations show that the enzyme dynamics is affected by substrate binding. Taken together, MD simulations and statistical coupling analysis revealed previously unknown correlation of a loop 6 with the breakdown of cellulose substrates by GH45.


Assuntos
Celulase/química , Celulose/metabolismo , Neurospora crassa/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Simulação de Dinâmica Molecular , Conformação Proteica , Especificidade por Substrato
19.
Enzyme Microb Technol ; 126: 50-61, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31000164

RESUMO

The biocontrol activity of some soil strains of Chromobacterium sp. against pathogenic fungi has been attributed to secreted chitinases. The aim of this work was to characterize biochemically a recombinant chitinase (CvChi47) from C. violaceum ATCC 12472 and to investigate its effects on phytopathogenic fungi. CvChi47 is a modular enzyme with 450 amino acid residues, containing a type I signal peptide at the N-terminal region, followed by one catalytic domain belonging to family 18 of the glycoside hydrolases, and two type-3 chitin-binding domains at the C-terminal end. The recombinant enzyme was expressed in Escherichia coli as a His-tagged protein and purified to homogeneity. The native signal peptide of CvChi47 was used to direct its secretion into the culture medium, from where the recombinant product was purified by affinity chromatography on chitin and immobilized metal. The purified protein showed an apparent molecular mass of 46 kDa, as estimated by denaturing polyacrylamide gel electrophoresis, indicating the removal of the signal peptide. CvChi47 was a thermostable protein, retaining approximately 53.7% of its activity when heated at 100 °C for 1 h. The optimum hydrolytic activity was observed at 60 °C and pH 5. The recombinant chitinase inhibited the conidia germination of the phytopathogenic fungi Fusarium oxysporum and F. guttiforme, hence preventing mycelial growth. Furthermore, atomic force microscopy experiments revealed a pronounced morphological alteration of the cell surface of conidia incubated with CvChi47 in comparison to untreated cells. Taken together, these results show the potential of CvChi47 as a molecular tool to control plant diseases caused by these Fusarium species.


Assuntos
Antifúngicos/farmacologia , Quitinases/metabolismo , Chromobacterium/enzimologia , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Quitinases/química , Quitinases/genética , Clonagem Molecular , Estabilidade Enzimática , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Temperatura
20.
Front Physiol ; 10: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873040

RESUMO

Insect ß-1,3-glucanases belong to Glycoside Hydrolase Family 16 (GHF16) and are involved in digestion of detritus and plant hemicellulose. In this work, we investigated the role of GHF16 genes in Aedes aegypti larvae, due to their detritivore diet. Aedes aegypti genome has six genes belonging to GHF16 (Aae GH16.1 - Aae GH16.6), containing two to six exons. Sequence analysis suggests that five of these GHF16 sequences (Aae GH16.1, 2, 3, 5, and 6) contain the conserved catalytic residues of this family and correspond to glucanases. All genomes of Nematocera analyzed showed putative gene duplications corresponding to these sequences. Aae GH16.4 has no conserved catalytic residues and is probably a ß-1,3-glucan binding protein involved in the activation of innate immune responses. Additionally, Ae. aegypti larvae contain significant ß-1,3-glucanase activities in the head, gut and rest of body. These activities have optimum pH about 5-6 and molecular masses between 41 and 150 kDa. All GHF16 genes above showed different levels of expression in the larval head, gut or rest of the body. Knock-down of AeGH16.5 resulted in survival and pupation rates lower than controls (dsGFP and water treated). However, under stress conditions, severe mortalities were observed in AeGH16.1 and AeGH16.6 knocked-down larvae. Enzymatic assays of ß-1,3-glucanase in AeGH16.5 silenced larvae exhibited lower activity in the gut and no change in the rest of the body. Chromatographic activity profiles from gut samples after GH16.5 silencing showed suppression of enzymatic activity, suggesting that this gene codes for the digestive larval ß-1,3-glucanase of Ae. aegypti. This gene and enzyme are attractive targets for new control strategies, based on the impairment of normal gut physiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA