Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712896

RESUMO

Weakly electric gymnotiform fishes use self-generated electric organ discharges (EODs) to navigate and communicate. The electrosensory range for these processes is a function of EOD amplitude, determined by the fish's electric organ (EO) output and the electrical conductivity of the surrounding water. Anthropogenic activity, such as deforestation, dams and industrial/agricultural runoff, are known to increase water conductivity in neotropical habitats, likely reducing the electrosensory range of these fish. We investigated whether fish modulate EO output as means of re-expanding electrosensory range after a rapid increase in water conductivity in the pulse-type Brachyhypopomus gauderio and the wave-type Eigenmannia virescens. Furthermore, because EOD production incurs significant metabolic costs, we assessed whether such compensation is associated with an increase in metabolic rate. Following the conductivity increase, B. gauderio increased EOD amplitude by 20.2±4.3% over 6 days but with no associated increase in metabolic rate, whereas the EOD amplitude of E. virescens remained constant, accompanied by an unexpected decrease in metabolic rate. Our results suggest that B. gauderio uses a compensation mechanism that requires no metabolic investment, such as impedance matching, or a physiological trade-off wherein energy is diverted from other physiological processes to increase EO output. These divergent responses between species could be the result of differences in reproductive life history or evolutionary adaptations to different aquatic habitats. Continued investigation of electrosensory responses to changing water conditions will be essential for understanding the effects of anthropogenic disturbances on gymnotiforms, and potential physiological mechanisms for adapting to a rapidly changing aquatic environment.


Assuntos
Condutividade Elétrica , Órgão Elétrico , Gimnotiformes , Animais , Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Peixe Elétrico/fisiologia , Água/metabolismo
2.
J Biol Chem ; 300(3): 105727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325739

RESUMO

Hypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates. The weakly electric fish genus Brachyhypopomus inhabits some of the most challenging aquatic ecosystems in the world, with some species experiencing seasonal anoxia, thus providing a unique system to study the cellular and molecular mechanisms of hypoxia tolerance. In this study, we use closely related species of Brachyhypopomus that display a range of hypoxia tolerances to probe for the underlying molecular mechanisms via hypoxia inducible factors (HIFs)-transcription factors known to coordinate the cellular response to hypoxia in vertebrates. We find that HIF1⍺ from hypoxia tolerant Brachyhypopomus species displays higher transactivation in response to hypoxia than that of intolerant species, when overexpressed in live cells. Moreover, we identified two SUMO-interacting motifs near the oxygen-dependent degradation and transactivation domains of the HIF1⍺ protein that appear to boost transactivation of HIF1, regardless of the genetic background. Together with computational analyses of selection, this shows that evolution of HIF1⍺ are likely to underlie adaptations to hypoxia tolerance in Brachyhypopomus electric fishes, with changes in two SUMO-interacting motifs facilitating the mechanism of this tolerance.


Assuntos
Peixe Elétrico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigênio , Animais , Ecossistema , Peixe Elétrico/genética , Peixe Elétrico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Anaerobiose , Oxigênio/metabolismo
3.
Biol Lett ; 20(2): 20230480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412964

RESUMO

Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Órgão Elétrico/fisiologia , Filogenia , Canais de Sódio/genética , América do Sul
4.
Dis Aquat Organ ; 156: 81-87, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095363

RESUMO

Few reports are available describing lesions in captive electric eels Electrophorus spp. This report describes 2 types of cutaneous proliferative lesions (i.e. hamartoma and neoplasm) in a captive electric eel. Ampullary electroreceptor hamartomas appeared grossly as 2 discrete, smooth, pink, spherical, cutaneous masses measuring 6 and 18 mm in diameter. Histologically, hamartomas were composed of predominately spindle cells that were separated into lobules by a peripheral rim of polygonal cells. Spindle cells were arranged in vague streams and occasionally whorls within a myxomatous matrix. Polygonal cells arranged in variably sized trabeculae and cords within a pre-existing fibrovascular stroma surrounded the streams of spindle cells. Admixed with the polygonal cell population were multiple mucous glands and alarm cells, similar to those seen in normal regions of epidermis. Histochemical stains confirmed similar components in the normal ampullary electroreceptor as in the hamartomas. Lymphoma was also present, appearing grossly as patchy pitting, erythematous, and thickened areas of the skin affecting the entire animal. Lymphoma was diffusely infiltrating and expanding the epidermis, oral mucosa, and branchial mucosa up to 1.5 mm in thickness. It was composed of an unencapsulated, well-demarcated, moderately cellular neoplasm composed of lymphocytes arranged in small dense sheets and clusters that separated and effaced epidermal cells. This is the first report of lymphoma in an electric eel, and the first report of ampullary electroreceptor hamartoma in any animal species.


Assuntos
Hamartoma , Linfoma , Neoplasias , Animais , Electrophorus , Hamartoma/veterinária , Neoplasias/veterinária , Linfoma/veterinária
5.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009325

RESUMO

The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Tato , Órgão Elétrico
6.
Mol Phylogenet Evol ; 189: 107941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804958

RESUMO

Lower Central America (LCA) has a complex biogeographic history shaped by the rise of the Isthmus of Panama and the global climatic oscillations of the Pleistocene. These events have been crucial in structuring biodiversity in LCA, but their consequences for the distribution and partitions of genetic diversity across the region remain to be elucidated. We combined complete mitochondrial genomes and nuclear ultraconserved elements (UCEs) to study the phylogeographic history and population genetic structure of the electric fish Brachyhypopomus occidentalis in LCA. Our results are consistent with the known phylogeographic history of B. occidentalis in LCA, but we update this history in several important ways that help illuminate the phylogeographic history of freshwater fishes in the region. We provide: i) support for three waves of colonization, two of which occurred prior to the final closure of the Panama Isthmus; ii) a more precise understanding of each colonization event, with evidence for a larger footprint of the first event, as well as genetic exchange across the continental divide in subsequent events; and iii) evidence for high levels of previously unrecognized population genetic structure across LCA. This updated model of colonization and diversification of B. occidentalis consists of three waves of dispersal and colonization, which triggered the evolution of geographic breaks in both nuclear and mitochondrial genomes across LCA. These processes are tightly linked to the dynamic uplift of the Isthmus, recent volcanic activity in the region, and the sea-level oscillations of the Pleistocene. These results improve previous phylogeographic inferences regarding the distribution and diversification of freshwater fishes in LCA, and generate testable hypotheses to guide future research exploring the factors shaping biodiversity in the region.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Filogenia , Filogeografia , América Central , Peixes/genética , Água Doce
7.
Elife ; 112022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713403

RESUMO

Brain region size generally scales allometrically with brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual major brain regions independent of brain size, suggesting that selection can impact structural brain composition to favor specific regions involved in novel behaviors.


Larger animals tend to have larger brains and smaller animals tend to have smaller ones. However, some species do not fit the pattern that would be expected based on their body size. This variation between species can also apply to individual brain regions. This may be due to evolutionary forces shaping the brain when favouring particular behaviours. However, it is difficult to directly link changes in species behaviour and variations in brain structure. One way to understand the impact of evolutionary adaptations is to study species that have developed new behaviours and compare them to related ones that lack such a behaviour. An opportunity to do this lies in the ability of several species of fish to produce and sense electric fields in water. While this system is not found in most fish, it has evolved multiple times independently in distantly-related lineages. Schumacher and Carlson examined whether differences in the size of brains and individual regions between species were associated with the evolution of electric field generation and sensing. Micro-computed tomography, or µCT, scans of the brains of multiple fish species revealed that the species that can produce electricity ­ also known as 'electrogenic' species' ­ have more similar brain structures to each other than to their close relatives that lack this ability. The brain regions involved in producing and detecting electrical charges were larger in these electrogenic fish. This similarity was apparent despite variations in how total brain size has evolved with body size across species. These results demonstrate how evolutionary forces acting on particular behaviours can lead to predictable changes in brain structure. Understanding how and why brains evolve will allow researchers to better predict how species' brains and behaviours may adapt as human activities alter their environments.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Encéfalo , Cerebelo , Microtomografia por Raio-X
8.
Evodevo ; 13(1): 9, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365204

RESUMO

The Gymnotiformes, also known as the South American or Neotropical knifefishes, include the strongly electric Electrophorus electricus and many other weakly electric species. These fish possess specialised electric organs that are able to release electric discharges into the water, for electrolocation and communication, and sometimes for predation and defence. All Gymnotiform species possess a myogenic electric organ (mEO) derived from the muscle tissue, and members of the Apteronotidae family uniquely possess a neurogenic electric organ (nEOs) derived from the nervous tissue. A mEO may consist of 'Type A' electrocytes that develop within the tail muscle (for example, in Apteronotus leptorhynchus), or 'Type B' electrocytes that develop below the tail muscle (for example, in Brachyhypopomus gauderio). In this review, we discuss the diversity in the anatomy, electric discharge and development of electric organs found in different Gymnotiform species, as well as the ecological and environmental factors that have likely contributed to this diversity. We then describe various hypotheses regarding the evolution of electric organs, and discuss the potential evolutionary origin of the nEO: a pair of nerve cords that are located on either side of the aorta in B. gauderio, and which may have expanded and developed into a nEO in the Apteronotidae family during its evolution from a common ancestral species. Finally, we compare potential Gymnotiform phylogenies and their supporting evidence.

9.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581791

RESUMO

The bluntnose knifefish Brachyhypopomus occidentalis is a primary freshwater fish from north-western South America and Lower Central America. Like other Gymnotiformes, it has an electric organ that generates electric discharges used for both communication and electrolocation. We assembled a high-quality reference genome sequence of B. occidentalis by combining Oxford Nanopore and 10X Genomics linked-reads technologies. We also describe its demographic history in the context of the rise of the Isthmus of Panama. The size of the assembled genome is 540.3 Mb with an N50 scaffold length of 5.4 Mb, which includes 93.8% complete, 0.7% fragmented, and 5.5% of missing vertebrate/Actinoterigie Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 11.04% of the genome, and 34,347 protein-coding genes were predicted, of which 23,935 have been functionally annotated. Demographic analysis suggests a rapid effective population expansion between 3 and 5 Myr, corresponding to the final closure of the Isthmus of Panama (2.8-3.5 Myr). This event was followed by a sudden and constant population decline during the last 1 Myr, likely associated with strong shifts in both precipitation and sea level during the Pleistocene glacial-interglacial cycles. The de novo genome assembly of B. occidentalis will provide novel insights into the molecular basis of both electric signal productions and detection and will be fundamental for understanding the processes that have shaped the diversity of Neotropical freshwater environments.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Peixe Elétrico/genética , Genoma , Genômica , Gimnotiformes/genética , Sequências Repetitivas de Ácido Nucleico
10.
Front Integr Neurosci ; 14: 561524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192352

RESUMO

Glass knifefish (Eigenmannia) are a group of weakly electric fishes found throughout the Amazon basin. Their electric organ discharges (EODs) are energetically costly adaptations used in social communication and for localizing conspecifics and other objects including prey at night and in turbid water. Interestingly, a troglobitic population of blind cavefish Eigenmannia vicentespelea survives in complete darkness in a cave system in central Brazil. We examined the effects of troglobitic conditions, which includes a complete loss of visual cues and potentially reduced food sources, by comparing the behavior and movement of freely behaving cavefish to a nearby epigean (surface) population (Eigenmannia trilineata). We found that the strengths of electric discharges in cavefish were greater than in surface fish, which may result from increased reliance on electrosensory perception, larger size, and sufficient food resources. Surface fish were recorded while feeding at night and did not show evidence of territoriality, whereas cavefish appeared to maintain territories. Surprisingly, we routinely found both surface and cavefish with sustained differences in EOD frequencies that were below 10 Hz despite being within close proximity of about 50 cm. A half century of analysis of electrosocial interactions in laboratory tanks suggest that these small differences in EOD frequencies should have triggered the "jamming avoidance response," a behavior in which fish change their EOD frequencies to increase the difference between individuals. Pairs of fish also showed significant interactions between EOD frequencies and relative movements at large distances, over 1.5 m, and at high differences in frequencies, often >50 Hz. These interactions are likely "envelope" responses in which fish alter their EOD frequency in relation to higher order features, specifically changes in the depth of modulation, of electrosocial signals.

11.
Physiol Behav ; 220: 112883, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199998

RESUMO

Aggressive behaviors are widespread among animals and are critical in the competition for resources. The physiological mechanisms underlying aggression have mostly been examined in breeding males, in which gonadal androgens, acting in part through their aromatization to estrogens, have a key role. There are two alternative models that contribute to further understanding hormonal mechanisms underlying aggression: aggression displayed in the non-breeding season, when gonadal steroids are low, and female aggression. In this study we approach, for the first time, the modulatory role of estrogens and androgens upon non-breeding aggression in a wild female teleost fish. We characterized female aggression in the weakly electric fish Gymnotus omarorum and carried out acute treatments 1 h prior to agonistic encounters in dyads treated with either an aromatase inhibitor or an antagonist of androgen receptors. Anti-androgen treatment had no effect on behavior whereas acute aromatase inhibition caused a strong distortion of aggressive behavior. Territorial non-breeding aggression was robust and depended on rapid estrogen actions to maintain high levels of aggression, and ultimately reach conflict resolution from which dominant/subordinate status emerged. Our results, taken together with our own reports in males and the contributions from non-breeding aggression in bird and mammal models, suggest a common strategy involving fast-acting estrogens in the control of this behavior across species. In addition, further analysis of female non-breeding aggression may shed light on potential sexual differences in the fine tuning of social behaviors.


Assuntos
Agressão , Peixe Elétrico , Animais , Cruzamento , Feminino , Hormônios Esteroides Gonadais , Masculino , Estações do Ano , Territorialidade , Testosterona
12.
Dev Neurobiol ; 80(1-2): 70-80, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31955508

RESUMO

Like stomatogastric activity in crustaceans, vocalization in teleosts and frogs, and locomotion in mammals, the electric organ discharge (EOD) of weakly electric fish is a rhythmic and stereotyped electromotor pattern. The EOD, which functions in both perception and communication, is controlled by a two-layered central pattern generator (CPG), the electromotor CPG, which modifies its basal output in response to environmental and social challenges. Despite major anatomo-functional commonalities in the electromotor CPG across electric fish species, we show that Gymnotus omarorum and Brachyhypopomus gauderio have evolved divergent neural processes to transiently modify the CPG outputs through descending fast neurotransmitter inputs to generate communication signals. We also present two examples of electric behavioral displays in which it is possible to separately analyze the effects of neuropeptides (mid-term modulation) and gonadal steroid hormones (long-term modulation) upon the CPG. First, the nonbreeding territorial aggression of G. omarorum has been an advantageous model to analyze the status-dependent modulation of the excitability of CPG neuronal components by vasotocin. Second, the seasonal and sexually dimorphic courtship signals of B. gauderio have been useful to understand the effects of sex steroids on the responses to glutamatergic inputs in the CPG. Overall, the electromotor CPG functions in a regime that safeguards the EOD waveform. However, prepacemaker influences and hormonal modulation enable an enormous versatility and allows the EOD to adapt its functional state in a species-, sex-, and social context-specific manners.


Assuntos
Comportamento Animal/fisiologia , Aminas Biogênicas/fisiologia , Relógios Biológicos/fisiologia , Geradores de Padrão Central/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Gimnotiformes/fisiologia , Neuropeptídeos/fisiologia , Animais , Aminas Biogênicas/metabolismo , Geradores de Padrão Central/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Gimnotiformes/metabolismo , Neuropeptídeos/metabolismo , Especificidade da Espécie
13.
Neotrop. ichthyol ; 18(4): e200081, 2020. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135407

RESUMO

Fourteen novel microsatellite loci are described and characterized in two species of electric eels, Electrophorus variiand E. voltaifrom floodplains and rivers of the Amazon rainforest. These loci are polymorphic, highly informative, and have the capacity to detect reliable levels of genetic diversity. Likewise, the high combined probability of paternity exclusion value and low combined probability of genetic identity value obtained demonstrate that the new set of loci displays suitability for paternity studies on electric eels. In addition, the cross-amplification of electric eel species implies that it may also be useful in the study of the closely related E. electricus, and to other Neotropical electric fishes (Gymnotiformes) species as tested herein.(AU)


Catorze novos loci microsatélites são descritos e caracterizados em duas espécies de poraquês, Electrophorus varii e E. voltai de planícies alagadas e rios da floresta amazônica. Esses loci são polimórficos, altamente informativos e têm a capacidade de detectar níveis confiáveis de diversidade genética. Da mesma forma, o alto valor de exclusão de paternidade combinado com a baixa probabilidade de identidade genética demonstra que o novo conjunto de loci exibe adequação para estudos de paternidade em poraquês. Além disso, a amplificação cruzada de espécies de peixes elétricos implica que também pode ser útil no estudo da espécie intimamente relacionada E. electricus, e de outras espécies de peixes elétricos neotropicais (Gymnotiformes).(AU)


Assuntos
Masculino , Repetições de Microssatélites/genética , Gimnotiformes/genética , Variação Genética/genética , Repetições de Microssatélites
14.
Proc Biol Sci ; 286(1906): 20191182, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288710

RESUMO

Functional variation in rhodopsin, the dim-light-specialized visual pigment, frequently occurs in species inhabiting light-limited environments. Variation in visual function can arise through two processes: relaxation of selection or adaptive evolution improving photon detection in a given environment. Here, we investigate the molecular evolution of rhodopsin in Gymnotiformes, an order of mostly nocturnal South American fishes that evolved sophisticated electrosensory capabilities. Our initial sequencing revealed a mutation associated with visual disease in humans. As these fishes are thought to have poor vision, this would be consistent with a possible sensory trade-off between the visual system and a novel electrosensory system. To investigate this, we surveyed rhodopsin from 147 gymnotiform species, spanning the order, and analysed patterns of molecular evolution. In contrast with our expectation, we detected strong selective constraint in gymnotiform rhodopsin, with rates of non-synonymous to synonymous substitutions lower in gymnotiforms than in other vertebrate lineages. In addition, we found evidence for positive selection on the branch leading to gymnotiforms and on a branch leading to a clade of deep-channel specialized gymnotiform species. We also found evidence that deleterious effects of a human disease-associated substitution are likely to be masked by epistatic substitutions at nearby sites. Our results suggest that rhodopsin remains an important component of the gymnotiform sensory system alongside electrolocation, and that photosensitivity of rhodopsin is well adapted for vision in dim-light environments.


Assuntos
Evolução Molecular , Peixes/genética , Rodopsina/genética , Sequência de Aminoácidos , Animais , Ecossistema , Luz , Filogenia , Rodopsina/química , Visão Ocular
15.
Zootaxa ; 4555(1): 101-112, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30790950

RESUMO

Sexual dimorphism of the snout has evolved independently in at least four separate clades of the gymnotiform family Apteronotidae. This phenomenon may help identify sex, except in the absence of mature individuals, and has led to confused taxonomy for several species. We examined a large collection of Compsaraia samueli collected during the breeding season from a remote stream in the Rio Negro drainage. This collection contains a wide range of sizes of both sexes, but most individuals were easily identified as mature. To quantify the sexual dimorphism of these specimens, 15 measurements were taken from the head and the body. In addition, some specimens were cleared-and-stained to study cranial osteology. We found that long-snouted males of C. samueli span a wide range of body sizes. As the snout length increases the distance between the eye and the occiput does not increase at the same rate, suggesting that it is only the anterior portion of the head that has an increased allometry. Skeletal anatomy differs between the sexes in that the lower jaw is more triangular in females and more linear in males. The coronomeckelian is small and round in females in contrast to being longer and pointed in males. There is strong interlacing of the dentary and anguloarticular bones in males, whereas this contact is not as extensive in females. We also discuss the implications of sexual dimorphism for identification of this species relative to its congener (C. compsa), and for the evolution of sexual dimorphism in the family.


Assuntos
Peixe Elétrico , Gimnotiformes , Animais , Feminino , Masculino , Osteologia , Caracteres Sexuais , Crânio
16.
Mitochondrial DNA B Resour ; 4(2): 4198-4199, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33366381

RESUMO

Complete mitochondrial genomes of the characiform fishes Astyanax fasciatus, Astyanax altiparanae, Hoplias malabaricus (Karyomorph A) and the Gymnotiformes species Gymnotus sylvius and Gymnotus cuia were characterized in the present study. The whole mitogenomes varied from 16,400bp (A. fasciatus) to 17,730 bp (A. altiparanae) long and all of them consisted of 13 protein-coding genes, 22 tRNAs, 2 rRNAs genes, a control region, and origin of light-strand replication. The gene order was similar among all the analyzed species. The nucleotide content of all mitogenomes was also similar, with 29.58-30.95% for A, 27.02-28.65% for T, 26.29-29.99% for C, and 14.41-15.67% for G.

17.
Gene ; 686: 164-170, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30453071

RESUMO

Electric fishes are a diverse group of freshwater organisms with the ability to generate electric organ discharges (EODs) that are used for communication and electrolocation. This group (ca. 200 species) has originated in South America, and six species colonized the Central American Isthmus. Here, we assembled the complete mitochondrial genomes (mitogenomes) for three Central American electric fishes (i.e. Sternopygus dariensis, Brachyhypopomus occidentalis, and Apteronotus rostratus), and, based on these data, explored their phylogenetic position among Gymnotiformes. The three mitogenomes show the same gene order, as reported for other fishes, with a size ranging from 16,631 to 17,093 bp. We uncovered a novel 60 bp intergenic spacer (IGS) located between the COII and tRNALys genes, which appears to be unique to the Apteronotidae. Furthermore, phylogenetic relationships supported the traditional monophyly of Gymnotiformes, with the three species positioned within their respective family. In addition, the genus Apteronotus belongs to the early diverging lineage of the order. Finally, we found high sequence divergence (13%) between our B. occidentalis specimen and a sequence previously reported in GenBank, suggesting that the prior mitogenome of B. occidentalis represents a different South American species. Indeed, phylogenetic analyses using Cytochrome b gene across the genus placed the previously reported individual within B. bennetti. Our study provides novel mitogenome resources that will advance our understanding of the diversity and phylogenetic history of Neotropical fishes.


Assuntos
Citocromos b/genética , Peixe Elétrico/classificação , Peixe Elétrico/genética , Proteínas de Peixes/genética , Metagenoma , Filogenia , Animais
18.
Syst Biol ; 68(4): 573-593, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521024

RESUMO

Resolving patterns of ancient and rapid diversifications is one of the most challenging tasks in evolutionary biology. These difficulties arise from confusing phylogenetic signals that are associated with the interplay of incomplete lineage sorting (ILS) and homoplasy. Phylogenomic analyses of hundreds, or even thousands, of loci offer the potential to resolve such contentious relationships. Yet, how much useful phylogenetic information these large data sets contain remains uncertain and often goes untested. Here, we assess the utility of different data filtering approaches to maximize phylogenetic information and minimize noise when reconstructing an ancient radiation of Neotropical electric knifefishes (Order Gymnotiformes) using ultraconserved elements. We found two contrasting hypotheses of gymnotiform evolutionary relationships depending on whether phylogenetic inferences were based on concatenation or coalescent methods. In the first case, all analyses inferred a previously-and commonly-proposed hypothesis, where the family Apteronotidae was found as the sister group to all other gymnotiform families. In contrast, coalescent-based analyses suggested a novel hypothesis where families producing pulse-type (viz., Gymnotidae, Hypopomidae, and Rhamphichthyidae) and wave-type electric signals (viz., Apteronotidae, Sternopygidae) were reciprocally monophyletic. Nodal support for this second hypothesis increased when analyzing loci with the highest phylogenetic information content and further increased when data were pruned using targeted filtering methods that maximized phylogenetic informativeness at the deepest nodes of the Gymnotiformes. Bayesian concordance analyses and topology tests of individual gene genealogies demonstrated that the difficulty of resolving this radiation was likely due to high gene-tree incongruences that resulted from ILS. We show that data filtering reduces gene-tree heterogeneity and increases nodal support and consistency of species trees using coalescent methods; however, we failed to observe the same effect when using concatenation methods. Furthermore, the targeted filtering strategies applied here support the use of "gene data interrogation" rather than "gene genealogy interrogation" approaches in phylogenomic analyses, to extract phylogenetic signal from intractable portions of the Tree of Life.


Assuntos
Classificação/métodos , Gimnotiformes/classificação , Filogenia , Animais , Sequência Conservada/genética , Gimnotiformes/genética
19.
Neotrop. ichthyol ; 17(4): e190099, 2019. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1056799

RESUMO

We describe the circuit design, construction, and operation of a field-portable electric fish finder (an AC-coupled wide-band differential bio-amplifier with loudspeaker output). This device permits detection and monitoring of the electric organ discharges generated by neotropical gymnotiform fishes (as well as the mormyroid fishes of tropical Africa). Our design is modified from earlier versions to optimize detection performance and stability over a wider range of ambient water conductivity, including under conditions of extremely low conductivity (< ca. 10 μScm-1). Our new electric fish finder design also incorporates complete waterproofing and longer battery autonomy. We provide Gerber and Eagle files made with the electronic design automation software 'Autodesk Eagle' to allow researchers to order printed circuit boards directly from commercial manufacturers.(AU)


Nós descrevemos o projeto de circuitos eletrônicos e as instrucões para a construção e uso de um detector de peixes elétricos portátil (bio-amplificador diferencial de banda-larga com acoplamento AC). Este aparelho permite a detecção e o monitoramento das descargas de órgãos elétricos gerados por peixes neotropicais da ordem Gymnotiformes (assim como dos peixes mormirídeos da África Tropical). Nosso projeto é modificado a partir de versões anteriores para otimizar o desempenho e a estabilidade sob uma faixa de condutividades ambientais mais ampla, incluindo condições de condutividade extremamente baixa (< ca. 10 μScm-1). Nosso detector de peixes elétricos novo também foi otimizado a fim de proporcionar impermeabilização completa e vida longa para as baterias. Nós fornecemos arquivos 'Gerber' e 'Eagle' preparados com o software de automação de projeto eletrônico 'Autodesk Eagle' para permitir aos pesquisadores a possibilidade de efetuar encomendas de nossa placa de circuito impresso direitamente das empresas de fabricação.(AU)


Assuntos
Animais , Peixe Elétrico/classificação , Placas de Circuitos Impressos/análise , Amplificadores Eletrônicos
20.
Curr Biol ; 28(24): 4029-4036.e4, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503617

RESUMO

Active sensing involves the production of motor signals for the purpose of acquiring sensory information [1-3]. The most common form of active sensing, found across animal taxa and behaviors, involves the generation of movements-e.g., whisking [4-6], touching [7, 8], sniffing [9, 10], and eye movements [11]. Active sensing movements profoundly affect the information carried by sensory feedback pathways [12-15] and are modulated by both top-down goals (e.g., measuring weight versus texture [1, 16]) and bottom-up stimuli (e.g., lights on or off [12]), but it remains unclear whether and how these movements are controlled in relation to the ongoing feedback they generate. To investigate the control of movements for active sensing, we created an experimental apparatus for freely swimming weakly electric fish, Eigenmannia virescens, that modulates the gain of reafferent feedback by adjusting the position of a refuge based on real-time videographic measurements of fish position. We discovered that fish robustly regulate sensory slip via closed-loop control of active sensing movements. Specifically, as fish performed the task of maintaining position inside the refuge [17-22], they dramatically up- or downregulated fore-aft active sensing movements in relation to a 4-fold change of experimentally modulated reafferent gain. These changes in swimming movements served to maintain a constant magnitude of sensory slip. The magnitude of sensory slip depended on the presence or absence of visual cues. These results indicate that fish use two controllers: one that controls the acquisition of information by regulating feedback from active sensing movements and another that maintains position in the refuge, a control structure that may be ubiquitous in animals [23, 24].


Assuntos
Retroalimentação Sensorial/fisiologia , Gimnotiformes/fisiologia , Natação/fisiologia , Animais , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...