Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 264: 116659, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128297

RESUMO

Label-free optical deoxyribonucleic acid (DNA) sensing with arrayed plasmonic nanostructures (plasmonic crystals) is a promising technology for biomedical diagnosis and bioanalytical science. Plasmonic biosensors can detect target biomolecules by utilizing the shift in plasmonic resonance caused by changes in the surrounding refractive index (RI) attributed to the capture of target biomolecules using a recognizer. Conventional explanations for the sensitivity of plasmonic crystals are based on bulk (BRIS) and surface RI sensitivities (SRIS) for basic plasmonic nanoparticles despite their unique properties such as surface lattice resonances (SLRs), wherein localized surface plasmons (LSPs) cooperatively oscillate with their pitch. Therefore, investigating the sensitivity of SLRs is imperative for improving sensing performance. In this study, the sensitivity of adenomatous polyposis coli (APC) gene-related DNA hybridization detection of complementary plasmonic crystals composed of nanodisks (PNDs) on or under plasmonic nanoholes (PNHs) was investigated considering the SLR properties. The BRIS was measured using the conventional definition of the peak wavelength shift per unit RI increment (nm/RIU) followed by the SRIS measurement using the layer-by-layer method. The BRIS and SRIS measurements reflect the practical sensitivity for DNA detection. PNHs had higher sensitivity than PNDs, with a limit of detection of 0.30 nM. Further, only the SLR-based mode responded to localized RI changes because of DNA hybridization, whereas both the LSPs- and SLR-based modes responded to uniform RI changes caused by layer-by-layer coating. Our investigation will open up possibilities and opportunities for plasmonic crystal biosensors.


Assuntos
DNA , Nanoestruturas , Ressonância de Plasmônio de Superfície , DNA/química , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Hibridização de Ácido Nucleico , Limite de Detecção , Humanos , Ouro/química
2.
Mikrochim Acta ; 191(8): 500, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088046

RESUMO

Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Lipopolissacarídeos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ouro/química , Cobre/química , Técnicas Eletroquímicas/métodos , Lipopolissacarídeos/análise , Lipopolissacarídeos/sangue , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Eletrodos , Nanoestruturas/química , Porfirinas/química , Humanos
3.
Talanta ; 279: 126586, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079434

RESUMO

In this study, we present a convenient approach utilizing gold nanostructures coated cellulose membrane for the quantification of uric acid in an aqueous solution. The synthesis of system was achieved by functionalizing cellulose membrane with poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) and cross-linked with ethylene glycol dimethacrylate (EGDMA). FT-IR and XPS confirm the formation of PMETAC and PMETAC/EGDMA on the cellulose. The fabricated substrates were exposed to tetrachloroaurate solution, then reduced by NaBH4. We have systematically investigated the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) in various pH conditions, absent uric acid, using the fabricated substrates. The colorimetric response-observed through UV-Vis spectroscopy-revealed significant shifts in absorbance at 660 nm, correlating with uric acid concentrations across a range of pH levels. The films exhibited a pronounced color change from green to light yellow in basic to neutral environments and from yellow to dark green under more acidic conditions, demonstrating their potential for high-sensitivity uric acid detection. The assessment of the catalytic films' reusability and stability revealed insights into their enduring performance, identifying opportunities for enhancing material design and functionality for extended applications. This study not only underscores the films' versatile detection capabilities but also emphasizes the importance of pH in tuning the assay's sensitivity and specificity.

4.
Biomed Eng Lett ; 14(4): 859-866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946823

RESUMO

Practical application of surface-enhanced Raman spectroscopy (SERS) has suffered from several limitations by heterogeneous distribution of hot-spots, such as high signal fluctuation and the resulting low reliability in detection. Herein, we develop a strategy of more sensitive and reliable SERS platform through designing spatially homogeneous gold nanoparticles (GNPs) on a uniform gold nanoisland (GNI) pattern. The proposed SERS substrate is successfully fabricated by combining two non-lithographic techniques of electron beam evaporation and convective self-assembly. These bottom-up methods allow a simple, cost-effective, and large-area fabrication. Compared to the SERS substrates obtained from two separate nanofabrication methods, Raman spectra measured by the samples with both GNPs and GNIs present a significant increase in the signal intensity as well as a notable improvement in signal fluctuation. The simulated near-field analyses demonstrate the formation of highly amplified plasmon modes within and at the gaps of the GNP-GNI interfaces. Moreover, the suggested SERS sensor is evaluated to detect the glucose concentration, exhibiting that the detection sensitivity is improved by more than 10 times compared to the sample with only GNI patterns and a fairly good spatial reproducibility of 7% is accomplished. It is believed that our suggestion could provide a potential for highly sensitive, low-cost, and reliable SERS biosensing platforms that include many advantages for healthcare devices. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00381-4.

5.
Chem Biodivers ; 21(2): e202301349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108659

RESUMO

This work was performed as a comparative study using nine different aqueous pollen grain extracts from eight different genera (Juniperus, Biota, Cupressus, Abies, Pinus, Cedrus, Populus and Corylus) to synthesize gold nanostructures (AuNSs) to understand if there is any possible marker that helps to predict the final morphology and size of the AuNSs. Principal component analysis (PCA) revealed that Apigenin and Pinoresinol compounds are the marker molecules in determination of the AuNSs physical characteristics while total protein, reducing carbohydrate, flavonoid and phenol contents did not show any statistically meaningful outcome. The "dominancy hypothesis" was tested by paying attention to the most concentrated phenolic acids and flavonoids in the control of AuNSs morphology and size, for which correlation analysis were performed. The statistical findings were tested using two new more pollen extracts to validate the models. Three main findings of the study were (i) determination of Apigenin and Pinoresinol levels in pollen extract can give an insight into the AuNSs physical characters, (ii) the most concentrated phenolic acids and flavonoids don't need to be same to pose same dictative effect on AuNSs morphology and size, rather relatively abundant ones in the extract play the key role and (iii) differences in the polymeric structures (e. g. lignin, cellulosic compounds etc.) have minor effect on the final morphology and size of the AuNSs.


Assuntos
Furanos , Hidroxibenzoatos , Lignanas , Nanoestruturas , Extratos Vegetais , Extratos Vegetais/química , Ouro/química , Apigenina , Flavonoides/química , Água , Nanoestruturas/química , Antioxidantes
6.
Mikrochim Acta ; 191(1): 2, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040925

RESUMO

The development of an electrochemical aptasensor for the detection of CA125 as an ovarian cancer biomarker using gold nanostructures (GNs) modified electrodes is reported. The GNs were deposited on the surface of fluorine-doped tin oxide electrodes using a simple electrochemical method and the effects of pH and surfactant concentration on the topography and electrochemical properties of the resulting GNs modified electrodes were investigated. The electrodes were characterized using field-emission scanning electron microscopy and X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The best electrode, in terms of the uniformity of the deposited GNs and the increase in electroactive surface area, was used for development of an aptasensor for CA125 tumor marker detection in human serum. Signal amplification was done by using aptamer-conjugated gold nanorods resulting in the detection limit of 2.6 U/ml and a linear range of 10 to 800 U/ml. The results showed that without the need for expensive antibodies, the developed aptasensor could specifically measure the clinically relevant concentrations of the tumor marker in human serum.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Humanos , Biomarcadores Tumorais , Nanopartículas Metálicas/química , Ouro/química , Aptâmeros de Nucleotídeos/química , Eletrodos
7.
Mikrochim Acta ; 190(10): 409, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733170

RESUMO

Alzheimer's disease (AD) is considered one of the main progressive chronic diseases in elderly individuals. Early diagnosis using related biomarkers, specifically beta-amyloid peptide (Aß), allows finding expected treatment routes. Here, we developed an electrochemical aptasensing platform for AD by employing a glassy carbon electrode (GCE) modified with a layer of jagged gold (JG) nanostructure (diameter: 60-185 nm) and graphene oxide-carboxylic acid functionalized multiwalled carbon nanotubes (GO-c-MWCNTs) nanocomposite. These surface modifications acted as the signal amplifier and provided an optimum nano-interface substrate for immobilizing aptamer strands. The measurements of Aß were performed via differential pulse voltammetry (DPV), and the aptasensor detected the analyte in a linear range from 0.1 pg mL-1 to 1 ng mL-1, with an estimated limit of detection (LOD) of about 0.088 pg mL-1 (S/N = 3). The aptasensor showed sufficient stability (11 days), reversibility (three times), and reproducibility (five times re-fabrication with relative standard deviation (RSD): 1.27). The potential interfering agents showed negligible impact on the sensing performance. Finally, the application of the aptasensor was evaluated in the presence of 10 serum samples, and the recovery values were from 93 to 110.1%.


Assuntos
Doença de Alzheimer , Nanocompostos , Nanotubos de Carbono , Idoso , Humanos , Doença de Alzheimer/diagnóstico , Reprodutibilidade dos Testes , Ouro
8.
Artigo em Inglês | MEDLINE | ID: mdl-36897565

RESUMO

The internalization of antigens by dendritic cells (DCs) is the initial critical step for vaccines to activate the immune response; however, the systemic delivery of antigens into DCs is hampered by various technical challenges. Here we show that a virus-like gold nanostructure (AuNV) can effectively bind to and be internalized by DCs due to its biomimetic topological morphology, thereby significantly promoting the maturation of DCs and the cross-presentation of the model antigen ovalbumin (OVA). In vivo experiments demonstrate that AuNV efficiently delivers OVA to draining lymph nodes and significantly inhibits the growth of MC38-OVA tumors, generating a ∼80% decrease in tumor volume. Mechanistic studies reveal that the AuNV-OVA vaccine induces a remarkable increase in the rate of maturation of DCs, OVA presentation, and CD4+ and CD8+ T lymphocyte populations in both lymph node and tumor and an obvious decrease in myeloid-derived suppressor cells and regulatory T cell populations in spleen. The good biocompatibility, strong adjuvant activity, enhanced uptake of DCs, and improved T cell activation make AuNV a promising antigen delivery platform for vaccine development.

9.
Anal Chim Acta ; 1238: 340644, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464435

RESUMO

Prostate cancer (PCa) is the most prevalent cancer worldwide, with a high mortality rate. The early and accurate detection of PCa is critical in reducing mortality and saving lives. Timely diagnosis can improve the chances of successful treatment using advanced technologies. In recent years, nanomaterial-based electrochemical sensing strategies have been adopted in clinical diagnosis, as they allow sensitive early-biomarker detections to be converged with a cost-effective electronic readout system. Herein, we present a flexible electrochemical immunosensor platform for detecting interleukin-6 (IL-6) based on an Au-integrated flexible carbon fiber (Au/CF) electrode prepared via electrodeposition and chemically modified to capture IL-6 antibodies. Several techniques are used to analyze the prepared Au/CF composite electrodes to confirm their morphology, structure, and elemental composition. Under optimum conditions, the fabricated immunosensor exhibits a wide linear dynamic ranging from 1 fg/mL to 1 µg/mL and a low detection limit of 0.056 fg/mL, with a sensitivity of 62.17 µA/(fg mL-1). The proposed fiber-based immunosensor is used to quantify the concentration of IL-6 in serum samples from clinical PCa patients (T3b and T4 stages), and the results are validated using the commercial Meso Scale Diagnostics (MSD) V-Plex method. The acceptable results yielded by the proposed immunosensor indicate that it can serve as a new platform to realize highly sensitive and cost-effective diagnostic strategies for the early diagnosis of PCa.


Assuntos
Técnicas Biossensoriais , Interleucina-6 , Masculino , Humanos , Fibra de Carbono , Imunoensaio , Anticorpos
10.
Talanta ; 246: 123511, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500518

RESUMO

Early diagnosis of diseases depends on accessibility and the ability to detect associated biomarkers. Using aptamers and equipping signal transducers with nanomaterials have facilitated, accelerated, and provided sensitive and selective nanoaptasensors. In this study, the first aptasensor to detect heat shock protein 70 kDa (HSP70) has been developed by applying a modified gold electrode (GE) with the lady fern-like gold (LFG) nanostructure. The nanostructure solution contained HAuCl4, H2SO4, and histamine and was electrochemically synthesized on the surface of the GE with an average size of ∼20 nm. The analysis to find the optimized time for immobilization of aptamer (a single-stranded RNA) as the biorecognition element on the surface of the working electrode was performed using the open-circuit potential (OCP) technique. This aptasensor could detect HSP70 in a linear range from 0.05 to 75 ng mL-1 with the limit of detection (LOD) âˆ¼ 0.02 ng mL-1. In order to find out about the performance of the designed aptasensor, other analytical analyses for knowing about the figure of metrics were shadowed through reproducibility, stability, regeneration, selectivity, accuracy, and precision experiments.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Gleiquênias , Nanopartículas Metálicas , Nanoestruturas , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Proteínas de Choque Térmico HSP70 , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
11.
Adv Sci (Weinh) ; 9(20): e2200074, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506260

RESUMO

Organoids that mimic the structural and cellular characteristics of kidneys in vitro have recently emerged as a promising source for biomedical research. However, uncontrollable cellular heterogeneity after differentiation often results in the generation of off-target cells, one of the most challenging issues in organoid research. This study proposes a new method that enables the real-time assessment of kidney organoids derived from stem cells. When placed on a conductive surface, these organoids generate unique electrochemical signals at ≈0.3 V with intensities proportional to the amount of kidney-specific cell types. Off-target cells (i.e., non-kidney cells) produce an electrical signature at 0 V that is distinguishable from other surrounding cell types, enabling non-destructive assessment of both the differentiation, and maturation levels of kidney organoids. The developed platform can be applied to other types of organoids and is thus highly promising as a tool for organoid-based drug screening, toxicity assessment, and therapeutics.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos , Rim
12.
Micromachines (Basel) ; 13(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630269

RESUMO

Plasmonic optical tweezers and thermophoresis are promising tools for nanomaterial manipulation. When a gold nanostructure is irradiated with laser light, an electric field around the nanostructure is enhanced because of the localized surface plasmon resonance, which increases the optical radiation pressure applied to the nanomaterials. In addition, a temperature gradient is also generated by the photothermal conversion, and thermophoretic force is then generated. This study numerically evaluated the electric and temperature fields induced by the localized surface plasmon resonance between two gold nanostructures. Here, we focused on the effect of the gap width between nanostructures on the optical radiation pressure and thermophoretic force. The simulation results show that the electric field is locally enhanced according to the gap width, but the effect on the temperature rise due to the photothermal heating is small. This fact suggests that the gap effect between the nanostructures is particularly dominant in nanomanipulation using optical force, whereas it has little effect in nanomanipulation using thermophoresis.

13.
Biotechnol Appl Biochem ; 69(6): 2573-2579, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35188689

RESUMO

Diagnosis of Alzheimer's disease (AD) is a complex task, and at present, neuroimaging such as magnetic resonance imaging and positron emission tomography is commonly used for the diagnosis of AD. This research work developed a new biosensing method with gold nanomaterial to identify AD biomarker of miRNA-137. Gold nanourchin (GNU) was attached on the interdigitated electrode through the silane linker and COOH-ended capture oligonucleotide was immobilized on the GNU surface. This surface helps to quantify the target sequence of miRNA-137 and the detection limit reached to 0.01 pM on the linear range of 0.01-100 pM. With 3δ calculation on the linearity, the determination coefficient was noticed as y = 1.2867x - 2.2697; R2  = 0.9059. The control performances did not show a significant response, indicating the specific identification of target.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Humanos , Doença de Alzheimer/diagnóstico por imagem , Ouro , Limite de Detecção , Eletrodos , Biomarcadores , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
14.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500855

RESUMO

Computational approaches are employed to elucidate the binding mechanism and the SERS phenomenon of 6-mercaptopurine (6MP) adsorbed on the tetrahedral Au20 cluster as a simple model for a nanostructured gold surface. Computations are carried out in both vacuum and aqueous environments using a continuum model. In the gaseous phase and neutral conditions, interaction of 6MP with the gold cluster is mostly dominated by a covalent Au-S bond and partially stabilized by the Au⋅⋅⋅H-N coupling. However, in acidic solution, the nonconventional Au⋅⋅⋅H-S hydrogen-bond becomes the most favorable binding mode. The 6MP affinity for gold clusters decreases in the order of vacuum > neutral solution > acidic medium. During the adsorption, the energy gap of Au20 substantially declines, leading to an increase in its electrical conductivity, which can be converted to an electrical noise. Moreover, such interaction is likely a reversible process and triggered by either the low pH in sick tissues or the presence of cysteine residues in protein matrices. While N-H bending and stretching vibrations play major roles in the SERS phenomenon of 6MP on gold surfaces in neutral solution, the strongest enhancement in acidic environment is mostly due to an Au⋅⋅⋅H-S coupling, rather than an aromatic ring-gold surface π overlap as previously proposed.

15.
Mikrochim Acta ; 188(9): 304, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34435258

RESUMO

As one kind of noble metal nanostructures, the plasmonic gold nanostructures possess unique optical properties as well as good biocompatibility, satisfactory stability, and multiplex functionality. These distinctive advantages make the plasmonic gold nanostructures an ideal medium in developing methods for biosensing and bioimaging. In this review, the optical properties of the plasmonic gold nanostructures were firstly introduced, and then biosensing in vitro based on localized surface plasmon resonance, Rayleigh scattering, surface-enhanced fluorescence, and Raman scattering were summarized. Subsequently, application of the plasmonic gold nanostructures for in vivo bioimaging based on scattering, photothermal, and photoacoustic techniques  has been also briefly covered. At last, conclusions of the selected examples are presented and an outlook of this research topic is given.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Humanos , Imagem Óptica/métodos , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/métodos
16.
Talanta ; 232: 122426, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074412

RESUMO

In the present study, a new SERS-active gold nanoparticle clusters having a flower-shape have been prepared easily on nano porous anodic aluminium oxide (AAO) by immersing it in auric chloride solution without any need for complex production steps. In this process, presented for the first time, the metallic aluminum which were released under the influence of chloride ions due to pitting corrosion act as a reducing agent, while gold ions were reduced onto the AAO layer based on the difference in standard reduction potentials between aluminum and gold. Gold nanoparticle clusters on AAO layer formed "hot spots" providing enhanced Raman signal. Optical microscope, SEM, EDX, AFM, and UV-vis spectrophotometer have been used to characterize the substrate. In order to demonstrate applicability of the method, label free SERS measurements of nitrate ion was performed on the proposed sensing platform. A high sensitivity with 1.03 ppm of limit of detection level and the enhancement factor of 2.9 × 105 were obtained for nitrate ion. In addition, remarkable recoveries ranging from 98.4% to 106.8% were obtained for nitrate spiked into drinking water samples. The inter-day and intra-day precisions of the method as relative standard deviation (RSD) were determined as 3.3% and 5.2%, respectively. The sensor platform, developed using a facile method and a low-cost base material (aluminum), can be a good alternative for SERS based sensing applications.

17.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802614

RESUMO

In this study, dense gold-assembled SiO2 nanostructure (SiO2@Au) was successfully developed using the Au seed-mediated growth. First, SiO2 (150 nm) was prepared, modified by amino groups, and incubated by gold nanoparticles (ca. 3 nm Au metal nanoparticles (NPs)) to immobilize Au NPs to SiO2 surface. Then, Au NPs were grown on the prepared SiO2@Au seed by reducing chloroauric acid (HAuCl4) by ascorbic acid (AA) in the presence of polyvinylpyrrolidone (PVP). The presence of bigger (ca. 20 nm) Au NPs on the SiO2 surface was confirmed by transmittance electronic microscopy (TEM) images, color changes to dark blue, and UV-vis spectra broadening in the range of 450 to 750 nm. The SiO2@Au nanostructure showed several advantages compared to the hydrofluoric acid (HF)-treated SiO2@Au, such as easy separation, surface modification stability by 11-mercaptopundecanoic acid (R-COOH), 11-mercapto-1-undecanol (R-OH), and 1-undecanethiol (R-CH3), and a better peroxidase-like catalysis activity for 5,5'-Tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) reaction. The catalytic activity of SiO2@Au was two times better than that of HF-treated SiO2@Au. When SiO2@Au nanostructure was used as a surface enhanced Raman scattering (SERS) substrate, the signal of 4-aminophenol (4-ATP) on the surface of SiO2@Au was also stronger than that of HF-treated SiO2@Au. This study provides a potential method for nanoparticle preparation which can be replaced for Au NPs in further research and development.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Dióxido de Silício/química , Aminofenóis/química , Benzidinas/química , Técnicas Biossensoriais/métodos , Catálise , Ácido Fluorídrico/química , Peróxido de Hidrogênio/química , Limite de Detecção , Povidona/química , Prata/química , Compostos de Sulfidrila/química
18.
Photodiagnosis Photodyn Ther ; 33: 102144, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33307234

RESUMO

Gold nanoparticles (GNPs) indicate potential in the development of cancer treatments as vehicles for thermal damage of cancer cells because of their photothermal heating capability. Herein, we aim to investigate the effect of GNPs geometry as photothermal transducers on cellular uptake and photothermal therapy (PTT) efficacy. For this aim, seven different shapes of anisotropic GNPs: stars, hollow, rods, cages, spheres, Fe-Au, and Si-Au core shells were synthesized and investigate the effect of shape on GNPs optical properties. The physic-chemical characterization of prepared GNPs was investigated by UV-vis, DLS-Zeta, and TEM analysis. The effect of GNPs geometry on cellular uptake was investigated by ICP-MS and flow cytometry method. The PTT potential of these GNPs was compared on MCF7 cells in vitro using MTT assay, cell cycle, and Annexin-V apoptosis assay. While all these GNPs could absorb and convert near-infrared light into heat, gold nanostars exhibited the lowest cytotoxicity, highest cellular uptake and highest heat generation compared to other structures. Following photothermal treatment, due to substantial heat production in MCF7 cells, the apoptosis induction rate was greatly increased for all anisotropic gold nanostructures (stars, hollow, rods, and cages) especially gold nanostars. Combined, we can conclude that GNPs geometry affects cellular uptake and heat generation amount as well as cell destruction by apoptosis pathway. The gold nanostar is promising candidates for photothermal destruction.


Assuntos
Nanopartículas Metálicas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Ouro , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Fototerapia
19.
Nano Converg ; 7(1): 40, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351161

RESUMO

Dopamine is a key neurotransmitter that plays essential roles in the central nervous system, including motor control, motivation, arousal, and reward. Thus, abnormal levels of dopamine directly cause several neurological diseases, including depressive disorders, addiction, and Parkinson's disease (PD). To develop a new technology to treat such diseases and disorders, especially PD, which is currently incurable, dopamine release from living cells intended for transplantation or drug screening must be precisely monitored and assessed. Owing to the advantages of miniaturisation and rapid detection, numerous electrical techniques have been reported, mostly in combination with various nanomaterials possessing specific nanoscale geometries. This review highlights recent advances in electrical biosensors for dopamine detection, with a particular focus on the use of various nanomaterials (e.g., carbon-based materials, hybrid gold nanostructures, metal oxides, and conductive polymers) on electrode surfaces to improve both sensor performance and biocompatibility. We conclude that this review will accelerate the development of electrical biosensors intended for the precise detection of metabolite release from living cells, which will ultimately lead to advances in therapeutic materials and techniques to cure various neurodegenerative disorders.

20.
J Colloid Interface Sci ; 575: 24-34, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344216

RESUMO

Nanotechnology's rapid development of nanostructured materials with disruptive material properties has inspired research for their use as electrocatalysts to potentially substitute enzymes. Herein, a novel electrocatalytic nanomaterial was constructed by growing gold nanograss (AuNG) on 2D nanoassemblies of gold nanocubes (AuNC). The resulting structure (NG@NC) was used for the detection of H2O2via its electrochemical reduction. The NG@NC electrode displayed a large active surface area, resulting in improved electron transfer efficiency. On the nanoscale, AuNG maintained its structure, providing high stability and reproducibility of the sensing platform. Our nanostructured electrode showed excellent catalytic activity towards H2O2 at an applied potential of -0.5 V vs Ag/AgCl. This facilitated H2O2 detection with excellent selectivity in an environment like human urine, and a linear response from 50 µM to 30 mM, with a sensitivity of 100.66 ± 4.0 µA mM-1 cm-2. The NG@NC-based sensor hence shows great potential in nonenzymatic electrochemical sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA