Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Curr Med Imaging ; 20(1): e15734056306672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988168

RESUMO

OBJECTIVE: In this study, a radiomics model was created based on High-Resolution Computed Tomography (HRCT) images to noninvasively predict whether the sub-centimeter pure Ground Glass Nodule (pGGN) is benign or malignant. METHODS: A total of 235 patients (251 sub-centimeter pGGNs) who underwent preoperative HRCT scans and had postoperative pathology results were retrospectively evaluated. The nodules were randomized in a 7:3 ratio to the training (n=175) and the validation cohort (n=76). The volume of interest was delineated in the thin-slice lung window, from which 1316 radiomics features were extracted. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to select the radiomics features. Univariate and multivariable logistic regression were used to evaluate the independent risk variables. The performance was assessed by obtaining Receiver Operating Characteristic (ROC) curves for the clinical, radiomics, and combined models, and then the Decision Curve Analysis (DCA) assessed the clinical applicability of each model. RESULTS: Sex, volume, shape, and intensity mean were chosen by univariate analysis to establish the clinical model. Two radiomics features were retained by LASSO regression to build the radiomics model. In the training cohort, the Area Under the Curve (AUC) of the radiomics (AUC=0.844) and combined model (AUC=0.871) was higher than the clinical model (AUC=0.773). In evaluating whether or not the sub-centimeter pGGN is benign, the DCA demonstrated that the radiomics and combined model had a greater overall net benefit than the clinical model. CONCLUSION: The radiomics model may be useful in predicting the benign and malignant sub-centimeter pGGN before surgery.

.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Idoso , Curva ROC , Pulmão/diagnóstico por imagem , Adulto , Diagnóstico Diferencial , Radiômica
2.
J Thorac Dis ; 16(6): 3828-3843, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983152

RESUMO

Background: Ground-glass nodule (GGN) is the most common manifestation of lung adenocarcinoma on computed tomography (CT). Clinically, the success rate of preoperative diagnosis of GGN by puncture biopsy and other means is still low. The aim of this study is to investigate the clinical and radiomics characteristics of lung adenocarcinoma presenting as GGN on CT images using radiomics analysis methods, establish a radiomics model, and predict the classification of pathological tissue and instability of GGN type lung adenocarcinoma. Methods: This study retrospectively collected 249 patients with 298 GGN lesions who were pathologically confirmed of having lung adenocarcinoma. The images were imported into the Siemens scientific research prototype software to outline the region of interest and extract the radiomics features. Logistic model A (a radiomics model to identify the infiltration of lung adenocarcinoma manifesting as GGNs) was established using features after the dimensionality reduction process. The receiver operating characteristic (ROC) curve of the model on training set and the verification set was drawn, and the area under the curve (AUC) was calculated. Second, a total of 112 lesions were selected from 298 lesions originating from CT images of at least two occasions, and the time between the first CT and the preoperative CT was defined as not less than 90 days. The mass doubling time (MDT) of all lesions was calculated. According to the different MDT diagnostic thresholds instability was predicted. Finally, their AUCs were calculated and compared. Results: There were statistically significant differences in age and lesion location distribution between the "noninvasive" lesion group and the invasive lesion group (P<0.05), but there were no statistically significant differences in sex (P>0.05). Model A had an AUC of 0.89, sensitivity of 0.75, and specificity of 0.86 in the training set and an AUC of 0.87, sensitivity of 0.63, and specificity of 0.90 in the validation set. There was no significant difference statistically in MDT between "noninvasive" lesions and invasive lesions (P>0.05). The AUCs of radiomics models B1, B2 and B3 were 0.89, 0.80, and 0.81, respectively; the sensitivities were 0.71, 0.54, and 0.76, respectively; the specificities were 0.83, 0.77, and 0.60, respectively; and the accuracies were 0.78, 0.65, and 0.69, respectively. Conclusions: There were statistically significant differences in age and location of lesions between the "noninvasive" lesion group and the invasive lesion group. The radiomics model can predict the invasiveness of lung adenocarcinoma manifesting as GGNs. There was no significant difference in MDT between "noninvasive" lesions and invasive lesions. The radiomics model can predict the instability of lung adenocarcinoma manifesting as GGN. When the threshold of MDT was set at 813 days, the model had higher specificity, accuracy, and diagnostic efficiency.

3.
J Thorac Dis ; 16(5): 3228-3250, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883620

RESUMO

Background: The preoperative differential diagnosis of nodular lung adenocarcinoma has long been a challenging issue for thoracic surgeons. This study aimed to explore differential diagnosis of nodular lung adenocarcinoma by comprehensively analyzing its clinical, computed tomography (CT) imaging, and postoperative pathological and genetic features. Methods: The clinical, CT imaging, and postoperative pathological features of different classifications of nodular lung adenocarcinoma were retrospectively analyzed through univariate and multivariate statistical methods. Results: There were 132 patients with nodular lung adenocarcinoma enrolled. Firstly, compared with ground-glass nodular lung adenocarcinoma, solid nodular lung adenocarcinoma was more common in women [odds ratio (OR), 3.662; 95% confidence interval (CI): 1.066-12.577] and older adults (OR, 1.061; 95% CI: 1.007-1.119), and CT signs were mostly lobulation (OR, 4.957; 95% CI: 1.714-14.337) and spiculation (OR, 8.214; 95% CI: 2.740-24.621); the mean CT (CTm) value of solid nodular lung adenocarcinoma was significantly higher than that of ground-glass nodular lung adenocarcinoma, and the optimal diagnostic threshold was -267.5 Hounsfield units (HU). Secondly, the maximum diameter of nodule size (NSmax) of invasive adenocarcinoma (IAC) was significantly greater than that of minimally IAC (MIA; OR, 6.306; 95% CI: 1.191-33.400) or atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS; OR, 189.539; 95% CI: 4.720-7,610.476), and the optimal diagnostic threshold between IAC and MIA was 1.35 cm; the CTm value of IAC was significantly higher than that of MIA, and the optimal diagnostic threshold was -460.75 HU. Thirdly, lepidic-predominant adenocarcinoma (LPA) manifest more commonly as pure ground-glass nodule (pGGN; OR, 6.252; 95% CI: 1.429-27.358) or mixed ground-glass nodule (mGGN; OR, 4.224; 95% CI: 1.223-14.585). Moreover, the mutation rate of epidermal growth factor receptor (EGFR) in IAC was 70.69% (41/58). The EGFR mutation rates of mGGNs (OR, 8.794; 95% CI: 1.489-51.933) and solid nodules (SNs; OR, 12.912; 95% CI: 1.597-104.383) were significantly higher than that of pGGNs. Furthermore, compared with those of micropapillary-predominant adenocarcinoma (MPA), solid-predominant adenocarcinoma (SPA), or invasive mucinous adenocarcinoma (IMA), there were significantly higher EGFR mutation rates in acinar-predominant adenocarcinoma/papillary-predominant adenocarcinoma (APA/PPA; OR, 55.925; 95% CI: 4.045-773.284) and LPA (OR, 38.265; 95% CI: 2.307-634.596). Conclusions: Different classifications of nodular lung adenocarcinoma have their own clinicopathological and CT imaging features, and the latter is the main predictor.

4.
Quant Imaging Med Surg ; 14(6): 4086-4097, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846292

RESUMO

Background: Radiomics models based on computed tomography (CT) can be used to differentiate invasive ground-glass nodules (GGNs) in lung adenocarcinoma to help determine the optimal timing of GGN resection, improve the accuracy of prognostic prediction, and reduce unnecessary surgeries. However, general radiomics does not fully utilize follow-up data and often lacks model interpretation. Therefore, this study aimed to build an interpretable model based on delta radiomics to predict GGN invasiveness. Methods: A retrospective analysis was conducted on a set of 303 GGNs that were surgically resected and confirmed as lung adenocarcinoma in Shanghai Chest Hospital between September 2017 and August 2022. Delta radiomics and general radiomics features were extracted from preoperative follow-up CT scans and combined with clinical features for modeling. The performance of the delta radiomics-clinical model was compared to that of the radiomics-clinical model. Additionally, Shapley additive explanations (SHAP) was employed to interpret and visualize the model. Results: Two models were constructed using a combination of 34 radiomic features and 10 delta radiomic features, along with 14 clinical features. The radiomics-clinical model and the delta radiomics-clinical model exhibited area under the curve (AUC) of 0.986 [95% confidence interval (CI): 0.977-0.995] and 0.974 (95% CI: 0.959-0.987) in the training set, respectively, and 0.949 (95% CI: 0.908-0.978) and 0.927 (95% CI: 0.879-0.966) in the test set, respectively. The DeLong test of the two models showed no statistical significance (P=0.10) in the test set. SHAP was used to output a summary plot for global interpretation, which showed that preoperative mass, three-dimensional (3D) length, mean diameter, volume, mean CT value, and delta radiomics feature original_firstorder_RootMeanSquared were the relatively more important features in the model. Waterfall plots for local interpretation showed how each feature contributed to the prediction output of a given GGN. Conclusions: The delta radiomics-based model proved to be a helpful tool for predicting the invasiveness of GGNs in lung adenocarcinoma. This approach offers a precise, noninvasive alternative in informing clinical decision-making. Additionally, SHAP provided insightful and user-friendly interpretations and visualizations of the model, enhancing its clinical applicability.

5.
Cancer Med ; 13(11): e7383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864483

RESUMO

OBJECTIVE: The genomic and molecular ecology involved in the stepwise continuum progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) remains unclear and requires further elucidation. We aimed to characterize gene mutations and expression landscapes, and explore the association between differentially expressed genes (DEGs) and significantly mutated genes (SMGs) during the dynamic evolution from AIS to IAC. METHODS: Thirty-five patients with ground-glass nodules (GGNs) lung adenocarcinomas were enrolled. Whole-exome sequencing (WES) and transcriptome sequencing (RNA-Seq) were conducted on all patients, encompassing both tumor samples and corresponding noncancerous tissues. Data obtained from WES and RNA-Seq were subsequently analyzed. RESULTS: The findings from WES delineated that the predominant mutations were observed in EGFR (49%) and ANKRD36C (17%). SMGs, including EGFR and RBM10, were associated with the dynamic evolution from AIS to IAC. Meanwhile, DEGs, including GPR143, CCR9, ADAMTS16, and others were associated with the entire process of invasive LUAD. We found that the signaling pathways related to cell migration and invasion were upregulated, and the signaling pathways of angiogenesis were downregulated across the pathological stages. Furthermore, we found that the messenger RNA (mRNA) levels of FAM83A, MAL2, DEPTOR, and others were significantly correlated with CNVs. Gene set enrichment analysis (GSEA) showed that heme metabolism and cholesterol homeostasis pathways were significantly upregulated in patients with EGFR/RBM10 co-mutations, and these patients may have poorer overall survival than those with EGFR mutations. Based on the six calculation methods for the immune infiltration score, NK/CD8+ T cells decreased, and Treg/B cells increased with the progression of early LUAD. CONCLUSIONS: Our findings offer valuable insights into the unique genomic and molecular features of LUAD, facilitating the identification and advancement of precision medicine strategies targeting the invasive progression of LUAD from AIS to IAC.


Assuntos
Adenocarcinoma de Pulmão , Sequenciamento do Exoma , Neoplasias Pulmonares , Mutação , Invasividade Neoplásica , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Biomarcadores Tumorais/genética
6.
Quant Imaging Med Surg ; 14(5): 3366-3380, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720835

RESUMO

Background: The threshold value of consolidation-to-tumor ratio (CTR) for distinguishing between ground-glass opacity (GGO)-predominant and solid-predominant ground-glass nodules (GGNs) needs to be clarified, as the lack of clarity has caused the prognostic implications to remain ambiguous. This study aimed to determine the threshold value of CTR for distinguishing between GGO-predominant GGNs and solid-predominant GGNs and elucidate the prognostic implications of the solid-predominant GGNs categorized by CTR on c-stage IA lung adenocarcinoma. Methods: Between January 2016 and October 2018, 764 c-stage IA lung adenocarcinoma cases were assembled from the First Affiliated Hospital of Chongqing Medical University. Of the 764 lesions, 515 (67.4%) were nodules with a GGO component, and 249 (32.6%) were solid nodules (SNs) on thin-section computed tomography (CT). We evaluated the correlation of the 3-dimensional (3D) consolidation component volume ratio with CTR based on the coefficient of determination, r. After receiver operating characteristic (ROC) analysis of 515 GGNs, we defined the nodule with CTR >0.750 as solid-predominant GGN and the nodule with CTR ≤0.750 as GGO-predominant GGN. Subsequently, the prognosis of 439 patients who had follow-up registration was evaluated. Survival curves were calculated using the Kaplan-Meier method, and the log-rank test was employed to compare survival rates among different groups. Cox proportional hazard regression models were applied to evaluate the independent risk factors for recurrence-free survival (RFS). Results: Among 764 patients, 515 (67.4%) were nodules with a GGO component, and 249 (32.6%) were SNs on thin-section CT. For 515 GGNs, the 3D consolidation component volume ratio correlated well with CTR (r=0.888). CTR tended to be slightly larger than the 3D consolidation component volume ratio. A 3D consolidation component volume ratio >50% was best predicted by CTR >0.750, followed by CTR >0.549. CTR >0.750 and CTR >0.549 predicted 3D consolidation component volume ratio >50% with 85% and 99.2% sensitivity and 91.6% and 57.2% specificity, respectively. The 5-year RFS and overall survival (OS) of patients with 0.750< CTR <1 were worse than those of patients with 0≤ CTR ≤0.750 (P<0.001 and P<0.001, respectively) but better than those of patients with CTR =1 (P=0.002 and P=0.03, respectively). Carcinoembryonic antigen (CEA) >2.1 [hazard ratio (HR) =12.516, 95% confidence interval (CI): 1.729-90.598], CTR >0.750 (HR =13.934, 95% CI: 3.341-58.123), larger consolidation component size with diameter more than 20 mm (HR =1.855, 95% CI: 1.242-2.770), poorly differentiated (HR =1.622, 95% CI: 1.056-2.491), lymph node metastasis (HR =2.473, 95% CI: 1.601-3.821), and sublobar resection (HR =2.596, 95% CI: 1.701-3.962) could predict the poor prognosis. Patients with 0≤ CTR ≤0.750 receiving sublobar resection had prognoses comparable to those receiving lobar resection, whether the tumor size ≤2 cm or consolidation component size ≤3 cm. Lobar resection was superior to sublobar resection for non-small cell lung cancer (NSCLC) ≤2 cm with CTR >0.750. Conclusions: Compared to CTR =0.5, the 2-dimensional (2D) CTR =0.750 found using the 3D consolidation component volume ratio as the gold standard better differentiated between solid-predominant GGNs and GGO-predominant GGNs. CTR >0.750 was an independent risk factor associated with the poor prognosis of patients with c-stage IA lung adenocarcinoma. Sublobar resection should be cautiously adopted in GGNs with 0.750< CTR ≤1.

7.
Clin Lung Cancer ; 25(5): 431-439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760224

RESUMO

OBJECTIVES: Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, which is why an objective and reliable diagnostic tool is necessary. This study focuses on artificial intelligence (AI) to automatically analyze such tumors and to develop prospective AI systems that can independently differentiate highly malignant nodules. MATERIALS AND METHODS: Our retrospective study analyzed 246 patients who were diagnosed with negative clinical lymph node metastases (cN0) using positron emission tomography-computed tomography (PET/CT) imaging and underwent surgical resection for lung adenocarcinoma. AI detected tumor sizes ≤2 cm in these patients. By utilizing AI to classify these nodules as solid (AI_solid) or non-solid (non-AI_solid) based on confidence scores, we aim to correlate AI determinations with pathological findings, thereby advancing the precision of preoperative assessments. RESULTS: Solid nodules identified by AI with a confidence score ≥0.87 showed significantly higher solid component volumes and proportions in patients with AI_solid than in those with non-AI_solid, with no differences in overall diameter or total volume of the tumors. Among patients with AI_solid, 16% demonstrated lymph node metastasis, and a significant 94% harbored invasive adenocarcinoma. Additionally, 44% were upstaging postoperatively. These AI_solid nodules represented high-grade malignancies. CONCLUSION: In small-sized lung cancer diagnosed as cN0, AI automatically identifies tumors as solid nodules ≤2 cm and evaluates their malignancy preoperatively. The AI classification can inform lymph node assessment necessity in sublobar resections, reflecting metastatic potential.


Assuntos
Adenocarcinoma de Pulmão , Inteligência Artificial , Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Estudos Retrospectivos , Feminino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/cirurgia , Idoso , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Nódulos Pulmonares Múltiplos/cirurgia , Adulto , Idoso de 80 Anos ou mais , Metástase Linfática/diagnóstico por imagem
8.
Cureus ; 16(4): e57414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694634

RESUMO

Purpose The increasing use of computed tomography (CT) imaging has led to the detection of more ground-glass nodules (GGNs) and subsolid nodules (SSNs), which may be malignant and require a biopsy for proper diagnosis. Approximately 75% of persistent GGNs can be attributed to adenocarcinoma in situ or minimally invasive adenocarcinoma. A CT-guided biopsy has been proven to be a reliable procedure with high diagnostic performance. However, the diagnostic accuracy and safety of a CT-guided biopsy for GGNs and SSNs with solid components ≤6 mm are still uncertain. The aim of this study is to assess the diagnostic accuracy of a CT-guided core needle biopsy (CNB) for GGN and SSNs with solid components ≤6 mm. Methods This is a retrospective study of patients who underwent CT-guided CNB for the evaluation of GGNs and SSNs with solid components ≤6 mm between February 2020 and January 2023. Biopsy findings were compared to the final diagnosis determined by definite histopathologic examination and clinical course. Results A total of 22 patients were enrolled, with a median age of 74 years (IQR: 68-81). A total of 22 nodules were assessed, comprising 15 (68.2%) SSNs with a solid component measuring ≤6 mm and seven (31.8%) pure GGNs. The histopathological examination revealed that 12 (54.5%) were diagnosed as malignant, nine (40.9%) as benign, and one (4.5%) as non-diagnostic. The overall diagnostic accuracy and sensitivity for malignancy were 86.36% and 85.7%, respectively. Conclusion A CT-guided CNB for GGNs and SSNs with solid components measuring ≤6 mm appears to have a high diagnostic accuracy.

9.
Front Oncol ; 14: 1345288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577330

RESUMO

Background: In patients with pulmonary nodules undergoing computed tomography (CT)-guided localization procedures, a range of liquid-based materials have been employed to date in an effort to guide video-assisted thoracoscopic surgery (VATS) procedures to resect target nodules. However, the relative performance of these different liquid-based localization strategies has yet to be systematically evaluated. Accordingly, this study was developed with the aim of examining the relative safety and efficacy of CT-guided indocyanine green (IG) and blue-stained glue (BSG) PN localization. Methods: Consecutive patients with PNs undergoing CT-guided localization prior to VATS from November 2021 - April 2022 were enrolled in this study. Safety and efficacy outcomes were compared between patients in which different localization materials were used. Results: In total, localization procedures were performed with IG for 121 patients (140 PNs), while BSG was used for localization procedures for 113 patients (153 PNs). Both of these materials achieved 100% technical success rates for localization, with no significant differences between groups with respect to the duration of localization (P = 0.074) or visual analog scale scores (P = 0.787). Pneumothorax affected 8 (6.6%) and 8 (7.1%) patients in the respective IG and BSG groups (P = 0.887), while 12 (9.9%) and 10 (8.8%) patients of these patients experienced pulmonary hemorrhage. IG was less expensive than BSG ($17.2 vs. $165). VATS sublobar resection procedure technical success rates were also 100% in both groups, with no instances of conversion to thoracotomy. Conclusions: IG and BSG both offer similarly high levels of clinical safety and efficacy when applied for preoperative CT-guided PN localization, with IG being less expensive than BSG.

10.
J Thorac Dis ; 16(3): 1804-1814, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38617779

RESUMO

Background: Patients with breast cancer have a higher risk of developing lung cancer than the general population. The study aimed to evaluate the prevalence of ground glass nodule (GGN) and risk factors for GGN growth in patients with breast cancer and to evaluate the prevalence and pathologic features of lung cancer. Methods: We retrospectively reviewed the clinical data and chest computed tomography (CT) of 1,384 patients diagnosed with breast cancer who underwent chest CT between January 2008 and December 2022. We evaluated the prevalence of GGNs and their size changes on follow-up chest CT with volume doubling time (VDT) and identified independent risk factors associated with the growth of GGN using multivariable logistic regression analyses. Furthermore, the prevalence and pathologic features of lung cancer were also evaluated. Results: We detected persistent GGNs in 69 of 1,384 (5.0%) patients. The initial diameter of GGNs was 6.3±3.6 mm on average, with primarily (85.5%) pure GGNs. Among them, 27 (39.1%) exhibited interval growth with a median VDT of 1,006.0 days (interquartile range, 622.0-1,528.0 days) during the median 959.0 days (interquartile range, 612.0-1,645.0 days) follow-up period. Older age (P=0.026), part-solid nodules (P=0.006), and total number of GGNs (≥2) (P=0.007) were significant factors for GGN growth. Lung cancer was confirmed in 13 of 1,384 patients (0.9%), all with adenocarcinoma, including one case of minimally invasive adenocarcinoma. The cancers demonstrated a high rate of epidermal growth factor receptor (EGFR) mutation (69.2%). Conclusions: Persistent GGNs in breast cancer patients with high-risk factors should be adequately monitored for early detection and treatment of lung cancer.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 169-175, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686712

RESUMO

Objective To establish a model for predicting the growth of pulmonary ground-glass nodules (GGN) based on the clinical visualization parameters extracted by the 3D reconstruction technique and to verify the prediction performance of the model. Methods A retrospective analysis was carried out for 354 cases of pulmonary GGN followed up regularly in the outpatient of pulmonary nodules in Zhoushan Hospital of Zhejiang Province from March 2015 to December 2022.The semi-automatic segmentation method of 3D Slicer was employed to extract the quantitative imaging features of nodules.According to the follow-up results,the nodules were classified into a resting group and a growing group.Furthermore,the nodules were classified into a training set and a test set by the simple random method at a ratio of 7∶3.Clinical and imaging parameters were used to establish a prediction model,and the prediction performance of the model was tested on the validation set. Results A total of 119 males and 235 females were included,with a median age of 55.0 (47.0,63.0) years and the mean follow-up of (48.4±16.3) months.There were 247 cases in the training set and 107 cases in the test set.The binary Logistic regression analysis showed that age (95%CI=1.010-1.092,P=0.015) and mass (95%CI=1.002-1.067,P=0.035) were independent predictors of nodular growth.The mass (M) of nodules was calculated according to the formula M=V×(CTmean+1000)×0.001 (where V is the volume,V=3/4πR3,R:radius).Therefore,the logit prediction model was established as ln[P/(1-P)]=-1.300+0.043×age+0.257×two-dimensional diameter+0.007×CTmean.The Hosmer-Lemeshow goodness of fit test was performed to test the fitting degree of the model for the measured data in the validation set (χ2=4.515,P=0.808).The check plot was established for the prediction model,which showed the area under receiver-operating characteristic curve being 0.702. Conclusions The results of this study indicate that patient age and nodule mass are independent risk factors for promoting the growth of pulmonary GGN.A model for predicting the growth possibility of GGN is established and evaluated,which provides a basis for the formulation of GGN management strategies.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Imageamento Tridimensional/métodos , Idoso , Adulto
12.
BMC Cancer ; 24(1): 438, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594670

RESUMO

PURPOSE: Based on the quantitative and qualitative features of CT imaging, a model for predicting the invasiveness of ground-glass nodules (GGNs) was constructed, which could provide a reference value for preoperative planning of GGN patients. MATERIALS AND METHODS: Altogether, 702 patients with GGNs (including 748 GGNs) were included in this study. The GGNs operated between September 2020 and July 2022 were classified into the training group (n = 555), and those operated between August 2022 and November 2022 were classified into the validation group (n = 193). Clinical data and the quantitative and qualitative features of CT imaging were harvested from these patients. In the training group, the quantitative and qualitative characteristics in CT imaging of GGNs were analyzed by using performing univariate and multivariate logistic regression analyses, followed by constructing a nomogram prediction model. The differentiation, calibration, and clinical practicability in both the training and validation groups were assessed by the nomogram models. RESULTS: In the training group, multivariate logistic regression analysis disclosed that the maximum diameter (OR = 4.707, 95%CI: 2.06-10.758), consolidation/tumor ratio (CTR) (OR = 1.027, 95%CI: 1.011-1.043), maximum CT value (OR = 1.025, 95%CI: 1.004-1.047), mean CT value (OR = 1.035, 95%CI: 1.008-1.063; P = 0.012), spiculation sign (OR = 2.055, 95%CI: 1.148-3.679), and vascular convergence sign (OR = 2.508, 95%CI: 1.345-4.676) were independent risk parameters for invasive adenocarcinoma. Based on these findings, we established a nomogram model for predicting the invasiveness of GGN, and the AUC was 0.910 (95%CI: 0.885-0.934) and 0.902 (95%CI: 0.859-0.944) in the training group and the validation group, respectively. The internal validation of the Bootstrap method showed an AUC value of 0.905, indicating a good differentiation of the model. Hosmer-Lemeshow goodness of fit test for the training and validation groups indicated that the model had a good fitting effect (P > 0.05). Furthermore, the calibration curve and decision analysis curve of the training and validation groups reflected that the model had a good calibration degree and clinical practicability. CONCLUSION: Combined with the quantitative and qualitative features of CT imaging, a nomogram prediction model can be created to forecast the invasiveness of GGNs. This model has good prediction efficacy for the invasiveness of GGNs and can provide help for the clinical management and decision-making of GGNs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Nomogramas , Tomografia Computadorizada por Raios X/métodos , Invasividade Neoplásica/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/cirurgia , Adenocarcinoma de Pulmão/patologia , Estudos Retrospectivos
13.
Respiration ; 103(5): 280-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471496

RESUMO

INTRODUCTION: Lung cancer remains the leading cause of cancer death worldwide. Subsolid nodules (SSN), including ground-glass nodules (GGNs) and part-solid nodules (PSNs), are slow-growing but have a higher risk for malignancy. Therefore, timely diagnosis is imperative. Shape-sensing robotic-assisted bronchoscopy (ssRAB) has emerged as reliable diagnostic procedure, but data on SSN and how ssRAB compares to other diagnostic interventions such as CT-guided transthoracic biopsy (CTTB) are scarce. In this study, we compared diagnostic yield of ssRAB versus CTTB for evaluating SSN. METHODS: A retrospective study of consecutive patients who underwent either ssRAB or CTTB for evaluating GGN and PSN with a solid component less than 6 mm from February 2020 to April 2023 at Mayo Clinic Florida and Rochester. Clinicodemographic information, nodule characteristics, diagnostic yield, and complications were compared between ssRAB and CTTB. RESULTS: A total of 66 nodules from 65 patients were evaluated: 37 PSN and 29 GGN. Median size of PSN solid component was 5 mm (IQR: 4.5, 6). Patients were divided into two groups: 27 in the ssRAB group and 38 in the CTTB group. Diagnostic yield was 85.7% for ssRAB and 89.5% for CTTB (p = 0.646). Sensitivity for malignancy was similar between ssRAB and CTTB (86.4% vs. 88.5%; p = 0.828), with no statistical difference. Complications were more frequent in CTTB with no significant difference (8 vs. 2; p = 0.135). CONCLUSION: Diagnostic yield for SSN was similarly high for ssRAB and CTTB, with ssRAB presenting less complications and allowing mediastinal staging within the same procedure.


Assuntos
Broncoscopia , Biópsia Guiada por Imagem , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Procedimentos Cirúrgicos Robóticos , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Broncoscopia/métodos , Idoso , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/diagnóstico por imagem , Biópsia Guiada por Imagem/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Nódulos Pulmonares Múltiplos/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico , Nódulo Pulmonar Solitário/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico
14.
J Thorac Dis ; 16(2): 924-934, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505083

RESUMO

Background: Pure ground glass nodules (GGNs) have been increasingly detected through lung cancer screening programs. However, there were limited reports about pathologic characteristics of pure GGN. Here we presented a meta-analysis of the histologic outcome and proportion analysis of pure GGN. Methods: This study included previous pathological reports of pure GGN published until June 14, 2022 following a systematic search. A meta-analysis estimated the summary effects and between-study heterogeneity for pathologic diagnosis of invasive adenocarcinoma (IA), minimally invasive adenocarcinoma (MIA), adenocarcinoma in situ (AIS), and atypical adenomatous hyperplasia (AAH). Results: This study incorporated 24 studies with 3,845 cases of pure GGN that underwent surgery. Among them, sublobar resection was undertaken in 60% of the patients [95% confidence interval (CI): 38-78%, I2=95%]. The proportion of IA in cases of resected pure GGN was 27% (95% CI: 18-37%, I2=95%), and 50% of IA had non-lepidic predominant patterns (95% CI: 35-65%, I2=91%). The pooled proportions of MIA, AIS, and AAH were 24%, 36%, and 11%, respectively. Among nine studies with available clinical outcomes, no recurrences or metastases was observed other than one study. Conclusions: The portion of IA in cases of pure GGN is significantly larger that expected. More than half of them owned invasiveness components if MIA and IA were combined. Furthermore, there were quite number of lesions with aggressive histologic patterns other than the lepidic subtype. Therefore, further attempts are necessary to differentiate advanced histologic subtype among radiologically favorable pure GGN.

15.
Quant Imaging Med Surg ; 14(2): 1971-1984, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415120

RESUMO

Background: The solid component of subsolid nodules (SSNs) is closely associated with the invasiveness of lung adenocarcinoma, and its accurate assessment is crucial for selecting treatment method. Therefore, this study aimed to evaluate the accuracy of solid component size within SSNs measured on multiplanar volume rendering (MPVR) and compare it with the dimensions of invasive components on pathology. Methods: A pilot study was conducted using a chest phantom to determine the optimal MPVR threshold for the solid component within SSN, and then clinical validation was carried out by retrospective inclusion of patients with pathologically confirmed solitary SSN from October 2020 to October 2021. The radiological tumor size on MPVR and solid component size on MPVR (RSSm) and on lung window (RSSl) were measured. The size of the tumor and invasion were measured on the pathological section, and the invasion, fibrosis, and inflammation within SSNs were also recorded. The measurement difference between computed tomography (CT) and pathology, inter-observer and inter-measurement agreement were analyzed. Receiver operating characteristic (ROC) analysis and Bland-Altman plot were performed to evaluate the diagnostic efficiency of MPVR. Results: A total of 142 patients (mean age, 54±11 years, 39 men) were retrospectively enrolled in the clinical study, with 26 adenocarcinomas in situ, 92 minimally invasive adenocarcinomas (MIAs), and 24 invasive adenocarcinomas (IAs). The RSSl was significantly smaller than pathological invasion size with fair inter-measurement agreement [intraclass correlation coefficient (ICC) =0.562, P<0.001] and moderate interobserver agreement (ICC =0.761, P<0.001). The RSSm was significantly larger than pathological invasion size with the excellent inter-measurement agreement (ICC =0.829, P<0.001) and excellent (ICC =0.952, P<0.001) interobserver agreement. ROC analysis showed that the cutoff value of RSSm for differentiating adenocarcinoma in situ from MIA and MIA from IA was 1.85 and 6.45 mm (sensitivity: 93.8% and 95.5%, specificity: 85.7% and 88.2%, 95% confidence internal: 0.914-0.993 and 0.900-0.983), respectively. The positive predictive value-and negative predictive value of MPVR in predicting invasiveness were 92.8% and 100%, respectively. Conclusions: Using MPVR to predict the invasive degree of SSN had high accuracy and good inter-observer agreement, which is superior to lung window measurements and helpful for clinical decision-making.

16.
Discov Oncol ; 15(1): 29, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310621

RESUMO

PURPOSE: Intraoperative frozen section pathology (FS) is widely used to guide surgical strategies while the accuracy is relatively low. Underestimating the pathological condition may result in inadequate surgical margins. This study aims to identify CT imaging features related to upgraded FS and develop a predictive model. METHODS: Collected data from 860 patients who underwent lung surgery from January to December 2019. We analyzed the consistency rate of FS and categorized the patients into three groups: Group 1 (n = 360) had both FS and Formalin-fixed Paraffin-embedded section (FP) as non-invasive adenocarcinoma (IAC); Group 2 (n = 128) had FS as non-IAC but FP as IAC; Group 3 (n = 372) had both FS and FP as IAC. Clinical baseline characteristics were compared and propensity score adjustment was used to mitigate the effects of these characteristics. Univariate analyses identified imaging features with inter-group differences. A multivariate analysis was conducted to screen independent risk factors for FS upgrade, after which a logistic regression prediction model was established and a receiver operating characteristic (ROC) curve was plotted. RESULTS: The consistency rate of FS with FP was 84.19%. 26.67% of the patients with non-IAC FS diagnosis were upgraded to IAC. The predictive model's Area Under Curve (AUC) is 0.785. Consolidation tumor ratio (CTR) ≤ 0.5 and smaller nodule diameter are associated with the underestimation of IAC in FS. CONCLUSION: CT imaging has the capacity to effectively detect patients at risk of upstaging during FS.

17.
World J Surg Oncol ; 22(1): 51, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336734

RESUMO

BACKGROUND: Presurgical computed tomography (CT)-guided localization is frequently employed to reduce the thoracotomy conversion rate, while increasing the rate of successful sublobar resection of ground glass nodules (GGNs) via video-assisted thoracoscopic surgery (VATS). In this study, we compared the clinical efficacies of presurgical CT-guided hook-wire and indocyanine green (IG)-based localization of GGNs. METHODS: Between January 2018 and December 2021, we recruited 86 patients who underwent CT-guided hook-wire or IG-based GGN localization before VATS resection in our hospital, and compared the clinical efficiency and safety of both techniques. RESULTS: A total of 38 patients with 39 GGNs were included in the hook-wire group, whereas 48 patients with 50 GGNs were included in the IG group. There were no significant disparities in the baseline data between the two groups of patients. According to our investigation, the technical success rates of CT-based hook-wire- and IG-based localization procedures were 97.4% and 100%, respectively (P = 1.000). Moreover, the significantly longer localization duration (15.3 ± 6.3 min vs. 11.2 ± 5.3 min, P = 0.002) and higher visual analog scale (4.5 ± 0.6 vs. 3.0 ± 0.5, P = 0.001) were observed in the hook-wire patients, than in the IG patients. Occurrence of pneumothorax was significantly higher in hook-wire patients (27.3% vs. 6.3%, P = 0.048). Lung hemorrhage seemed higher in hook-wire patients (28.9% vs. 12.5%, P = 0.057) but did not reach statistical significance. Lastly, the technical success rates of VATS sublobar resection were 97.4% and 100% in hook-wire and IG patients, respectively (P = 1.000). CONCLUSIONS: Both hook-wire- and IG-based localization methods can effectively identified GGNs before VATS resection. Furthermore, IG-based localization resulted in fewer complications, lower pain scores, and a shorter duration of localization.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Verde de Indocianina , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Cirurgia Torácica Vídeoassistida/métodos , Pulmão , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia
18.
Tohoku J Exp Med ; 263(1): 35-42, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38355111

RESUMO

Recent advancements in computed tomography (CT) scanning have improved the detection rates of peripheral pulmonary nodules, including those with ground-glass opacities (GGOs). This study focuses on part-solid pure ground-glass nodules (GGNs) and aims to identify imaging predictors that can reliably differentiate primary lung cancer from nodules with other diagnoses among part-solid GGNs on high-resolution CT (HRCT). A retrospective study was conducted on 609 patients who underwent surgical treatment or observation for lung nodules. Radiological findings from pre-operative HRCT scans were reviewed and several CT imaging features of part-solid GGNs were examined for their positive predictive value to identify primary lung cancer. The proportions of the nodules with a final diagnosis of primary lung cancer were significantly higher in part-solid GGNs (91.9%) compared with solid nodules (70.3%) or pure GGNs (66.7%). Among CT imaging features of part-solid GGNs that were evaluated, consolidation-to-tumor ratio (CTR) < 0.5 (98.1%), pleural indentation (96.4%), and clear tumor border (96.7%) had high positive predictive value to identify primary lung cancer. When two imaging features were combined, the combination of CTR < 0.5 and a clear tumor border was identified to have 100% positive predictive values with a sensitivity of 40.8%. Thus we conclude that part-solid GGNs with a CTR < 0.5 accompanied by a clear tumor border evaluated by HRCT are very likely to be primary lung cancers with an acceptable sensitivity. Preoperative diagnostic procedures to obtain a pathological diagnosis may potentially be omitted in patients harboring such part-solid GGNs.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Adulto , Curva ROC
19.
AJR Am J Roentgenol ; 222(5): e2330504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323785

RESUMO

BACKGROUND. Increased (but not definitively solid) attenuation within pure ground-glass nodules (pGGNs) may indicate invasive adenocarcinoma and the need for resection rather than surveillance. OBJECTIVE. The purpose of this study was to compare the clinical outcomes among resected pGGNs, heterogeneous ground-glass nodules (GGNs), and part-solid nodules (PSNs). METHODS. This retrospective study included 469 patients (335 female patients and 134 male patients; median age, 68 years [IQR, 62.5-73.5 years]) who, between January 2012 and December 2020, underwent resection of lung adenocarcinoma that appeared as a subsolid nodule on CT. Two radiologists, using lung windows, independently classified each nodule as a pGGN, a heterogeneous GGN, or a PSN, resolving discrepancies through discussion. A heterogeneous GGN was defined as a GGN with internal increased attenuation not quite as dense as that of pulmonary vessels, and a PSN was defined as having an internal solid component with the same attenuation as that of the pulmonary vessels. Outcomes included pathologic diagnosis of invasive adenocarcinoma, 5-year recurrence rates (locoregional or distant), and recurrence-free survival (RFS) and overall survival (OS) over 7 years, as analyzed by Kaplan-Meier and Cox proportional hazards regression analyses, with censoring of patients with incomplete follow-up. RESULTS. Interobserver agreement for nodule type, expressed as a kappa coefficient, was 0.69. Using consensus assessments, 59 nodules were pGGNs, 109 were heterogeneous GGNs, and 301 were PSNs. The frequency of invasive adenocarcinoma was 39.0% in pGGNs, 67.9% in heterogeneous GGNs, and 75.7% in PSNs (for pGGNs vs heterogeneous GGNs, p < .001; for pGGNs vs PSNs, p < .001; and for heterogeneous GGNs vs PSNs, p = .28). The 5-year recurrence rate was 0.0% in patients with pGGNs, 6.3% in those with heterogeneous GGNs, and 10.8% in those with PSNs (for pGGNs vs heterogeneous GGNs, p = .06; for pGGNs vs PSNs, p = .02; and for heterogeneous GGNs vs PSNs, p = .18). At 7 years, RFS was 97.7% in patients with pGGNs, 82.0% in those with heterogeneous GGNs, and 79.4% in those with PSNs (for pGGNs vs heterogeneous GGNs, p = .02; for pGGNs vs PSNs, p = .006; and for heterogeneous GGNs vs PSNs, p = .40); OS was 98.0% in patients with pGGNs, 84.6% in those with heterogeneous GGNs, and 82.9% in those with PSNs (for pGGNs vs heterogeneous GGNs, p = .04; for pGGNs vs PSNs, p = .01; and for heterogeneous GGNs vs PSNs, p = .50). CONCLUSION. Resected pGGNs had excellent clinical outcomes. Heterogeneous GGNs had relatively worse outcomes, more closely resembling outcomes for PSNs. CLINICAL IMPACT. The findings support surveillance for truly homogeneous pGGNs versus resection for GGNs showing internal increased attenuation even if not having a true solid component.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia , Nódulos Pulmonares Múltiplos/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/cirurgia , Adenocarcinoma de Pulmão/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/cirurgia , Nódulo Pulmonar Solitário/patologia
20.
Diagnostics (Basel) ; 14(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38248024

RESUMO

The nodule diameter was commonly used to predict the invasiveness of pulmonary adenocarcinomas in pure ground-glass nodules (pGGNs). However, the diagnostic performance and optimal cut-off values were inconsistent. We conducted a meta-analysis to evaluate the diagnostic performance of the nodule diameter for predicting the invasiveness of pulmonary adenocarcinomas in pGGNs and validated the cut-off value of the diameter in an independent cohort. Relevant studies were searched through PubMed, MEDLINE, Embase, and the Cochrane Library, from inception until December 2022. The inclusion criteria comprised studies that evaluated the diagnostic accuracy of the nodule diameter to differentiate invasive adenocarcinomas (IAs) from non-invasive adenocarcinomas (non-IAs) in pGGNs. A bivariate mixed-effects regression model was used to obtain the diagnostic performance. Meta-regression analysis was performed to explore the heterogeneity. An independent sample of 220 pGGNs (82 IAs and 128 non-IAs) was enrolled as the validation cohort to evaluate the performance of the cut-off values. This meta-analysis finally included 16 studies and 2564 pGGNs (761 IAs and 1803 non-IAs). The pooled area under the curve, the sensitivity, and the specificity were 0.85 (95% confidence interval (CI), 0.82-0.88), 0.82 (95% CI, 0.78-0.86), and 0.73 (95% CI, 0.67-0.78). The diagnostic performance was affected by the measure of the diameter, the reconstruction matrix, and patient selection bias. Using the prespecified cut-off value of 10.4 mm for the mean diameter and 13.2 mm for the maximal diameter, the mean diameter showed higher sensitivity than the maximal diameter in the validation cohort (0.85 vs. 0.72, p < 0.01), while there was no significant difference in specificity (0.83 vs. 0.86, p = 0.13). The nodule diameter had adequate diagnostic performance in differentiating IAs from non-IAs in pGGNs and could be replicated in a validation cohort. The mean diameter with a cut-off value of 10.4 mm was recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...