Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.204
Filtrar
1.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003087

RESUMO

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Assuntos
Coloides , Retardadores de Chama , Água Subterrânea , Éteres Difenil Halogenados , Poluentes do Solo , Solo , Poluentes Químicos da Água , Éteres Difenil Halogenados/análise , Coloides/química , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Poluentes Químicos da Água/análise , China , Retardadores de Chama/análise , Monitoramento Ambiental , Modelos Químicos
2.
J Environ Sci (China) ; 149: 688-698, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181679

RESUMO

Coking industry is a potential source of heavy metals (HMs) pollution. However, its impacts to the groundwater of surrounding residential areas have not been well understood. This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant. Nine HMs including Fe, Zn, Mo, As, Cu, Ni, Cr, Pb and Cd were analyzed. The average concentration of total HMs was higher in the nearby area (244.27 µg/L) than that of remote area away the coking plant (89.15 µg/L). The spatial distribution of pollution indices including heavy metal pollution index (HPI), Nemerow index (NI) and contamination degree (CD), all demonstrated higher values at the nearby residential areas, suggesting coking activity could significantly impact the HMs distribution characteristics. Four sources of HMs were identified by Positive Matrix Factorization (PMF) model, which indicated coal washing and coking emission were the dominant sources, accounted for 40.4%, and 31.0%, respectively. Oral ingestion was found to be the dominant exposure pathway with higher exposure dose to children than adults. Hazard quotient (HQ) values were below 1.0, suggesting negligible non-carcinogenic health risks, while potential carcinogenic risks were from Pb and Ni with cancer risk (CR) values > 10-6. Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters. This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater, thus facilitating the implement of HMs regulation in coking industries.


Assuntos
Coque , Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Água Subterrânea/química , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Medição de Risco , Humanos
3.
Water Environ Res ; 96(9): e11111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39229823

RESUMO

Due to the overexploitation of deep groundwater, the largest cone of depression in the world has formed in the North China Plain. This led to severe geological hazards, including land subsidence and ground fissures, and also caused economic losses. The prevention and treatment of subsidence needs to rely on the accurate prediction of subsidence amount. According to the one-dimensional consolidation theory and effective stress principle, combined with stratum structure, groundwater flow, stress distribution, and so forth, the high-pressure consolidation test results of 569.6 m deep borehole soil samples are adopted; with a specific focus on stress and deformation parameters under exploitation of groundwater condition, the soil-water coupling prediction model of groundwater level lowering depth and land subsidence has been established. Verification with measured subsidence data near the study sites demonstrated that the predicted curve is consistent with the measured one and the differences between them are acceptable. The model can be applied in different areas after making adjustment based on different regional stratigraphic structures. Its key advantage lies in the ability to provide land subsidence prediction for areas lacking monitoring data, making it highly valuable for widespread application. PRACTITIONER POINTS: There is a compressible stratum structure; it is the internal factors of land subsidence. The groundwater level decline causes the soil body stress to change. It is land subsidence of the external factors. Based on the one-dimensional consolidation theory and by combining stratigraphic structures, groundwater flow, and stress distribution, a ground settlement prediction model was established.


Assuntos
Água Subterrânea , Solo , Solo/química , China , Modelos Teóricos , Movimentos da Água , Monitoramento Ambiental
4.
Environ Geochem Health ; 46(10): 412, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230594

RESUMO

This paper presents findings on groundwater physiochemical composition and radioactivity levels in households in Bac Lieu province, Vietnam. Through discriminant analysis, it was observed that groundwater quality exhibits spatial variations corresponding to saline intrusion zones. The paired-samples T-tests revealed significantly different ratios of Ra-224, Ra-226, and Ra-228 isotopes between Na-Cl and Ca-Na-HCO3 water types. All three water types had a ratio of Ra-226/Ra-228 of approximately one, indicating the presence of groundwater aquifers beneath the crust and fluvial marine sediment. Furthermore, strong associations between sulfate and calcium suggest that CO2 enrichment in groundwater aquifers indicates anoxic aquatic environments. Twenty-five of the thirty-three evaluated samples exceeded the national technical regulations for domestic water quality with parameters such as chloride, sulfate, sodium, gross alpha, or total dissolved solids. Fifteen samples exceeded gross alpha's allowable contamination threshold of 0.1 Bq/L. The combination of Ra-226 and Ra-228 did not surpass the U.S. Environmental Protection Agency's recommended limit of 0.185 Bq/L. However, nineteen samples exhibited annual committed effective doses of radium isotopes for infants that exceeded the WHO recommendation of 0.1 mSv/year.


Assuntos
Água Subterrânea , Rádio (Elemento) , Poluentes Radioativos da Água , Vietnã , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Humanos , Rádio (Elemento)/análise , Monitoramento de Radiação/métodos , Características da Família , Sulfatos/análise
5.
Environ Monit Assess ; 196(10): 886, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230625

RESUMO

Groundwater serves a range of essential functions such as supplying drinking water, facilitating agricultural practices, and supporting industrial processes. This study examines with multiple methods the quality of groundwater in the agricultural region of Dzira, Algeria. By collecting 38 groundwater samples of different wells and boreholes, valuable awareness of the aptness of groundwater for irrigation in this arid landscape was gained. Most wells met Food and Agriculture Organization (FAO) criteria for the total dissolved solids (TDS) and the potential of hydrogen pH, but some areas had higher mineral content and electrical conductivity. Results show significant TDS variations, with 10.81% of wells exceeding limits and acceptable pH levels. Elevated EC values in 67.57% of wells show high salinity, affecting soil and plant growth. Major ions such as Mg2+ and SO4- exceeded FAO standards in 43.24% and 64.86% of wells, respectively, highlighting substantial mineral content in the groundwater. Suitability indices reveal that most wells pose low sodium hazards and are generally suitable for irrigation, though some areas face moderate to high restrictions. The irrigation water quality index (IWQI) ranged from 45.36 to 96.30, averaging 80.77, with 54.04% classified as "low restriction," suitable for sandy soils with good permeability but requiring caution on salt-sensitive soils. Hydrogeochemical analysis using principal component analysis (PCA) and hierarchical cluster analysis (HCA) identifies rapid evaporite dissolution from Triassic saline formations, with a correlation matrix showing associations between TDS and Ca2⁺, Mg2⁺, Na⁺, Cl⁻, and SO42⁻. This mineralization is likely from gypsum and halite. Zoning maps based on IWQI and other parameters depicted spatial variations in groundwater quality, guiding effective irrigation management strategies. Overall, the study underscores the importance of comprehensive water quality assessment for sustainable agriculture and emphasizes the need for targeted interventions to mitigate potential challenges associated with soil salinity and sodicity. Therefore, these findings can be useful to decision-makers and stakeholders in order to optimize water use and protect this vital resource.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental , Água Subterrânea , Qualidade da Água , Argélia , Água Subterrânea/química , Agricultura/métodos , Poluentes Químicos da Água/análise , Solo/química
6.
Environ Monit Assess ; 196(10): 889, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230748

RESUMO

Groundwater is one of the chief water sources for agricultural activities in an aggregation of coal mines surrounded by agricultural areas in the Huaibei Plain. However, there have been few reports on whether mining-affected groundwater can be adopted for agricultural irrigation. We attempted to address this question through collecting 71 shallow groundwater samples from 12 coal mining locations. The Piper trilinear chart, the Gibbs diagram, the proportional coefficient of major ions, and principal component analysis were examined to characterize the source, origin, and formation process of groundwater chemical composition. The suitability for agricultural irrigation was evaluated by a final zonation map that establishes a comprehensive weighting model based on analytic hierarchy process and criteria importance though the intercriteria correlation (AHP-CRITIC). The results revealed that the groundwater was classified as marginally alkaline water with a predominant cation of HCO3- and anion of Na+. Total hardness, total dissolved solids, sulfate (SO42-), sodium (Na+), and fluoride (F-) were the primary ions that exceeded the standard. The results also indicated that the dominant hydrochemical facies were Ca-HCO3 and Na-Cl. The dissolution of carbonate, silicate, sulfate minerals, along with cation exchange, were the main natural drivers controlling the hydrogeochemical process of groundwater. The zonation map suggested that 43.17%, 18.85%, and 37.98% of the study area were high, mediate, and low suitability zones, respectively. These results from this study can support policymakers for better managing groundwater associated with a concentration of underground coal mines.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , China , Poluentes Químicos da Água/análise , Agricultura
7.
Artigo em Inglês | MEDLINE | ID: mdl-39230815

RESUMO

Coal mining activities greatly damage water resources, explicitly concerning water quality. The adverse effects of coal mining and potential routes for contaminants to migrate, either through surface water or infiltration, into the groundwater table. Dealing with pollution from coal mining operations is a significant surface water contamination concern. Consequently, surface water resources get contaminated, harming nearby agricultural areas, drinking water sources, and aquatic habitats. Moreover, the percolation process connected with coal mining could alter groundwater quality. Subsurface water sources can get contaminated by toxins generated during mining activities that infiltrate the soil and reach the groundwater table. The aims of this study are the creation of models and the provision of proposals for corrective measures. Twenty-five scenarios were simulated using MODFLOW; according to the percolation percentage and contamination, 35% of the study area, i.e., the middle of the research area, was the most affected. About 38.08% of the area around the mining zones surrounding Margherita is prone to floods. Agricultural areas, known for applying chemical fertilizers, are particularly vulnerable, generating a risk of pollution to surrounding water bodies during flooding. The outputs of this research contribute to identifying and assessing flood-vulnerable regions, enabling focused measures for flood risk reduction, and strengthening water resource management.

8.
J Contam Hydrol ; 267: 104422, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39260022

RESUMO

The contaminant mass discharge is a relevant metric to evaluate the risk that a groundwater plume poses to water resources. However, this assessment is often vitiated by a high uncertainty inherent to the assessment method and often limited number of measurement points to carry out the assessment. Direct-Push techniques in combination with profiling tools and dedicated sampling can be an interesting alternative to increase the measurement point density and hence reduce the mass discharge uncertainty. The main objective of our study was to assess if DP logging and sampling could be employed to get a reasonable estimate of contaminant mass discharge in a large sulfonamide contaminant plume (> 1500 m wide), compared to a more traditional approach based on monitoring wells. To do so, an Hydraulic Profiling Tool (HPT) logging with a dedicated site calibration was used to estimate the hydraulic conductivity field. The sulfonamide concentrations were inferred from the compound fluorescence properties measured by laboratory spectrofluorometry (λEx / λEm = 255/340 nm) and a dedicated log-log linear regression model. Our results show that HPT-derived hydraulic conductivity values are in good agreement with the monitoring well results, and within the order of magnitude reported in similar studies or indirect geophysical techniques. Fluorescence appears as a powerful proxy for the sulfonamide concentration levels. Ultimately, the contaminant mass discharge estimate from HPT and fluorescence techniques lies within a factor 2 from the estimate by monitoring wells, with 549 [274-668] and 776 [695-879] kg/yr respectively. Overall, this study highlights that DP logging tools combined with indirect methods (correlation with fluorescence) could provide a relevant contaminant mass discharge estimate for some optically active substances, given that a proper calibration phase is carried out.

9.
Sci Total Environ ; : 176141, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260472

RESUMO

Interaction with groundwater determines many processes in marl lakes. Net transfer of inorganic carbon helps define their chemical characteristics and determines their unique benthic flora. Nutrient enrichment weakens the biogeochemical buffering mechanisms which help maintain a clear-water state and many small, shallow marl lakes are prone to siltation. Despite hydrological processes being recognised as important for the complex interactions between plants, nutrient availability and physical sediment properties which shape marl lake ecology, groundwater discharge to many of these lakes has never been quantified. The aim of this study was to locate and quantify groundwater transfers to degraded marl lakes in a Special Area of Conservation on the island of Ireland. A RAD7 radon detector identified and measured elevated concentrations of 222Rn in three lakes for quantifying their groundwater influx with a 222Rn mass-balance equation. Conservative estimates of mean daily groundwater discharge to Kilroosky Lough, Drumacrittin Lough, and Dummy's Lough were 143 m3, 502 m3, and 269 m3 respectively. With extrapolation to the entire hydrological year, annual groundwater recharge contributed approximately 47 %, 155 %, and 50 % of the respective lake volumes. The areas within the lakes which were found to have the highest groundwater influence also closely matched the locations where substantial charophyte communities persist suggesting that the two are linked. These findings underline the importance of groundwater transfers for the water budget in small marl lakes and will inform management efforts to mitigate their eutrophication.

10.
Sci Total Environ ; 953: 176116, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245383

RESUMO

To understand the genesis and spatial distribution of high iodine groundwater in the Hetao Basin, 540 groundwater samples were analyzed for the chemistry and isotope. Total iodine concentrations in groundwater range from 1.32 to 2897 µg/L, with a mean value of 159.2 µg/L. The groundwater environment was mainly characterized by the weakly alkaline and reducing conditions, with the iodide as the main species of groundwater iodine. High iodine groundwater (I > 100 µg/L) was mainly distributed in shallow aquifers (< 30 m) of Hangjinhouqi near the Langshan Mountain and the discharge areas along the main drainage channels. The δ18O and δ2H values ranged from -12.09 ‰ to -3.99 ‰ and - 91.58 ‰ to -52.80 ‰, respectively, and the correlation between groundwater iodine and isotopes indicates the dominant role of evapotranspiration in the enrichment of iodine in the shallow groundwater with depth <30 m. It was further evidenced by the correlation between groundwater iodine and Cl/Br molar ratio, and significant contributions of climate factors identified from the random forest and XGBoost. Moreover, irrigation practices contribute to high iodine levels, with surface water used for irrigation containing up to 537.8 µg/L of iodine, which can be introduced into shallow aquifer directly. The iodine in irrigation water can be retained in the soil or shallow sediment, and later leach into groundwater under favorable conditions.

11.
Sci Total Environ ; 953: 176144, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39250980

RESUMO

High levels of dissolved inorganic nitrogen (DIN) in groundwater pose challenges for regions like northern Anhui Province, China, where groundwater is a crucial domestic resource. This study utilized modern geostatistics to explore the spatial and temporal dynamics of DIN in groundwater. Significant seasonal influences on DIN concentrations were identified: ammonium peaks during wet season driven by agricultural activities, while nitrate peaks during the dry season primarily influenced by municipal inputs. This study established a Bayesian Maximum Entropy - Random Forest (BME-RF) model based on Land Use/Land Cover data to infer the spatio-temporal performance of DIN, achieving an interpretation rate above 90 %. It also highlighted the role of hydrogeological conditions and aquifer types in the evolution of DIN. By employing a DIN environmental interaction model, it further analyzed the eco-hydrological drivers and seasonal trends affecting DIN variability, enhancing the understanding of groundwater nitrogen dynamics and their link to environmental factors with low consumption. SYNOPSIS: This study reveals seasonal shifts in groundwater DIN, links them to human activity, and uses the BME model to guide targeted nitrogen fluctuation.

12.
Water Res ; 266: 122359, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232255

RESUMO

The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development. Notably, BACP demonstrated a remarkable p-CNB removal efficiency of 94.76 % and a dechlorination efficiency of 64.22 % under a voltage of 0.5 V, surpassing the results achieved through traditional electrochemical and biological treatment processes. Cyclic voltammetric results highlighted the primary contributing factor as the synergistic effect between the bioanode and biocathode. It is speculated that this system primarily relies on bioelectrocatalytic reduction as the predominant process for p-CNB removal, followed by subsequent dechlorination. Furthermore, electrochemical and microbiological tests demonstrated that BACP exhibited optimal electron transfer efficiency and selective microbial enrichment ability under a voltage of 0.3-0.5 V. Additionally, we investigated the operational strategy for initiating BACP in engineering applications. The results showed that directly introducing BACP technology effectively enhanced microbial film formation and pollutant removal performance.

13.
Environ Pollut ; : 124875, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233269

RESUMO

Demand for unconventional crude oils continues to drive the production of diluted bitumen (dilbit) within Western Canada, promoting increased transport volumes across the extensive 700,000 km pipeline system of Canada and the USA. Despite this vast extent of terrestrial transport, the current understanding of the behavior and fate of spilled dilbit within shallow groundwater systems is limited. To this end, oil spill experiments with a dilbit (Cold Lake Blend) and a physicochemical comparative conventional heavy crude oil (Conventional Heavy Blend) were conducted for 104 days in large soil columns (1 m height × 0.6 m diameter) engineered to model contaminant transport in the unsaturated (vadose) zone. Around two-fold greater concentrations and 6-41 % faster rates of vadose zone transport of benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic compounds (PACs) were observed in the dilbit- compared to conventional heavy crude-contaminated columns. As determined by Orbitrap mass spectrometry, the OxSx species abundances in the acid extractable organics (AEOs) fraction of column leachate from both oil types increased over time, ostensibly due to microbial degradation of petroleum. Bioaccumulation of petroleum constituents in fathead minnow (Pimephales promelas) larvae exposed to contaminated leachate was confirmed through the induction of developmental malformations lasting up to 34 days and increased abundance of cyp1a mRNA observed throughout the experiment. Toxicity was comparable between the two oils but could not be fully attributed to metals, BTEX, PACs or AEOs, implying the presence of uncharacterized teratogens capable of being transported within the vadose zone following terrestrial dilbit and conventional heavy crude oil surface spills.

14.
Isotopes Environ Health Stud ; : 1-17, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225440

RESUMO

Outcrops play an important role in groundwater recharge. Understanding groundwater origins, dynamics and its correlation with different water sources is essential for effective water resources management and planning in terms of quantity and quality. In the case of the Guarani Aquifer System (GAS) outcrop areas are particularly vulnerable to groundwater pollution due to direct recharge processes. This study focuses on the Alto Jacaré-Pepira sub-basin, a watershed near Brotas, a city in the central region of the state of São Paulo, Brazil, where groundwater is vital for supporting tourism, agriculture, urban water supply, creeks, river and wetlands. The area has a humid tropical climate with periods of both intense rainfall and drought, and the rivers remain perennial throughout the year. Therefore, the aim of this study is to investigate the interconnections between a spring and its potential sources of contribution, namely rain and groundwater, in order to elucidate the relationships between the different water sources. To achieve this, on-site monitoring of groundwater depth, rainfall amount, and stable isotope ratios (deuterium (2H) and oxygen-18 (18O)) from rain, spring discharge, and a monitoring well was carried out from 2013 to 2021. The results indicate that the mean and standard deviations for δ18O in rainwater exhibit higher variability, resulting in -4.49 ± 3.18 ‰ VSMOW, while δ18O values from the well show minor variations, similar to those of the spring, recording -7.25 ± 0.32 ‰ and -6.94 ± 0.28 ‰ VSMOW, respectively. The mixing model's outcomes reveal seasonal variations in water sources contribution and indicate that groundwater accounts for approximately 80 % of spring discharge throughout the year. Incorporating stable isotopes into hydrological monitoring provides valuable data for complementing watershed analysis. The values obtained support the significance of the aquifer as a primary source, thereby offering critical insights into stream dynamics of the region.

15.
Environ Monit Assess ; 196(10): 884, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225827

RESUMO

Groundwater depletion and water scarcity are pressing issues in water-limited regions worldwide, including Pakistan, where it ranks as the third-largest user of groundwater. Lahore, Pakistan, grapples with severe groundwater depletion due to factors like population growth and increased agricultural land use. This study aims to address the lack of comprehensive groundwater availability data in Lahore's semi-arid region by employing GIS techniques and remote sensing data. Various parameters, including Land Use and Land Cover (LULC), Rainfall, Drainage Density (DD), Water Depth, Soil Type, Slope, Population Density, Road Density, Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI), Moisture Stress Index (MSI), Water Vegetation Water Index (WVWI), and Land Surface Temperature (LST), are considered. Thematic layers of these parameters are assigned different weights based on previous literature, reclassified, and superimposed in weighted overlay tool to develop a groundwater potential zones index map for Lahore. The groundwater recharge potential zones are categorized into five classes: Extremely Bad, Bad, Mediocre, Good, and Extremely Good. The groundwater potential zone index (GWPZI) map of Lahore reveals that the majority falls within the Bad to Mediocre recharge potential zones, covering 33% and 28% of the total land area in Lahore, respectively. Additionally, 14% of the total area falls under the category of Extremely Bad recharge potential zones, while Good to Extremely Good areas cover 19% and 6%, respectively. By providing policymakers and water supply authorities with valuable insights, this study underscores the significance of GIS techniques in groundwater management. Implementing the findings can aid in addressing Lahore's groundwater challenges and formulating sustainable water management strategies for the city's future.


Assuntos
Monitoramento Ambiental , Sistemas de Informação Geográfica , Água Subterrânea , Tecnologia de Sensoriamento Remoto , Paquistão , Água Subterrânea/química , Monitoramento Ambiental/métodos , Abastecimento de Água/estatística & dados numéricos , Agricultura/métodos
16.
Environ Res ; 262(Pt 2): 119896, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222735

RESUMO

In recent years, driven by rapid socio-economic development and intensified human activities, the groundwater quality has exhibited a concerning trend of degradation. The challenge lies in integrating the impacts of both natural and anthropogenic factors to establish a scientific evaluation framework for the evolution of groundwater quality. This study adopts the model of driving forces - pressures - state - impacts - responses (DPSIR) proposed by the European Environment Agency, in conjunction with the Analytic Hierarchy Process (AHP) and Information Entropy Theory (IET), and the Water Quality Index (WQI) evaluation methods, to construct an evaluation index system for groundwater quality evolution that encompasses driving forces, state, and response systems. Initially, twelve indicators relevant to groundwater quality are quantified by screening across three systems, and a functional relationship between the categorization and scoring of each indicator is established. Subsequently, the weights for each system and indicator are obtained through the AHP, and the objective weights of the indicators are determined using the IET. The scores of each indicator are then comprehensively calculated. Finally, based on the defined types of groundwater quality evolution patterns, an integrated assessment of the evolution of groundwater quality over various time periods is conducted. Taking the Shijiazhuang region as a case study and analyzing the hydrochemical data of groundwater from 1985 to 2015, the results indicate a shift in the groundwater quality evolution pattern from one dominated by natural factors to one primarily influenced by human activities (The comprehensive score of the evaluation index system has increased from 1.84 to 3.25). Among these, the application of fertilizers emerges as the most important driving factors affecting groundwater quality. Particularly, nitrate and total hardness (TH) have emerged as the most salient indicators of quality degradation, with a significant escalation in their composite scores. At the outset, nitrate registered a score of 0.408, while TH scored 0.326; yet, these values have sharply ascended to 0.716 and 0.467, respectively, by the advanced stage. The study concludes with a discussion on the accuracy, strengths, limitations, and applicability of the evaluation index system. The establishment of this evaluation framework provides a scientific basis for the management and protection of groundwater resources and serves as a reference for identifying groundwater quality evolution patterns in other regions.

17.
Int J Environ Health Res ; : 1-12, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252394

RESUMO

In this study we evaluate the uranium and radon concentrations in groundwater from the Province of Safi. The samples were collected from 58 wells across five communes and analyzed using the LR-115 type II detector. Results indicate that uranium concentrations ranged from the Limit of Detection (LLD) to 3.73 µg/l, with a mean of 0.72 µg/l, well below the World Health Organization's safe limit of 30 µg/l. Radon levels varied from LLD to 2.39 Bq/l, with an average of 0.60 Bq/l, also below the United States Environmental Protection Agency's limit of 11 Bq/l. The estimated total annual effective dose due to uranium and radon ranged from 3.47 to 18.84 µSv/y, with an average of 7.54 µSv/y, which is significantly lower than the European Commission's recommended limit of 100 µSv/y. This investigation represents the first study of uranium and radon levels in groundwater in the Province of Safi, providing valuable data for future research and public health.

18.
Sci Rep ; 14(1): 20689, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237757

RESUMO

Groundwater harbours unique species adapted to perpetual darkness. Groundwater fauna plays a crucial role in global ecosystem services, but contamination poses a threat to this keystone ecosystem. Diclofenac is a common non-steroidal anti-inflammatory drug of particular concern, due to its presence in both surface and groundwater. We assess the environmental risk of diclofenac in European groundwaters using different scenarios, analyzing Measured Environmental Concentrations (MECs) of diclofenac and estimating the Predicted No Effect Concentration (PNECs) through two approaches: considering the sensitivity of the groundwater crustacean Proasellus lusitanicus (Isopoda: Asellidae), and using surface water species as proxies. Our results show that scenarios based on surrogate species predict that groundwater ecosystems are at risk due to diclofenac contamination. On the other hand, the MECs of diclofenac were consistently lower than the PNEC of P. lusitanicus, suggesting that the current MECs do not pose a significant threat to this groundwater-adapted species. However, risk scenarios differ considering the sensitivity of other groundwater species, emphasizing the importance of considering multiple species' sensitivities in risk assessment. Therefore, we recommend establishing an environmental quality standard for diclofenac in groundwater at 5 ng/L, a value that accounts the need for precautionary measures to safeguard groundwater ecosystems, essential for preserving their unique biota and services.


Assuntos
Diclofenaco , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Diclofenaco/análise , Água Subterrânea/química , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos adversos , Animais , Monitoramento Ambiental/métodos , Europa (Continente) , Medição de Risco , Isópodes/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/efeitos adversos , Ecossistema
19.
Sci Total Environ ; : 176081, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244049

RESUMO

Assessing the environmental risks of contaminated groundwater presents significant challenges due to its often-complex chemical composition and to dynamic processes affecting exposure of organisms in receiving surface waters. The objective of this study was to characterize the effects of groundwater collected from a legacy contaminated industrial site, in fish under environmentally relevant conditions. A 21-day fish short-term reproduction assay was conducted in outdoor wetland mesocosms by exposing adult fathead minnows (Pimephales promelas) to graded concentrations of groundwater (1 %, 3 %, and 6 %). Offspring were held in mesocosms up to four days post-hatch to apply a new approach method (NAM), the EcoToxChip™, to explore whether traditional apical endpoints could be predicted using an alternative mechanistic approach. None of the groundwater concentrations used in this study were lethal to fish. There was greater cumulative number of eggs produced at the highest concentration of exposure. However, no abnormal histological appearance was observed in the liver and gonads of fish and no significant effect was observed in the relative expression of genes, tubercle counts, and erythrocyte micronuclei counts compared to the negative control. Food availability in the mesocosms was also assessed and the abundance of zooplankton increased in all groundwater-treated mesocosms. Fathead minnow findings are in contrast to those obtained from previous controlled laboratory studies that revealed significant genotoxicity, hepatotoxicity, and reprotoxicity of the same mixtures. Several factors could explain these observations, including the aging of groundwater in mesocosms before fish addition resulting in photo- and biodegradation and binding to sediments of toxic components. Our static exposure scenario likely underestimated realistic exposure scenarios where groundwater inflow to surface water is generally semi-continuous. Nevertheless, as a higher toxicity was observed during previous laboratory tests with NAMs compared to mesocosm scenarios our results support the use of NAM in the ecological risk assessment of contaminated groundwater.

20.
Sci Total Environ ; : 176069, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244066

RESUMO

Eutrophic shallow lakes are hotspots of carbon (C) and nitrogen (N) accumulation and transformation, and are increasingly recognized as important sources of greenhouse gases (GHGs: CO2, CH4 and N2O). Lacustrine groundwater discharge (LGD) is a crucial component of the water budget and terrestrial material delivery for lakes, but its interplays with intrinsic CN biogeochemical processes remain less tackled. In this study, C and N ingredients and multiple stable isotopes (δ2H, δ18O, δ13C, and δ15N) were measured seasonally in groundwater, river water and lake water of a large eutrophic shallow lake in eastern China. The results revealed that groundwater is enriched with various forms of C and N that have similar sources and pathways as surface water in lake and rivers. The isotope balance model also indicated that LGD derived C and N contribute significantly to lake inventories in addition to river runoff. These allochthonous C and N provide extra substrates for related biogeochemical processes, such as algae proliferation, organic matter degradation, methanogenesis and denitrification. Simultaneously, the excess oxygen consumption leads to depletion and hypoxia in the lake, further facilitating the processes of methanogenesis and denitrification. LGD functions not only as an external source of C and N that directly increases GHG saturations, but also as a mediator of internal CN pathways, which significantly affect hypoxia formation, GHG productions and emissions in the eutrophic lake. This study highlights the unrevealed potential regulation of LGD on biogeochemical processes in the eutrophic lake, and underscores the need for its consideration in environmental and ecological studies of lakes both regionally and globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA