Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Antimicrob Agents Chemother ; : e0044824, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742904

RESUMO

Phage-antibiotic combination treatment is a novel noteworthy drug delivery method in anti-infection. In the current study, we have isolated a new phage, pB23, against carbapenem-resistant Acinetobacter baumannii 2023. Synergistic antibacterial effect between phage pB23 and meropenem combination could be more stable, using moderate doses of phage (multiplicity of infection ranging from 0.1 to 1,000) based on results of in vitro antibacterial activity. Phage pB23 and meropenem combination could effectively clear mature biofilms and prevent biofilm formation of carbapenem-resistant Acinetobacter baumannii in vitro. Phage pB23 and meropenem combination also has good synergistic antibacterial effects against carbapenem-resistant Acinetobacter baumannii in different growth phases under static culture conditions. The pig skin explant model shows that phage pB23 and meropenem combination has a synergistic effect to remove bacteria from wounds ex vivo. Phage pB23 and meropenem combination also exhibited a synergistic antibacterial effect in vivo using a zebrafish infection mode. The potential promotion of phage proliferation by meropenem and the sensitivity recovery of phage-resistant bacteria to meropenem might elucidate the mechanism of the synergistic antimicrobial activity. In summary, our study illustrates that phage pB23 and meropenem combination could produce synergistic antibacterial effects against carbapenem-resistant Acinetobacter baumannii under static growth conditions. This study also demonstrates that phage-antibiotic combination will become an effective strategy to enhance antibacterial activity of individual drug and provide a new idea of the drug development for the treatment of infections due to carbapenem-resistant Acinetobacter baumannii and other multidrug-resistant bacteria.

2.
Biotechnol Adv ; 74: 108381, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777244

RESUMO

Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.

3.
Phytochem Anal ; 35(5): 1249-1260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38659238

RESUMO

INTRODUCTION: The sesquiterpene glycosides (SGs) from Dendrobium nobile Lindl. have immunomodulatory effects. However, there are no studies on the growth conditions affecting its contents and quantitative analysis methods. OBJECTIVE: In the present study, a quantitative analysis method for six SGs from D. nobile was established. We explored which growth conditions could affect the contents of SGs, providing a basis for the cultivation and clinical application of D. nobile. METHODS: Firstly, based on the optimization of mass spectrometry parameters and extraction conditions for six SGs in D. nobile, a method for the determination of the contents of six SGs was established using high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Then, the methodology of the established method was validated. Secondly, the established method was applied to determine the contents of six SGs from 78 samples of D. nobile grown under different growth conditions. Finally, chemometrics analysis was employed to analyze the results and select optimal growth conditions for D. nobile. RESULTS: The results indicated significant variations in the contents of SGs from D. nobile grown under different growth conditions. The primary factors influencing SG contents included age, geographical origin, altitude, and epiphytic pattern. CONCLUSION: Therefore, the established method for determining SG contents from D. nobile is stable. In particular, the SG contents were relatively high in samples of 3-year-old D. nobile grown at an altitude of approximately 500 m on Danxia rocks in Chishui, Guizhou.


Assuntos
Dendrobium , Glicosídeos , Sesquiterpenos , Espectrometria de Massas em Tandem , Dendrobium/química , Dendrobium/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Glicosídeos/análise , Glicosídeos/química , Sesquiterpenos/análise , Reprodutibilidade dos Testes
4.
Planta ; 259(3): 69, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340188

RESUMO

MAIN CONCLUSION: The Na+/Ca2+ ratio of 1/5 ameliorated the inhibitory action of NaCl and improved the germination and growth of Vicia faba. Addition of Rhizobium also enhanced nodulation and nitrogen fixation. Casting light upon the impact of salinity stress on growth and nitrogen fixation of Vicia faba supplemented with Rhizobium has been traced in this work. How Ca2+ antagonizes Na+ toxicity and osmotic stress of NaCl was also targeted in isosmotic combinations of NaCl and CaCl2 having various Na+:Ca2+ ratios. Growth of Vicia faba (cultivar Giza 3) was studied at two stages: germination and seedling. At both experiments, seeds or seedlings were exposed to successively increasing salinity levels (0, 50, 100, 150, and 200 mM NaCl) as well as isosmotic combinations of NaCl and CaCl2 (Na+:Ca2+ of 1:1, 1:5, 1:10, 1:15, 1:18, and 1: 20), equivalent to 150 mM NaCl. Inocula of the local nitrogen-fixing bacteria, Rhizobium leguminosarum (OP715892) were supplemented at both stages. NaCl salinity exerted a negative impact on growth and metabolism of Vicia faba; inhibition was proportional with increasing salinity level up to the highest level of 200 mM. Seed germination, shoot and root lengths, fresh and dry weights, chlorophyll content, and nodules (number, weight, leghemoglobin, respiration, and nitrogenase activity) were inhibited by salinity. Ca2+ substitution for Na+, particularly at a Na/Ca ratio of 1:5, was stimulatory to almost all parameters at both stages. Statistical correlations between salinity levels and Na/Ca combinations proved one of the four levels (strong- or weak positive, strong- or weak negative) with most of the investigated parameters, depending on the parameter.


Assuntos
Rhizobium , Vicia faba , Vicia faba/metabolismo , Fixação de Nitrogênio , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Germinação , Cloreto de Cálcio/metabolismo , Sódio/metabolismo , Plântula
5.
Proteomics ; : e2300269, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991474

RESUMO

Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.

6.
J Fungi (Basel) ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623629

RESUMO

The exploration of the western forests of Algeria led to the remarkable discovery of the first occurrence of Lepista sordida, an edible wild mushroom of significant culinary importance for the local community, traditionally consumed in its natural state. This discovery was made possible through the use of various methods, including macroscopic observations (revealing a violet color) as well as microscopic observations conducted using scanning electron microscopy (SEM), revealing a cylindrical shape with distinct contours. Additionally, molecular analyses were conducted. Genomic DNA was extracted from the mycelium, followed by DNA amplification using specific primers targeting the internal transcribed spacer region (ITS1 and ITS2). After PCR reactions and sequencing of the obtained amplicons, the nucleotide sequences of the mycelium were submitted to the GenBank database of NCBI with the assigned accession number: MZ928450.1. These sequences were subsequently used to construct the phylogenetic tree. Furthermore, an in-depth study of physicochemical parameters was undertaken to determine the optimal conditions for cultivating the mycelium of this edible wild mushroom, including pH, temperature, relative humidity, and light. Different temperatures were examined: 20, 25, 30, 35, 40, and 45 °C. The effect of pH on mycelium growth was studied using a PDA agar medium with buffered values of 4, 5, 5.6, 6, 7, and 8. Similarly, six levels of relative humidity were tested: 14, 50, 74, 80, 95, and 100%. A study on the impact of light on mycelium growth was conducted by exposing Petri dishes inoculated with PDA to a light intensity of 500 lux for 5, 10, 15, 20, and 24 h. The results clearly demonstrated that variations in these different physicochemical parameters significantly influenced mycelium growth. For the Lepista sordida strain, growth was favored at pH levels of 4, 5, 6, and 6, with no growth observed at pH 7 and 8. The optimal temperature range for mycelium growth of Lepista sordida was 20-25 °C, while no growth was observed at 30, 35, 40, and 45 °C. Relative humidity levels of 74, 80, and 95% showed no significant differences. Optimization of mycelium growth and primordia production in Lepista sordida were successfully achieved. Optimal conditions for the primordia phase were identified as 25 °C, with humidity ranging from 90 to 95%. A nutritional analysis of fresh sporophores was conducted using established analytical methods. Notably, the nutritional composition of Lepista sordida sporophores exhibited high significance for the following parameters: moisture content (67.23 ± 1.90%), ash content (9.35 ± 0.66%), fat content (3.25 ± 0.24%), protein content (17.22 ± 0.38%), and carbohydrate content (63.83 ± 1.23%).

7.
Curr Res Microb Sci ; 4: 100191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229517

RESUMO

Dispersion is an essential step in the lifecycle of biofilms, since it enables the dissemination of microbial cells and, consequently, the potential colonization of new sites. Filamentous fungi belonging to the Scedosporium/Lomentospora genera are opportunistic human pathogens able to form multidrug-resistant biofilms on surfaces of different chemical compositions, environments and nutritional conditions. Despite the rising understanding of how biofilms are formed by Scedosporium/Lomentospora species, the cell dispersal step has not yet been explored. In the present study, the cell dispersion was investigated during biofilm formation by S. apiospermum, S. minutisporum, S. aurantiacum and L. prolificans cells. The results revealed that conidia were the major type of dispersed cells, which were detected throughout biofilm development (from 24 to 72 h). Dispersion was not influenced by increased glucose concentration (the main source for energetic metabolism) neither the presence of voriconazole (the most common antifungal used to treat scedosporiosis); however, the presence of mucin (a component of mucous, present in the lungs of cystic fibrosis patients, who are usually affected by these filamentous fungi) triggered cell dispersion. Contrarily, a poor nutritional environment (e.g., phosphate-buffered saline) inhibited this step. Overall, our study reveals new insights into the biofilm development of Scedosporium/Lomentospora species.

8.
Genes (Basel) ; 14(5)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37239451

RESUMO

Genome streamlining, as a natural process in the evolution of microbes, has become a common approach for generating ideal chassis cells for synthetic biology studies and industrial applications. However, systematic genome reduction remains a bottleneck in the generation of such chassis cells with cyanobacteria, due to very time-consuming genetic manipulations. Synechococcus elongatus PCC 7942, a unicellular cyanobacterium, is a candidate for systematic genome reduction, as its essential and nonessential genes have been experimentally identified. Here, we report that at least 20 of the 23 over 10 kb nonessential gene regions could be deleted and that stepwise deletions of these regions could be achieved. A septuple-deletion mutant (genome reduced by 3.8%) was generated, and the effects of genome reduction on the growth and genome-wide transcription were investigated. In the ancestral triple to sextuple mutants (b, c, d, e1), an increasingly large number of genes (up to 998) were upregulated relative to the wild type, while slightly fewer genes (831) were upregulated in the septuple mutant (f). In a different sextuple mutant (e2) derived from the quintuple mutant d, much fewer genes (232) were upregulated. Under the standard conditions in this study, the mutant e2 showed a higher growth rate than the wild type, e1 and f. Our results indicate that it is feasible to extensively reduce the genomes of cyanobacteria for generation of chassis cells and for experimental evolutionary studies.


Assuntos
Synechococcus , Transcriptoma , Transcriptoma/genética , Synechococcus/genética , Genoma , Técnicas Genéticas
9.
Microbiol Spectr ; : e0517922, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946779

RESUMO

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria package various cargo, including DNA that can be transferred to other bacteria or to host cells. OMV-associated DNA has been implicated in mediating horizontal gene transfer (HGT) between bacteria, which includes the dissemination of antibiotic resistance genes within and between bacterial species. Despite the known ability of OMVs to mediate HGT, the mechanisms of DNA packaging into OMVs remain poorly characterized, as does the effect of bacterial growth conditions on the DNA cargo composition of OMVs and their subsequent abilities to mediate HGT. In this study, we examined the DNA content of OMVs produced by the opportunistic pathogen Pseudomonas aeruginosa grown in either planktonic or biofilm conditions. Analysis of planktonic growth-derived OMVs revealed their ability to package and protect plasmid DNA from DNase degradation and to transfer plasmid-encoded antibiotic resistance genes to recipient, antibiotic-sensitive P. aeruginosa bacteria at a greater efficiency than transformation with plasmid alone. Comparisons of planktonic and biofilm-derived P. aeruginosa OMVs demonstrated that biofilm-derived OMVs were smaller but were associated with more plasmid DNA than planktonic-derived OMVs. Additionally, biofilm-derived P. aeruginosa OMVs were more efficient in the transformation of competent P. aeruginosa bacteria, compared to transformations with an equivalent number of planktonic-derived OMVs. The findings of this study highlight the importance of bacterial growth conditions for the packaging of DNA within P. aeruginosa OMVs and their ability to facilitate HGT, thus contributing to the spread of antibiotic resistance genes between P. aeruginosa bacteria. IMPORTANCE Bacterial membrane vesicles (BMVs) mediate interbacterial communication, and their ability to package DNA specifically contributes to biofilm formation, antibiotic resistance, and HGT between bacteria. However, the ability of P. aeruginosa OMVs to mediate HGT has not yet been demonstrated. Here, we reveal that P. aeruginosa planktonic and biofilm-derived OMVs can deliver plasmid-encoded antibiotic resistance to recipient P. aeruginosa. Additionally, we demonstrated that P. aeruginosa biofilm-derived OMVs were associated with more plasmid DNA compared to planktonic-derived OMVs and were more efficient in the transfer of plasmid DNA to recipient bacteria. Overall, this demonstrated the ability of P. aeruginosa OMVs to facilitate the dissemination of antibiotic resistance genes, thereby enabling the survival of susceptible bacteria during antibiotic treatment. Investigating the roles of biofilm-derived BMVs may contribute to furthering our understanding of the role of BMVs in HGT and the spread of antibiotic resistance in the environment.

10.
Biopreserv Biobank ; 21(1): 90-97, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35759417

RESUMO

Objective: Inappropriate handling of cells can generate modifications in the genomic DNA. The additional risk is cross-contamination. Isoenzyme analysis with gel agarose electrophoresis is a known, fast, and cheap technique for detection of species-specific isoforms of intracellular enzymes. The aim of the experimental work was to check if variations in the cell growth conditions can affect morphology and/or nuclear anomalies including micronuclei (MN) in the L929 cells; and to define how sensitive and selective is the classic gel agarose electrophoresis for analysis of isoforms of the selected enzymes to detect cross-contamination of L929 cultures with HeLa cells or with the related species, such as CHO-K1 cells, in the case of unavailability of the commercial kits. Methods: The experiments were done with use of the National Collection of Type Cultures clone 929 (L929)-mouse fibroblasts from subcutaneous connective tissue; HeLa-human cervix adenocarcinoma; and CHO-K1-epithelial-like hamster ovary cells. Cell morphology was evaluated with a light/fluorescence microscope. MN were determined with the cytokinesis-block micronucleus assay, and the isoenzyme analysis was performed using gel agarose electrophoresis. Results: As shown, the overgrown cultures result in a significant increase of the MN in the L929 cells. The band patterns for lactate dehydrogenate, glucose-6-phosphate dehydrogenase, or malate dehydrogenase allow identification of the single L929, HeLa, or CHO-K1 cell line and to detect the cross-contamination, even up to 0.4%. Conclusions: There can be no exceptions from the recommended cell culture conditions in the passage scheme. The sensitivity of the gel agarose separation depends on the cells and on the type of enzyme tested and seems to be sufficient in a quick screening of the CHO-K1, L929, or HeLa cell cultures through the possible mutual contamination.


Assuntos
Técnicas de Cultura de Células , Isoenzimas , Cricetinae , Animais , Camundongos , Humanos , Células HeLa , Sefarose , Células CHO , Cricetulus
11.
Metabolites ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248824

RESUMO

Traditionally, indigenous African leafy vegetables such as Amaranthus, blackjack, jute mallow, cleome monophyla, and spider plants have been conventionally and organically grown as weeds in open fields. However, the lack of land space due to the increase in population has resulted in unconventional, modern, and advanced agricultural farming. The introduction of a greenhouse has recently become the second most popular growing system alongside shade net and glasshouse to increase productivity and meet consumers' demand. Several studies on Amaranthus species have solely focused on physiological parameters and nutritional composition, leaving a huge gap on their metabolomic profile of the leaves which is crucial to comprehend when growing Amaranthus species in different cropping systems. Therefore, the study aimed to determine the influence of different cropping systems on the release of metabolites of two commonly consumed Amaranthus species in South Africa. H1 -Nuclear Magnetic Resonance (NMR) tool was used to profile the untargeted metabolites of green (Amaranthus graecizans L.) and red (Amaranthus cruentus L.) species. A total of 12 metabolites-trehalose, betaine, glutamine, choline, sucrose, caprate, adenosine, asparagine, carnitine, caffeine, aspartate, and alanine-were detected in green amaranth grown in open fields. Except for caffeine, aspartate, and caprate, which were found in the green amaranth grown in open fields, all the other metabolites were detected in the greenhouse grown once. Interestingly, allantoin, which serves as an allelochemical, was the sole distinct metabolite detected in greenhouse cultivated green amaranth. On the contrary, seven similar metabolites were quantified in red amaranth grown in both open fields and greenhouses, apart from caffeine, which was only detected in greenhouse-cultivated red amaranth.

12.
J Pestic Sci ; 47(3): 131-138, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36479451

RESUMO

The uptake experiments with pesticides were performed to clarify differences among plant species, and the influence of growth stages and conditions on the uptake and translocation ability of pesticides. There were 2-10-fold differences among plant species in the root and shoot concentrations of each pesticide, and shoot concentrations of pesticides in Brassica rapa L. var. perviridis were relatively high. In addition, the changes in shoot concentrations with growth stage of B. rapa were affected by root system development. The influence of temperature on uptake and translocation ability differed for each pesticide, while uptake and translocation ability were high for short day lengths. This indicated that plant uptake and translocation of pesticides were affected by root system development and growth conditions such as temperature and day length, not only the relationships to the chemical's properties and behavior of organic chemicals in the soil.

13.
Water Res X ; 16: 100150, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35965889

RESUMO

Enriching a biomass with a high fraction of polyhydroxyalkanoate-storing organisms (PHA-storers) represents an essential step in the production of PHAs (bioplastics) from municipal wastewater using mixed microbial cultures. A major challenge is however to create selective growth conditions that are favourable to PHA-storers. Our study thus investigates to what extent the influent COD to phosphorus (COD:P) ratio can be used as a tool for the robust selection of PHA-storers in a single continuous-flow stirred-tank reactor (CSTR). Therefore, we operated five CSTRs in parallel, fed with synthetic wastewater (50% acetate - 50% propionate) with different COD:P ratios (200-1000 gCOD gP-1), and performed a detailed analysis of the microbial communities over long-term (30-70 solid retention times). Our study demonstrates that efficient and robust selection of PHA-storers can be achieved in a single CSTR at high influent COD:P ratios. The selective advantage for PHA-storers increases with the influent COD:P ratio, but only if growth conditions remain limited by both C-substrate and P. In contrast, selection performance deteriorates when COD:P ratios are too high and growth conditions are limited by P only. At an optimal COD:P ratio of 800 gCOD gP-1, a stable microbial community consisting of >90% PHA-storers and dominated by Pannonibacter sp. was selected in the long-term. Finally, our results suggest that high COD:P ratios provide a selective advantage to microorganisms with low cellular P requirements, explaining why different PHA-storers (i.e., Xanthobacter sp. vs. Pannonibacter sp.) were selected depending on the influent COD:P ratio (i.e., 200 vs. 800 gCOD gP-1). Overall, our results provide relevant insights for the development of a new approach for selecting PHA-storers, based on the use of a single CSTR and control of the influent COD:P ratio.

14.
mSystems ; 7(5): e0058522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972149

RESUMO

Bacterial growth substrates influence a variety of biological functions, including the biosynthesis and regulation of lipid intermediates. The extent of this rewiring is not well understood nor has it been considered in the context of virally infected cells. Here, we used a one-host-two-temperate phage model system to probe the combined influence of growth substrate and phage infection on host carbon and lipid metabolism. Using untargeted metabolomics and lipidomics, we reported the detection of a suite of metabolites and lipid classes for two Sulfitobacter lysogens provided with three growth substrates of differing complexity and nutrient composition (yeast extract/tryptone [complex], glutamate and acetate). The growth medium led to dramatic differences in the detectable intracellular metabolites, with only 15% of 175 measured metabolites showing overlap across the three growth substrates. Between-strain differences were most evident in the cultures grown on acetate, followed by glutamate then complex medium. Lipid distribution profiles were also distinct between cultures grown on different substrates as well as between the two lysogens grown in the same medium. Five phospholipids, three aminolipid, and one class of unknown lipid-like features were identified. Most (≥94%) of these 75 lipids were quantifiable in all samples. Metabolite and lipid profiles were strongly determined by growth medium composition and modestly by strain type. Because fluctuations in availability and form of carbon substrates and nutrients, as well as virus pressure, are common features of natural systems, the influence of these intersecting factors will undoubtedly be imprinted in the metabolome and lipidome of resident bacteria. IMPORTANCE Community-level metabolomics approaches are increasingly used to characterize natural microbial populations. These approaches typically depend upon temporal snapshots from which the status and function of communities are often inferred. Such inferences are typically drawn from lab-based studies of select model organisms raised under limited growth conditions. To better interpret community-level data, the extent to which ecologically relevant bacteria demonstrate metabolic flexibility requires elucidation. Herein, we used an environmentally relevant model heterotrophic marine bacterium to assess the relationship between growth determinants and metabolome. We also aimed to assess the contribution of phage activity to the host metabolome. Striking differences in primary metabolite and lipid profiles appeared to be driven primarily by growth regime and, secondarily, by phage type. These findings demonstrated the malleable nature of metabolomes and lipidomes and lay the foundation for future studies that relate cellular composition with function in complex environmental microbial communities.


Assuntos
Bacteriófagos , Rhodobacteraceae , Ativação Viral , Metabolômica , Rhodobacteraceae/metabolismo , Fosfolipídeos/metabolismo , Carbono/metabolismo
15.
Appl Microbiol Biotechnol ; 106(13-16): 5233-5247, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35842874

RESUMO

Haslea ostrearia is a pennate diatom that produces marennine, a water-soluble blue pigment responsible for the greening phenomenon and the increase of organoleptic quality of oysters. Apart from the oyster industry, there is a growing interest in the mass cultivation of this diatom due to the biological activities of marennine. To gain knowledge about the feasibility to upscale production of this diatom, in particular, in the context of global warming, the effects of different temperatures (20, 25, and 30 °C), irradiances (100, 200, and 300 µmol photons m-2 s-1), and pH (7.0, 8.0, and 9.0) on growth and biochemical composition were studied in H. ostrearia cultured in an airlift plan-photobioreactor. The maximum growth rate of H. ostrearia (0.9 ± 0.0 day-1) was obtained at 20 °C, 200 µmol photons m-2 s-1, and pH 7.0, referred to as control conditions. The highest concentration in Chla (2.5 ± 0.1 µg 10-6 cells) and total fatty acids (71.6 ± 1.4 mg g-1 of dry weight, DW) was observed at 20 °C, 300 µmol photons m-2 s-1, and pH 7.0. The highest concentration of carotenoids (1.4 ± 0.1 µg 10-6 cells), Chlc (1.3 ± 0.1 µg 10-6 cells), and extracellular marennine (33.1 ± 0.2 µg 10-6 cells) was observed at 30 °C, 200 µmol photons m-2 s-1, and pH 7.0, and a higher protein content (309.7 ± 24.5 mg g-1 of DW) at 25 °C, 200 µmol photons m-2 s-1, and pH 7.0. The biomass of H. ostrearia was enriched with C14:0 fatty acid at 30 °C, 200 µmol photons m-2 s-1, and pH 7.0, and with C16:0 and C16:1n - 7 fatty acids at control conditions. However, DHA C22:6n - 3 (ω-3), C22:0, and C20:0 were only observed at 300 µmol photons m-2 s-1, 20 °C, and pH 7.0. A high abundance of essential polyunsaturated fatty acids C22:1n - 9 (ω-9) + C20:5n - 3 (EPA) was observed at 100 µmol photons m-2 s-1, 20 °C, and pH 7.0. It is thus possible to anticipate and tune the production of specific metabolites through the control of growth conditions of the benthic diatom H. ostrearia. KEY POINTS: • Validation of H. ostrearia culture in a new photobioreactor in batch mode • Biochemical composition variation of H. ostrearia in function of growth conditions • Growth inhibition and unbalanced metabolites induced by the treatment conditions.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Fotobiorreatores , Temperatura
16.
Int J Food Microbiol ; 373: 109703, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35561525

RESUMO

The present work was performed to study the enterobacteria involved in the ripening of the artisanal raw ewe's milk PDO cheeses 'Torta del Casar' and 'Queso de la Serena' produced in Extremadura (Spain). These isolates were strain-typed, safety tested and characterized for some important technological properties. A total of 485 enterobacterial isolates were clustered by RAPD-PCR and subsequently identified by partial sequencing of the 16S rRNA gene. Among the 17 different species identified, Hafnia paralvei was the predominant species; H. alvei and Lelliottia amnigena were present to a lesser extent. Therefore, 55 Hafnia spp. strains, selected according to their genetic profile and dairy origin, were tested for the safe application. Overall, they were able to produce the biogenic amines putrescine and cadaverine under favourable conditions, presented α-haemolytic activity and did not produce cytolytic toxin active against HeLa cells or contain virulence genes. In addition, antibiotic susceptibility profiles showed that 17 Hafnia spp. strains were less resistant to the 33 antibiotics tested; subsequently, they were further technologically characterized. Although they showed differences, in general, they were well adapted to the stress conditions of cheese ripening. Among them, two strains, H. alvei 544 and 1142, are highlighted mainly due to their proteolytic activity at refrigeration temperatures and their low or null gas production. Although further studies are necessary before industrial application, these two strains are proposed for potential use as adjunct cultures to favour the homogeneity of these PDO cheeses, preserving their unique sensory characteristics.


Assuntos
Queijo , Hafnia , Animais , Queijo/microbiologia , Feminino , Hafnia/genética , Células HeLa , Humanos , Leite/microbiologia , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Ovinos/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-35457654

RESUMO

In light of the limited therapeutic options with Carbapenem-Resistant Enterobacterales (CRE) infections, understanding the bacterial risk factors, such as biofilm formation and related gene expression of CRE, is vital. This study investigates the biofilm formation and biofilm-related gene expression of two enteric Enterobacterales with major CR determinants Escherichia coli IMP and Klebsiella pneumoniae NDM-1, which were seen in high prevalence in most common bacterial infections over the past few years. To our knowledge, this is the first study that demonstrated the relationship between biofilm formation and the related gene expression, to understand the potential molecular mechanisms during the biofilm formation in CRE. Biofilms were quantified by tissue culture plate assay at the stages of the biofilm development: initial attachment (6 h), microcolony formation (12 h), maturation (24 h), and dispersion (48 h). In a dispersion, event bacteria detach without any mechanical means and colonise another area. To investigate the influence of different growth conditions on biofilm formation, biofilms were quantified under different growth conditions. In parallel, quantitative real-time PCR (qPCR) assessed the biofilm-related gene expression of a cluster of genes, including biofilm maturation, quorum sensing, stress survival, and antibiotic resistance. Structural changes during biofilm development were assessed via confocal laser scanning microscopy (CLSM). We observed that the biofilm formation of CRE is correlated with the biofilm development stages, with maximum biofilm observed at 24 h at the maturation stage. Our data also showed that biofilm growth, under the condition tested, is the major factor influencing the variability of biofilm gene expression quantification assays. qPCR analyses have demonstrated that the expression of biofilm-related genes is highly correlated with phenotypic biofilm development, and these findings can be further expanded to understand the variation in regulation of such genes in these significant CRE pathogens. Our study demonstrated that both CRE strains, E. coli IMP and K. pneumoniae NDM-1, are high biofilm formers, and genes involved in biofilm development are upregulated during biofilm growth. The characteristic of the increased biofilm formation with the upregulation of antibiotic-resistant and biofilm-related genes indicates the successful pathogenic role of biofilms of these selected CRE and is attributed to their multi-drug resistance ability and successful dissemination of CRE in common bacterial infections.


Assuntos
Biofilmes , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae , Infecções por Escherichia coli , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Escherichia coli/genética , Expressão Gênica , Humanos , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismo
18.
Plant Cell Environ ; 45(4): 1157-1171, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102563

RESUMO

The effect of contrasting environmental growth conditions (in vitro tissue culture, ex vitro acclimatisation, climate chamber, greenhouse and outdoor) on leaf development, cuticular wax composition, and foliar transpiration of detached leaves of the Populus × canescens clone 84 K were investigated. Our results show that total amounts of cuticular wax increased more than 10-fold when cultivated in different growth conditions, whereas qualitative wax composition did not change. With exception of plants directly taken from tissue culture showing rapid dehydration, rates of water loss (residual foliar transpiration) of intact but detached leaves were constant and independent from growth conditions and thus independent from increasing wax amounts. Since cuticular transpiration measured with isolated astomatous P. × canescens cuticles was identical to residual foliar transpiration rates of detached leaves, our results confirm that cuticular transpiration of P. × canescens leaves can be predicted with high accuracy from residual transpiration of detached leaves after stomatal closure. Our results convincingly show that more than 10-fold increased wax amounts in P. × canescens cuticles do not lead to decreased rates of residual (cuticular) transpiration.


Assuntos
Epiderme Vegetal , Transpiração Vegetal , Folhas de Planta , Água , Ceras
19.
Sci Total Environ ; 811: 152341, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34921889

RESUMO

Growth conditions have been frequently studied in optimizing polyhydroxybutyrate (PHB) production, while few studies were performed to unravel the dynamic mixed microbial consortia (MMCs) in the process. In this study, the relationship between growth conditions (C/N ratios and pH) and the corresponding key-microbes were identified and monitored during PHB accumulation. The highest PHB level (70 wt% of dry cell mass) was obtained at pH 9, C/N 40, and acetic acid 10 g/L. Linking the dominant genera with the highest point of PHB accumulation, Thauera was the most prevalent species in all MMCs of pH 9, except when a C/N ratio of 1 was applied. Notably, dominant bacteria shifted at pH 7 (C/N 10) from Thauera (0 h) to Paracoccus, and subsequently to Alcaligenes following the process of PHB accumulation and consumption. Further understanding of the relationship between the structure of the microbial community and the performance will be beneficial for regulating and obtaining high PHB accumulation within an MMC. Our study illustrates the impact of C/N ratios and pH on microbial prevalence and PHB production levels using a mixed microbial starter culture. This knowledge will broaden industrial perspectives for regulating high PHB production and timely harvesting.


Assuntos
Carbono , Nitrogênio , Concentração de Íons de Hidrogênio , Consórcios Microbianos , Prevalência
20.
Plants (Basel) ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616155

RESUMO

In this study, Mentha pulegium leaves and flowers harvested in three different Sicilian areas were investigated from a micromorphological, phytochemical and biological point of view. Light and scanning electron microscopy showed the presence of spherocrystalline masses of diosmin both in the leaf epidermal cells and in thin flower petals. Two different chemotypes were identified (I, kaempferide/rosmarinic acid; II, jaceidin isomer A). Phytochemical screening identified plant from collection site II as the richest in total phenolics (16.74 g GAE/100 g DE) and that from collection site I as the richest in flavonoids (46.56 g RE/100 g DE). Seventy-seven metabolites were identified both in flower and leaf extracts. Plant from site II showed the best antioxidant (0.90-83.72 µg/mL) and anti-inflammatory (27.44-196.31 µg/mL) activity expressed as half-maximal inhibitory concentration (IC50) evaluated by DPPH, TEAC, FRAP, ORAC, BSA denaturation and protease inhibition assays. These data were also corroborated by in vitro cell-based assays on lymphocytes and erythrocytes. Moreover, plant of site II showed the best antiangiogenic properties (IC50 33.43-33.60 µg/mL) in vivo on a chick chorioallantoic membrane. In conclusion, pedoclimatic conditions influence the chemotype and the biological activity of M. pulegium, with chemotype I showing the most promising biological properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...