Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chemosphere ; 360: 142402, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777193

RESUMO

Three sequential batch reactors (SBR) were operated to evaluate salt addition's impact on granulation, performance, and biopolymer production in aerobic granular sludge (AGS) systems. System R1 was fed without adding salt (control); system R2 operated with saline pulses, i.e., one cycle with salt (2.5 g NaCl/L) addition followed by another without salt; and R3 received continuous supplementation of 2.5 g NaCl/L. The results indicated that the reactors supplemented with salt presented higher concentrations of mixed liquor volatile suspended solids (MLVSS) and better settleability than R1, showing that osmotic pressure contributed to biomass growth, accelerated granulation, and improved physical characteristics. The faster granulation occurred in R2, thus proving the beneficial effects of intermittent salt addition through alternating pulses. Salt addition did not impair the simultaneous removal of carbon, nitrogen, and phosphorus. In fact, R2 showed better carbon removals. In conclusion, continuous or intermittent (pulsed) supplementation of 2.5 g NaCl/L did not lead to increased production of extracellular polymeric substances (EPS) and alginate-like exopolymers (ALE). This outcome could be attributed to the low saline concentration employed, a higher food-to-microorganism (F/M) ratio observed in R1, and possibly greater endogenous consumption of biopolymers in the famine period in R2 and R3 due to the greater solids retention time (SRT). Therefore, this study brings important results that contribute to a better understanding of the effect of salt in continuous dosing or in pulses as a selection pressure strategy to accelerate granulation, as well as the behavior of the AGS systems for saline effluents.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fósforo , Aerobiose , Biomassa , Nitrogênio , Biopolímeros , Carbono/metabolismo , Estresse Salino , Cloreto de Sódio
2.
Environ Sci Pollut Res Int ; 31(2): 2408-2418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066278

RESUMO

Due to the slow growth rate of anammox bacteria, enriched sludge is required for the rapid start-up of anammox-based reactors. However, it is still unclear if long-term stored anammox sludge (SAS) is an effective source of inoculum to accelerate reactor start-up. This study explored the reactivation of long-term SAS and developed an efficient protocol to reduce the start-up period of an anammox reactor. Although stored for 13 months, a low level of the specific anammox activity of 28 mg N/g VSS/d was still detected. Experimental Phase 1 involved the direct application of SAS to an upflow sludge bed reactor (USB) operated for 90 d under varying conditions of hydraulic retention time and nitrogen concentrations. In Phase 2, batch runs were executed prior to the continuous operation of the USB reactor. The biomass reactivation in the continuous flow reactor was unsuccessful. However, the SAS was effectively reactivated through a combination of batch runs and continuous flow feed. Within 75 days, the anammox process achieved a stable rate of nitrogen removal of 1.3 g N/L/day and a high nitrogen removal efficiency of 84.1 ± 0.2%. Anammox bacteria (Ca. Brocadia) abundance was 37.8% after reactivation. These overall results indicate that SAS is a feasible seed sludge for faster start-up of high-rate mainstream anammox reactors.


Assuntos
Oxidação Anaeróbia da Amônia , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio/análise , Oxirredução , Anaerobiose , Desnitrificação
3.
Bioresour Technol ; 384: 129346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336447

RESUMO

The stability of granules, contaminant removal and microbial structure of an aerobic granular sludge (AGS) process were investigated with a focus on ordinary heterotrophic organisms (OHOs). Long-term stable granules and high removals of COD (97 %), NH4+ (98 %), P (85 %) and total N (77 %) were achieved. Sequencing analyses identified 6.6 % of phosphorus-accumulating organisms in the sludge, concordant with the observed bio-P removal capacity. However, OHOs were the most abundant bacteria in the sludge (70-93 %) without resulting in unstable aggregates. Under current dogmas of microbial competition in activated sludge, it seemed contradictory that OHOs could persist in the long term in the AGS where COD was depleted beginning in the anaerobic phase. Microbial analyses showed that OHOs could survive in granules by micropredation, proteolysis, fermentation and EPS consumption. Heterotrophic-nitrification/ aerobic-denitrification was an active pathway in the AGS. These findings contribute to a better understanding of microbial competition in AGS and its stability.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Nitrificação , Fósforo/metabolismo , Aerobiose
4.
Bioresour Technol ; 376: 128850, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898562

RESUMO

Aerobic granular sludge (AGS) systems have great potential for biopolymers recovery, especially when subjected to adverse conditions. This work aimed to study the production of alginate-like exopolymers (ALE) and tryptophan (TRY) under osmotic pressure in conventional and staggered feeding regimes. The results revealed that systems operated with conventional feed accelerated the granulation, although less resistant to saline pressures. The staggered feeding systems favored better denitrification conditions and long-term stability. Salt addition gradient increase influenced biopolymers' production. However, staggered feeding, despite decreasing the famine period, did not influence the production of resources and extracellular polymeric substances (EPS). Sludge retention time (SRT), which was not controlled, proved to be an important operational parameter with negative influences on biopolymers' production in values greater than 20 days. Thus, the principal component analysis confirmed that the production of ALE at low SRT is related to better-formed granules with good sedimentation characteristics and good AGS performances.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Pressão Osmótica , Reatores Biológicos , Aerobiose , Alginatos , Biopolímeros
5.
Heliyon ; 9(2): e13503, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36852066

RESUMO

Aerobic granular sludge (AGS) is a self-aggregated microorganism consortium with pollutant removal properties. The aim of this work is to study and review the application of aerobic granules for water treatment with special focus on new applications and methodologies. Carbon-nitrogen containing pollutants are the classic targets of AGS technology. Carbon and nitrogen removal of AGS are classified as a biodegradation process. More recently, the AGS granules have been studied as sorbent materials for wastewater treatment. In particular, the sorption of cationic pollutants has been studied through biosorption and bioaccumulation mechanisms without distinguishing when one or the other process is involved. AGS conformation made them suitable for complex wastewater treatment. Indeed, several studies have demonstrated the removal of polyvalent cationic pollutants even with higher capacity than conventional sorbent materials. However, this was achieved almost exclusively for synthetic substrates, with single cation evaluation and using in some cases only qualitative measures. For successful industrial AGS application in complex substrates, it is necessary to evaluate and demonstrate the technology in real industrial conditions and reduce the currently long start-up times which limits its utility. Two new strategies have been proposed: autoinducer molecules and the production of artificial granular from common active sludge with commercial alginate. Finally, the increase of research on AGS cations assimilation properties will allow a new point of view, where granules will be materials for the recovery of valuable metals from industrial wastewater streams.

6.
Chemosphere ; 311(Pt 1): 137006, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36330972

RESUMO

The influence of salt addition to stimulating biopolymers production in aerobic granular sludge (AGS) systems was evaluated. The control systems (R1: acetate and R2: propionate) initially obtained less accumulation of mixed liquor volatile suspended solids (MLVSS), indicating that the osmotic pressure in the salt-supplemented systems (R3: acetate and R4: propionate) contributed to biomass growth. However, the salt-supplemented systems collapsed between days 110 and 130 of operation. R3 and R4 showed better performance regarding nutrients removal due to the greater abundance of nitrifying and denitrifying bacteria and phosphate-accumulating organisms. Salt also contributed to the higher production of biopolymers such as alginate-like exopolymers (ALE) per gram of volatile suspended solids (VSS) (R1: 397 mgALE∙gVSS-1, R2: 140 mgALE∙gVSS-1, R3: 483 mgALE∙gVSS-1, R4: 311 mgALE∙gVSS-1). Amino acids like tyrosine and tryptophan were better identified in extracellular polymeric substances extract from salt-operated reactors. This study brings important results in the context of resource recovery by treating saline effluents.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Propionatos , Biopolímeros , Cloreto de Sódio , Aerobiose
7.
Environ Sci Pollut Res Int ; 29(55): 83512-83525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35768715

RESUMO

Two sequential batch reactors (R1 and R2) of aerobic granular sludge (AGS) were inoculated with activated sludge of different origins. The objective was to investigate the granulation and the consistency between the structure of the microbial communities (16S rRNA amplicon sequencing) in each reactor and their metabolic performance (removal of C, N, and P). Both reactors were fed with acetate-based synthetic wastewater, targeting an anaerobic-aerobic cycle reputed to favor the phosphorus- and glycogen-accumulating organisms (PAO and GAO). Stable granulation was achieved in both reactors, where, instead of PAO, the dominant genera were ordinary heterotrophic organisms (OHO) such as Thauera, Paracoccus, and Flavobacterium known for their high capacity of aerobic storage of polyhydroxyalkanoates (PHA). Generally, there was good consistency between the metabolic behavior of each reactor and the bacterial genera detected. Both reactors showed high removals of C and complete nitrification (Nitrosomonas and Nitrospira detected) but a low level of simultaneous nitrification-denitrification (SND) during the aerated phase. The latter causes that nitrates were recycled to the initial phase, in detriment of PAO selection. Meanwhile, the study showed that selecting slow-growing OHOs (with aerobic storage capacity) favors stable granulation, revealing an alternative AGS technology for C and N removal.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Reatores Biológicos/microbiologia , RNA Ribossômico 16S , Fósforo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Nitrogênio/análise , Desnitrificação
8.
Bioresour Technol ; 357: 127355, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35609753

RESUMO

This study evaluated the influence of carbon sources on alginate-like exopolymers (ALE) and tryptophan (Trp) biosynthesis in the aerobic granular sludge (AGS). With acetate, the highest biopolymers levels, per gram of volatile suspended solids (VSS) (418.7 mgALE∙g-1 and 4.1 mgTrp∙gVSS-1), were found likely due to biomass loss throughout the operation, which resulted in lower sludge age (4-7 days) and shorter famine period. During granulation, encouraging results on ALE production were obtained with propionate (>250 mgALE∙gVSS-1), significantly higher than those found with glycerol, glucose, and sucrose. Regarding tryptophan production, propionate and glycerol proved to be good substrates, although the content was still lower than acetate (1.6 mgTrp∙gVSS-1). Granules fed with glucose showed the worst results compared to the other substrates (38.5 mgALE∙VSS-1 and 0.6 mgTrp∙gVSS-1) due to the filamentous microorganisms' abundance found. Therefore, this study provides insights to value the production of compounds of industrial interest in AGS systems.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Alginatos , Reatores Biológicos , Carbono , Glucose , Glicerol , Propionatos , Esgotos/química , Triptofano , Eliminação de Resíduos Líquidos/métodos
9.
Environ Sci Pollut Res Int ; 29(30): 45150-45170, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35486275

RESUMO

Landfill leachates are high-strength complex mixtures containing dissolved organic matter, ammonia, heavy metals, and sulfur species, among others. The problem of leachate treatment has subsisted for some time, but an efficient and cost-effective universal solution capable of ensuring environmental resources protection has not been found. Aerobic granular sludge (AGS) has been considered a promising technology for biological wastewater treatment in recent years. Granules' layered structure, with an aerobic outer layer and an anaerobic/anoxic core, enables the presence of diverse microbial populations without the need for support media, allowing simultaneous removal of different pollutants in a single unit. Besides, its strong and compact arrangement provides higher tolerance to toxic pollutants and the ability to withstand large load fluctuations. Furthermore, its good that settling properties allow high biomass retention and better sludge separation. Nevertheless, AGS-related research has focused on carbon-nitrogen-phosphorus removal, mainly from sanitary sewage. This review aims to summarize and analyze the main findings and problems reported in the literature regarding AGS application to landfill leachate treatment and identify the knowledge gaps for future applications.


Assuntos
Esgotos , Poluentes Químicos da Água , Reatores Biológicos , Nitrogênio , Esgotos/química , Eliminação de Resíduos Líquidos
10.
J Environ Manage ; 310: 114807, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231689

RESUMO

The ability of extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) to act as bioflocculant was tested in a pilot-scale sequencing batch reactor (SBR), fed with low-strength municipal wastewater. EPS were compared with the addition of Na-alginate as a standardized biopolymer. The optimal dosage of both biopolymers was determined through jar-test assays (400 mg L-1 of Na-alginate in a 250 mg Ca L-1 and 50 mg L-1 of EPS in pH of 2 ± 0.2). The addition of Na-alginate (Operational Period I- OP-I) and EPS (Operational Period II - OP-II) led to increased adhesion of particles with 2.9 ± 0.45 and 1.3 ± 0.3 g TSS L-1 during OP-I and OP-II, respectively, and fast settling biomass (SVI30 between 68 and 78 mL g-1). Granule predominance occurred at early stages of OP-I (day 37) and OP-II (day 44), presenting diameters mainly within the 212-600 µm range. The reactor showed removal efficiencies of 85% for biochemical oxygen demand (BOD) and above 50% for N-NH4 during the study periods. Furthermore, the addition of EPS as a bioflocculant promoted a substantial increase in polysaccharides (PS = 153.01 ± 121 mg gVSS-1) and proteins (PN = 121.96 ± 69 mg gVSS-1), while the addition of Na-alginate affected mostly the PS content (87 ± 24 mg gVSS-1). The microbial community shifted mainly from Betaproteobacteria (45%) during OP-I to Alphaproteobacteria (64%) in OP-II. Therefore, EPS affected both physical-chemical and microbial features of the AGS biomass without any change in treatment efficiencies. EPS is a promising resource to be recovered from aerobic granular sludge and to be used as an alternative and sustainable bioflocculant.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Aerobiose , Reatores Biológicos , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias
11.
Eng. sanit. ambient ; Eng. sanit. ambient;26(6): 1015-1024, nov.-dez. 2021. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1350709

RESUMO

RESUMO Diversos trabalhos têm mostrado a formação de lodo granular aeróbio em reatores nos quais são impostas elevadas velocidades de sedimentação, da ordem de 10 a 12 m.h−1. Aparentemente, quando a velocidade de sedimentação é inferior a 3,8 m.h−1, a fração de lodo floculado é predominante, visto que o lodo suspenso não é eliminado de forma efetiva do reator. Outros estudos, entretanto, mostram a formação de lodos granulares aeróbios para velocidades menores que essa, apontando a possibilidade da formação desse tipo de biomassa em velocidades ainda menores. Assim, este trabalho avaliou a formação desse tipo de lodo em reatores que tratam esgoto sanitário, com relação altura/diâmetro unitária, para velocidades de sedimentação de 1,8 e 1,2 m.h−1, verificando as eficiências de remoção de matéria orgânica e nitrogênio. Os resultados obtidos indicaram que é possível formar lodo aeróbio granular para a faixa de velocidade de estudo, porém com baixa estabilidade estrutural para diâmetros de 1,2 mm ou mais. Essa instabilidade dos grânulos contribui para a baixa eficiência de remoção de matéria orgânica e nitrogênio nos reatores.


ABSTRACT Several studies have shown the formation of aerobic granular sludge in reactors where high sedimentation rates are imposed, varying from 10 to 12 m.h−1. Apparently, when the settling velocity is less than 3.8 m.h−1, the fraction of flocculated sludge is predominant, since the suspended sludge is not effectively eliminated from the reactor. Other studies, however, show the formation of aerobic granular sludge at velocities lower than this, pointing to the possibility of formation of this type of biomass at even lower speeds. Thus, this work evaluated the efficacy of this type of sludge in reactors treating sewage, with H/D ratio (height/diameter), for sedimentation velocities of 1.8 and 1.2 mh−1, verifying the efficiencies of organic matter and nitrogen. The results indicated that it is possible to form aerobic granular sludge for the study velocity range, but with low structural stability from diameters of approximately 1.2 mm. This instability of the granules contributes to the low efficiency of removal of organic matter and nitrogen in the reactors.

12.
J Environ Manage ; 296: 113200, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34284343

RESUMO

Aerobic granular sludge (AGS) has been considered a breakthrough within the wastewater treatment sector. However, the long reactor start-up for the formation of granules is challenging and may hinder the spread of this technology. To circumvent this obstacle, inoculation of the reactors with pre-formed granules from existing plants is an interesting approach. In this context, issues related to biomass storage becomes very relevant. In this study, reactivation of aerobic granular biomass after storage was evaluated in a sequencing batch reactor (SBR) designed for achieving simultaneous organic matter, nitrogen and phosphorus removal. Two different scenarios, short (40 days) and long (180 days) storage periods, were assessed, and their influence on the granules physical properties and bioactivity was addressed. The results revealed that the granules stored for a shorter period showed higher resistance to breakage and underwent smooth color changes. On the other hand, the biomass stored for a longer period acquired a dark color and was more susceptible to disruption during reactivation. The granules stored for 6 months become swollen and exhibited an irregular morphology and fluffy structure within the first days of reactivation. Consequently, their settling properties were adversely affected, and some parameters such as the food-to-microorganism ratio had to be adjusted to prevent granules disintegration. Regarding the bioactivity of important microbial functional groups, COD removal was rapidly restored within a few days of SBR operation with the biomass stored for a shorter period. However, it took longer for the biomass stored for 180 days to reach the same performance observed for the granules stored for 40 days. A similar trend is valid for nitrification. In the experiments with sludge stored for a longer time, it took almost twice as long to reach effluent ammonium concentrations lower than 1 mg NH4+-N L-1 compared to the test using biomass stored for 40 days. Phosphate removal was strongly affected by biomass storage, especially after 180 days of inactivity, a condition found to be detrimental for polyphosphate-accumulating organisms. Finally, cycle tests were also conducted to assess substrate conversion rates for comparison between different trials and evaluate the influence of temperature (10-35 °C) on nitrification and phosphate removal rates.


Assuntos
Nitrificação , Esgotos , Aerobiose , Biomassa , Reatores Biológicos , Nitrogênio/análise , Fósforo , Temperatura , Eliminação de Resíduos Líquidos
13.
Chemosphere ; 274: 129881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33582539

RESUMO

Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Águas Residuárias
14.
J Environ Manage ; 277: 111428, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035936

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products and one of their major fate is the wastewater treatment plants. However, NPs eventually arrive to aquatic and terrestrial ecosystems via treated water and biosolids, respectively. Since low concentration of NPs is accumulating in the upflow anaerobic sludge blanket (UASB) reactors that treat wastewater and reclaim water quality, the accumulation of TiO2 NPs in these reactors may impact in their performance. In this work, the long-term effects of TiO2 NPs on the main benefits of treating wastewater by UASB reactors such as, biogas production, methane fraction in biogas and organic matter removal were evaluated. Evaluation consisted of monitoring such parameters in two identical UASB reactors, one UASB-Control (without NPs) and the experimental one (UASB-TiO2 NPs) that received wastewater with TiO2 NPs. The fate of NPs in the UASB reactor was also determined. Results indicated that biogas production increased by 8.8% due to the chronic exposure of UASB reactor to TiO2 NPs during the first 44 days of experiment. However, the methane content in the biogas had no significant differences between both UASB, ranging between 78% and 90% of methane during the experiment. The removal of organic matter in both UASB was similar and ranged 92-98% along the experimental time. This means that accumulation of TiO2 NPs did not altered the biogas production and organic matter removal. However, the content of total volatile solids (TVS) in UASB-TiO2 NPs dropped off from 137.8 g to 64.2 g in 84 days, while for control reactor that decreased from 141.6 g to 92.4 g in the same period. Hence, the increased biogas production in the UASB exposed to TiO2 was attributed to hydrolysis of the TVS in this reactor. The main fate of TiO2 NPs was the granular sludge, which accumulated up to 8.56 mg Ti/g, which represent around 99% of the Ti spiked to the reactor and the possible cause of the biomass hydrolyzation in the UASB. Disposal of UASB sludge containing NPs from may raise ecotoxicological concerns due to the use of biosolids in agricultural activities.


Assuntos
Nanopartículas , Águas Residuárias , Anaerobiose , Reatores Biológicos , Ecossistema , Metano , Esgotos , Titânio , Eliminação de Resíduos Líquidos
15.
Bioprocess Biosyst Eng ; 44(2): 259-270, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32889571

RESUMO

The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.


Assuntos
Alginatos/metabolismo , Reatores Biológicos , Esgotos/microbiologia , Triptofano/biossíntese , Aerobiose
16.
Environ Technol ; 42(24): 3756-3770, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32148171

RESUMO

This study aimed at investigating the treatment of landfill leachate using the aerobic granular sludge process in a lab-scale sequential batch reactor (SBR-AGS). The leachate from a giant sanitary landfill localized in the State of São Paulo (Brazil) exhibited high concentration of organic matter (COD 5,300 ± 78 mg L-1) and total nitrogen (TKN 2,630 ± 355 mg L-1). Comparatively, the leachate was added to wastewater in three different volumetric ratios (5, 10 and 20%) and the mixtures were characterized over treatment. The results indicated that there were no significant changes in the behaviour of the biological process even at the highest leachate ratio. The granulation of the aerobic sludge occurred after 90 days of operation and the granules had a diameter of 485-1585 µm. SBR-AGS exhibited removal efficiency of 87-89% for organic matter and at least 98% for total nitrogen, regardless of the leachate ratio. The treated effluent that received 20% of leachate showed 2.7 mg L-1 ammonia and 1.1 mg L-1 nitrate. This study shows that SBR-AGS was able to form large granules, thus promoting a simultaneous nitrification and denitrification (SND) process. We highlighted that SND occurred in low dissolved oxygen concentrations (< 1.5 mg L-1) for 120 days, without compromising aerobic granule integrity. These results suggest that the aerobic granular sludge process is a promising alternative for the co-treatment of landfill leachate and domestic wastewater under tropical climate conditions and its use should be encouraged.


Assuntos
Esgotos , Poluentes Químicos da Água , Reatores Biológicos , Brasil , Desnitrificação , Nitrificação , Nitrogênio/análise , Compostos de Nitrogênio
17.
Bioprocess Biosyst Eng ; 44(1): 161-171, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32862326

RESUMO

This study investigated the effect of magnetite nanoparticles (Np-magnetite) added to a pilot-scale sequencing batch reactor (SBR) treating domestic wastewater, to improve aerobic granular sludge (AGS) formation and the effects of granule disintegration. Np-magnetite additions (75 mg L-1) were made during the start-up of the reactor and repeated after 100 and 170 days, when granule disintegration was observed. From the first Np-magnetite addition, SVI5 was reduced from 1315 to 85 mL g-1. The granular biomass was observed on the 56th day, when 57% of the granules presented diameters bigger than 212 µm. The 100-day disintegration episode disturbed the granular biomass, reducing the volatile suspended solids by 51%, increasing the SVI values to above 200 mL g-1. Np-magnetite addition recovered all the granular biomass parameters to the values observed before disintegration. The treatment efficiency was stable during operation of the reactor for nutrients (52.8 ± 23.4% NH4+-N; 54.5 ± 12.2% PO43--P) and carbonaceous organic matter (71.7 ± 12.7% BOD5; 77.5 ± 10.0% CODt). Np-magnetite addition changed the microbial community of the granular sludge, analysed via high-throughput 16S RNA sequencing, and recovered the treatment efficiency previously disturbed by the disintegration processes. These results indicate the potential of Np-magnetite as an agent for sludge aggregation in an aerobic granular reactor.


Assuntos
Reatores Biológicos , Nanopartículas de Magnetita/química , Águas Residuárias/microbiologia , Purificação da Água , Aerobiose
18.
Sci Total Environ ; 753: 142105, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207471

RESUMO

This work assessed the impact of methylparaben, ethylparaben, propylparaben, and butylparaben (200 µg L-1 each) on the granulation process as well as on the organic matter and nutrient removal of an aerobic granular sludge (AGS) system (6-h cycle). Additionally, some insights into the main paraben removal mechanisms were provided. In the presence of parabens, aerobic granules with good settleability, but with fragile and irregular structure, were grown. No significant effect of parabens on organic matter (>90%) and nitrogen (~70%) removal was evidenced. On the other hand, phosphorus removal was slightly impaired, although high removal efficiencies (~70%) were reached. High paraben removal efficiencies were achieved (>85%) in the AGS system, with methylparaben being the most recalcitrant compound. Concerning the removal mechanisms, biotransformation was the main mechanism in the removal of all parabens (85.5% for methylparaben and 100% for the others), whereas, apparently, adsorption played a role only in the removal of methylparaben. In addition, this compound was also suggested as a probable intermediate of the degradation of the larger alkyl-chain parabens. Lastly, regarding the microbial community, with the exception of Mycobacterium, the reactors shared the same genera, which may explain their comparable operational performances. Additionally, some genera that developed more in the presence of parabens may be related to their degradation. Therefore, although antimicrobial agents such as parabens compromised the granule structure, AGS system maintained a good operational performance and showed to be very efficient in paraben removal.


Assuntos
Parabenos , Esgotos , Reatores Biológicos , Biotransformação , Nitrogênio , Fósforo
19.
Environ Res ; 194: 110639, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33352185

RESUMO

This paper investigated the effect of calcium addition on the formation and properties of aerobic granules under high (conventional SBR) and low (simultaneous fill/draw SBR) selection pressure. Additionally, the simultaneous removal of carbon, nitrogen, and phosphorus, and the operational stability were assessed. The conventional SBRs showed earlier granule development (20 days) than the simultaneous fill/draw SBRs. The effect of calcium on granulation was more accentuated in conventional SBRs, forming larger granules in a shorter interval of time due to the higher EPS production. Additionally, higher amounts of calcium were found in the EPS matrix, mainly during the formation of granules. The operation regime and the addition of calcium did not affect the removal of carbon, nitrogen, and phosphorus. However, they both influenced the granulation time, settleability characteristics, size, and granule composition.


Assuntos
Cálcio , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
20.
Eng. sanit. ambient ; Eng. sanit. ambient;25(3): 439-449, maio-jun. 2020. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1133788

RESUMO

RESUMO Considerado por muitos profissionais como um dos maiores avanços do século 21 na área de tratamento de esgotos, os reatores de lodo granular aeróbio (LGA) vêm recebendo bastante atenção em termos de pesquisa e instalação em escala plena em diferentes continentes e condições climáticas. São frequentes os relatos na literatura de eficiências de remoção acima de 90% em termos de demanda química de oxigênio, nitrogênio total e fósforo total, além da manutenção no reator de elevadas concentrações de sólidos (> 8 g SSV/L) sem a necessidade de decantador secundário e recirculação de lodo. Contudo, há também diversos relatos de problemas de instabilidade da biomassa, longo período de formação dos grânulos (principalmente quando se utiliza esgoto real), formação de grânulos pequenos, acúmulo de nitrito e outras questões. Esta revisão explora os mecanismos necessários para granulação em estações de tratamento de esgoto em escala plena no tratamento de esgoto sanitário, incluindo os principais grupos microbianos presentes no LGA, parâmetros-chave para a formação dos grânulos, configurações de reator etc. Além disso, discutem-se algumas questões sobre a operação e a manutenção desses sistemas em escala plena.


ABSTRACT Considered by many professionals as one of the greatest advances in wastewater treatment in the 21st century, the aerobic granular sludge (AGS) reactors have received great attention in terms of research and full-scale installation in different continents and weather conditions. There are frequent reports in the literature on removal efficiencies above 90% in terms of COD, total nitrogen and total phosphorus, as well as the maintenance of high solids concentrations (> 8 g VSS/L) in the reactor without the need for secondary clarifier and sludge recirculation. However, there are also several reports on problems of biomass instability, long periods of granule formation (mainly when using real sewage), formation of small granules, nitrite accumulation (incomplete denitrification), and other issues. This review explores the mechanisms required for granulation in full-scale WWTP treating sanitary wastewater, including the main microbial groups present in the AGS, key granule formation parameters, reactor configurations, etc. In addition, some issues on the operation and maintenance of these full-scale systems are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA