Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.392
Filtrar
1.
Adv Sci (Weinh) ; : e2404012, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946597

RESUMO

Multifunctional structural batteries are of high and emerging interest in a wide variety of high-strength and lightweight applications. Structural batteries typically use pristine carbon fiber as the negative electrode, functionalized carbon fiber as the positive electrode, and a mechanically robust lithium-ion transporting electrolyte. However, electrochemical cycling of carbon fibre-based positive electrodes is still limited to tests in liquid electrolytes, which does not allow for to introduction of multifunctionality in real terms. To overcome these limitations, structural batteries with a structural battery electrolyte (SBE) are developed. This approach offers massless energy storage. The electrodes are manufactured using economically friendly, abundant, cheap, and non-toxic iron-based materials like olivine LiFePO4. Reduced graphene oxide, renowned for its high surface area and electrical conductivity, is incorporated to enhance the ion transport mechanism. Furthermore, a vacuum-infused solid-liquid electrolyte is cured to bolster the mechanical strength of the carbon fibers and provide a medium for lithium-ion migration. Electrophoretic deposition is selected as a green process to manufacture the structural positive electrodes with homogeneous mass loading. A specific capacity of 112 mAh g-1 can be reached at C/20, allowing the smooth transport of Li-ion in the presence of SBE. The modulus of positive electrodes exceeded 80 GPa. Structural battery-positive half-cells are demonstrated across various mass-loadings, enabling them to be tailored for a diverse array of applications in consumer technology, electric vehicles, and aerospace sectors.

2.
ChemSusChem ; : e202400845, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948933

RESUMO

The common synthesis approach of reduced graphene oxide (rGO) using toxic reducing agents poses a threat to environmental pollution. This study used banana peel extract as a green reducing agent for the synthesis of rGO. Ultrasonication was assimilated to expedite the synthesis process. For comparison, rGO was also produced by reducing GO with hydrazine treatment under conventional stirring. Both morphological (SEM) and physicochemical (FTIR and XRD) studies have revealed that banana peel extract can reduce GO to rGO, although its reducing effect is much weaker compared to hydrazine. Despite this, the rGO produced using banana peel extract with the assimilation of ultrasonication technique has a greater interlayer spacing than that formed under the conventional stirring method. In terms of electrical properties, the electrical conductance of hydrazine-produced rGO (5.69 × 10-6 S) is higher than the banana peel extract-produced rGO (3.55 × 10-6 S - 4.56 × 10-6 S). Interestingly, it was found that most of the rGO produced by banana peel extract under ultrasound assistance has higher or comparable electrical conductance compared to the rGO produced by banana peel extract under stirring method. This implies the feasibility of using short-period ultrasound to replace conventional stirring in rGO synthesis.

3.
Nanotechnology ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949268

RESUMO

The emergence of piezoelectric nanogenerators presents a promising alternative to supply energy demands within the realms of portable and miniaturized devices. In this article, the role of 2D transition metal dichalcogenide (TMD) tungsten sulfide (WS2) and conductive rGO sheets as filler materials inside the polyvinylidene fluoride (PVDF) matrix on piezoelectric performances has been investigated extensively. The strong electrostatic interaction between C-F and C-H monomer bonds of PVDF interacted with the large surface area of the WS2 nanosheets, increasing the electroactive polar phases and resulting in enhanced ferroelectricity in the PVDF/WS2 nanocomposite. Further, the inclusion of rGO sheets in the PVDF/WS2 composite allows mobile charge carriers to move freely through the conductive network provided by the rGO basal planes, which improves the internal polarization of the PVDF/WS2/rGO nanocomposites and increases the electrical performance of the piezoelectric nanogenerators (PENGs). The PVDF/WS2/0.3rGO nanocomposite-based PENG exhibits maximum piezoresponses with ~8.1 times enhancements in the output power density than the bare PVDF-based PENG. The mechanism behind the enhanced piezoresponses in the PVDF/WS2/rGO nanocomposites has been discussed. .

4.
Small ; : e2402655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949408

RESUMO

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38949732

RESUMO

The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.

6.
ACS Appl Bio Mater ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954405

RESUMO

Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.

7.
Bioelectrochemistry ; 160: 108769, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955054

RESUMO

The structure and surface physicochemical properties of anode play a crucial role in microbial fuel cells (MFCs). To enhance the enrichment of exoelectrogen and facilitate extracellular electron transfer (EET), a three-dimensional macroporous graphene aerogel with polydopamine coating was successfully introduced to modify carbon brush (PGA/CB). The three-dimensional graphene aerogel (GA) with micrometer pores improved the space utilization efficiency of microorganisms. Polydopamine (PDA) coating enhanced the physicochemical properties of the electrode surface by introducing abundant functional groups and nitrogen-containing active sites. MFCs equipped with PGA/CB anodes (PGA/CB-MFCs) demonstrated superior power generation compared to GA/CB-MFCs and CB-MFCs (MFCs with GA/CB and CB anodes respectively), including a 23.0 % and 30.1 % reduction in start-up time, and an increase in maximum power density by 2.43 and 1.24 times respectively. The higher bioelectrochemical activity exhibited by the biofilm of PGA/CB anode and the promoted riboflavin secretion by PGA modification imply the enhanced EET efficiency. 16S rRNA high-throughput sequence analysis of the biofilms revealed successful enrichment of Geobacter on PGA/CB anodes. These findings not only validate the positive impact of the synergistic effects between GA and PDA in promoting EET and improving MFC performance but also provide valuable insights for electrode design in other bioelectrochemical systems.

8.
Nanotechnology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955146

RESUMO

We present the electrical characterization of wafer-scale graphene devices fabricated with an industrially-relevant, contact-first integration scheme combined with Al2O3 encapsulation via atomic layer deposition. All the devices show a statistically significant reduction in the Dirac point position, Vcnp, from around + 47V to between -5 and 5 V (on 285 nm SiO2), while maintaining the mobility values. The data and methods presented are relevant for further integration of graphene devices, specifically sensors, at the back-end-of-line of a standard CMOS flow.

9.
Int J Pharm ; 661: 124406, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955240

RESUMO

Integrating pH sensor with controlled antibiotic release is fabricated on silk to create a theranostic wound dressing. Alginate (ALG) hydrogel and graphene oxide (GO) loaded with levofloxacin (LVX) and a pH indicator are applied to fabricate a pH-responsive theranostic wound dressing. The modified silk color changes from yellow to green in response to elevated skin pH, indicating the skin infection. The semi-quantitative analysis was conducted using ImageJ, revealing significant color changes across the wide range. At elevated pH levels, the ionization of the COOH bonds within ALG induces repulsion among the COO- groups, thereby accelerating the release of the incorporated drug compared to release under lower pH. At an infected pH of 8, ALG hydrogel triggers LVX releasing up to 135.86 ± 0.3 µg, while at a normal pH of 7, theranostic silk releases 123.13 ± 0.26 µg. Incorporating GO onto silk fibers enhances LVX loading and sustains LVX release. Furthermore, these modified silks possess antimicrobial abilities without causing irritation or allergies on the human skin. This theranostic silks represents a major step forward in smart wound care, introducing a versatile platform of smart wound care.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38959083

RESUMO

Aerogel-based composites, renowned for their three-dimensional (3D) network architecture, are gaining increasing attention as lightweight electromagnetic (EM) wave absorbers. However, attaining high reflection loss, broad effective absorption bandwidth (EAB), and ultrathin thickness concurrently presents a formidable challenge, owing to the stringent demands for precise structural regulation and incorporation of magnetic/dielectric multicomponents with synergistic loss mechanisms within the 3D networks. In this study, we successfully synthesized a 3D hierarchical porous Fe3O4/MoS2/rGO/Ti3C2Tx MXene (FMGM) composite aerogel via directional freezing and subsequent heat treatment processes. Owing to their ingenious structure and multicomponent design, the FMGM aerogels, featured with abundant heterogeneous interface structure and magnetic/dielectric synergism, show exceptional impedance matching characteristics and diverse EM wave absorption mechanisms. After optimization, the prepared ultralight (6.4 mg cm-3) FMGM-2 aerogel exhibits outstanding EM wave absorption performance, achieving a minimal reflection loss of -66.92 dB at a thickness of 3.61 mm and an EAB of 6.08 GHz corresponding to the thickness of 2.3 mm, outperforming most of the previously reported aerogel-based absorbing materials. This research presents an effective strategy for fabricating lightweight, ultrathin, highly efficient, and broad band EM wave absorption materials.

11.
Talanta ; 278: 126498, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959668

RESUMO

Lung cancer is the main cancer that endangers human life worldwide, with the highest mortality rate. The detection of lung tumor markers is of great significance for the early diagnosis and subsequent treatment of lung cancer. In this study, a vertical graphene field effect transistor (VGFET) immunosensor based on graphene/C60 heterojunction was created to offer quantitative detections for the lung tumor markers carcinoembryonic antigen (CEA), cytokeratin 19 fragment (Cyfra21-1), and neuron-specific enolase (NSE). The experimental results showed that the sensitive range for standard antigen is between 1 pg/ml to 100 ng/ml, with a limit of detection (LOD) of 5.6 amol/ml for CEA, 33.3 amol/ml for Cyfra 21-1 and 12.8 amol/ml for NSE (1 pg/ml for all). The detection accuracy for these tumor markers was compared with the clinically used method for clinical patients on serum samples. Results are highly consistent with clinically used immunoassay in its efficient diagnosis concentration range. Subsequently, the mesoporous silica nanospheres (MSNs) with an average size of 90 nm were surface modified with glutaraldehyde, and a second antibody was assembled on MSNs, which fixes nanospheres on the antigen and amplified the field effect. The LODs for three markers are 100 fg/ml (0.56 amol/ml for CEA) under optimal circumstances of detection. This result indicates that specific binding to MSNs enhances local field effects and can achieve higher sensing efficiency for tumor marker detection at extremely low concentrations, providing effective assistance for the early diagnosis of lung cancer.

12.
Small Methods ; : e2400189, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958066

RESUMO

The increasing demand for electric vehicles necessitates the development of cost-effective, mass-producible, long-lasting, and highly conductive batteries. Making this kind of battery is exceedingly tricky. This study introduces an innovative fabrication technique utilizing a laser-induced graphene (LIG) approach on commercial Kapton film to create hexagonal pores. These pores form vertical conduction paths for electron and ion transportation during lithiation and delithiation, significantly enhancing conductivity. The nongraphitized portion of the Kapton film makes it a binder-less, free-standing electrode, providing mechanical stability. Various analytical techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and atomic force microscopy (AFM) are utilized to confirm the transformation of a 3D porous graphene sheet from a commercial Kapton film. Cross-sectional SEM images verify the vertical connections. The specific capacity of 581 mAh g-1 is maintained until the end, with 99% coulombic efficiency at 0.1C. This simple manufacturing method paves the pathway for future LIG-based, cost-effective, lightweight, mass-producible, long-lasting, vertically conductive electrodes for lithium-ion batteries.

13.
Small ; : e2404337, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958089

RESUMO

Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high-purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few-layered graphene sheets (200-12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ-synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38963067

RESUMO

The absorption-dominated graphene porous materials, considered ideal for mitigating electromagnetic pollution, encounter challenges related to intricate structural design. Herein, petal-like graphene porous films with dendritic-like and honeycomb-like pores are prepared by controlling the phase inversion process. The theoretical simulation and experimental results show that PVP K30 modified on the graphene surface via van der Waals interactions promotes graphene to be uniformly enriched on the pore walls. Benefiting from the regulation of graphene distribution and the construction of honeycomb pore structure, when 15 wt % graphene is added, the porous film exhibits absorption-dominated electromagnetic shielding performance, compared with the absence of PVP K30 modification. The total electromagnetic shielding effectiveness is 24.1 dB, an increase of 170%; the electromagnetic reflection coefficient reduces to 2.82 dB; The thermal conductivity reaches 1.1 W/(m K), representing a 104% increase. In addition, the porous film exhibits improved mechanical properties, the tensile strength increases to 6.9 MPa, and the elongation at break increases by 131%. The method adopted in this paper to control the enrichment of graphene in the pore walls during the preparation of honeycomb porous films by the phase inversion method can avoid the agglomeration of graphene and improve the overall performance of the porous graphene porous films.

15.
Chempluschem ; : e202400105, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963093

RESUMO

Precision chemistry of synthetic carbon allotropes including fullerene and graphene, characterized by a well-controlled and spatially resolved addends bonding, has received widespread attention owing to its capability to tailor their physicochemical properties for high-end applications. In the context of fullerene, particularly endohedral metallofullerenes (EMFs), precision chemistry emphasizes the regioselective binding of a specific number of moieties to the fullerene cage. In the case of graphene, precision chemistry focuses on achieving precise patterning and tailored modifications. Inspired by their intriguing advantages, the precision chemistry of these two members has witnessed rapid advancements. While existing reviews have outlined advancements in the precision chemistry of EMFs and graphene, this review uniquely concentrates on the most recent progress. Finally, the prospects in this field, with a special focus on the potential for creating functional materials through strategically patterned binding of fullerene and graphene networks are envisioned.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38963620

RESUMO

To solve environmental-related issues (wastewater remediation, energy conservation and air purification) caused by rapid urbanization and industrialization, synthesis of novel and modified nanostructured photocatalyst has received increasing attention in recent years. We herein report the facile synthesis of in situ nitrogen-doped chemically anchored TiO2 with graphene through sol-gel method. The structural analysis using X-ray diffraction showed that the crystalline nitrogen-doped graphene-titanium dioxide (N-GT) nanocomposite is mainly composed of anatase with minor brookite phase. Raman spectroscopy revealed the graphene characteristic band presence at low intensity level in addition to the main bands of anatase TiO2. X-ray photoelectron spectroscopy analysis disclosed the chemical bonding of TiO2 with graphene via Ti-O-C linkage, also the substitution of nitrogen dopant in both TiO2 lattice and into the skeleton of graphene nanoflakes. UV-Vis absorption spectroscopy analysis established that the modified material can efficiently absorb the longer wavelength range photons due to its narrowed band gap. The N0.06-GT material showed the highest degradation efficiency over methylene blue (MB, ∼98%) under UV and sulfamethoxazole (SMX, ∼ 90.0%) under visible light irradiation. The increased activity of the composite is credited to the synergistic effect of high surface area via greater adsorption capacity, narrowed band gap via increased photon absorption, and reduced e-/h+ recombination via good electron acceptability of graphene nanoflakes and defect sites (Ti3+ and oxygen vacancy (Vo)). The ROS experiments further depict that primarily hydroxyl radicals (OH•) and superoxide anions (O2•-) are responsible for the pollutant degradation in the process redox reactions. In summary, our findings specify new insight into the fabrication of this new material whose efficiency can be further tested in applications like H2 production, CO2 conversion to value-added products, and in energy conservation and storage.

17.
Chem Asian J ; : e202400199, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946437

RESUMO

Iron-nitrogen functionalized graphene has emerged as a promising cathode host for rechargeable lithium-sulfur batteries (RLSBs) due to its affordability and enhanced battery performance. To optimize its catalytical efficiency, we propose a novel approach involving coordination engineering. Our investigation spans a plethora of catalysts with varied coordination environments, focusing on elements B, C, N and O. We revealed that Fe-C4 and Fe-B2C2-h are particularly effective for promoting Li2S oxidation, whereas Fe-N4 excels in catalyzing the sulfur reduction reaction (SRR). Importantly, our study identified specific descriptors - namely, the Integrated Crystal Orbital Hamilton Population (ICOHP) and the bond length between Fe and S in Li2S adsorbed state - as the most effective predictive descriptors for Li2S oxidation barriers. Meanwhile, Li2S adsorption energy emerges as a reliable descriptor for assessing the SRR barrier. These identified descriptors are expected to be instrumental in rapidly identifying promising cathode hosts across various metal-centered systems with diverse coordination environments. Our findings not only offer valuable insights into the role of coordination environment, but also present an effective path for rapidly identifying high performance catalysts for RLSBs, enabling the acceleration of advanced RLSBs development.

18.
ACS Appl Mater Interfaces ; 16(26): 34001-34009, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961569

RESUMO

Ultrafast electron pulses, generated through femtosecond photoexcitation in nanocathode materials, introduce high-frequency characteristics and ultrahigh temporal-spatial resolution to vacuum micro-nano electronic devices. To advance the development of ultrafast electron sources sensitive to polarized light, we propose an ultrafast pulsed electron source based on a vertical few-layer graphene cold cathode. This source exhibits selective electron emission properties for varying polarization angles, with high switching ratios of 277 (at 0°) and 235 (at 90°). The electron emission of the graphene evolves from cosine to sine as the polarization angle increases from 0° to 90°. The variation of electron emission current with polarization angle is intrinsically related to light absorption, local field enhancement, and photothermal conversion efficiency. A physical mechanism model and semiempirical expression were presented to reveal the MPP and PTE mechanisms at different polarization angles. This tunable conversion between mechanisms indicates potential applications in tunable ultrafast optoelectronic devices.

19.
ACS Appl Mater Interfaces ; 16(26): 33943-33953, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961572

RESUMO

Laser-induced graphene (LIG) is a promising material for various applications due to its unique properties and facile fabrication. However, the electrochemical performance of LIG is significantly lower than that of pure graphene, limiting its practical use. Theoretically, integrating other conductive materials with LIG can enhance its performance. In this study, we investigated the effects of incorporating gold nanoparticles (AuNPs) and titanium dioxide (TiO2) into LIG on its electrochemical properties using ReaxFF molecular dynamics (MD) simulations and experimental validation. We found that both AuNPs and TiO2 improved the work function and surface potential of LIG, resulting in a remarkable increase in output voltage by up to 970.5% and output power density by 630% compared to that of pristine LIG. We demonstrated the practical utility of these performance-enhanced LIG by developing motion monitoring devices, self-powered sensing systems, and robotic hand platforms. Our work provides new insights into the design and optimization of LIG-based devices for wearable electronics and smart robotics, contributing to the advancement of sustainable technologies.

20.
ACS Appl Mater Interfaces ; 16(26): 34020-34029, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961571

RESUMO

Rechargeable aqueous Zn-ion batteries with a Zn anode hold great promise as promising candidates for advanced energy storage systems. The construction of protective layer coatings on Zn anode is an effective way to suppress the growth of Zn dendrites and water-induced side reactions. Herein, we reported a series of UIO-66 materials with different concentrations of reduced graphene oxide (rG) coated onto the surface of Zn foil (Zn@UIO-66/rGx; x = 0.05, 0.1, and 0.2). Benefiting from the synergistic effect of UIO-66 and rG, symmetric cells with Zn@UIO-66/rGx (x = 0.1) electrodes exhibit excellent reversibility (e.g., long cycling life over 1100 h at 1 mA cm-2/1 mAh cm-2) and superior rate capability (e.g., over 1100 and 400 h at 5 mA cm-2/2.5 mAh cm-2 and 10 mA cm-2/5 mAh cm-2, respectively). When the Zn@UIO-66/rG0.1 anode was paired with the NaV3O8·1.5H2O (NVO) cathode, the Zn@UIO-66/rG0.1||NVO cell also delivered a high reversible capacity of 189.9 mAh g-1 with an initial capacity retention of 61.3% after 500 cycles at 1 A g-1, compared to the bare Zn||NVO cell with only 92 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...