Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 42(3): 817-828, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33068216

RESUMO

The striatum is innervated by histaminergic fibers and expresses a high density of histamine H3 receptors (H3Rs), present on medium spiny neurons (MSNs) and corticostriatal afferents. In this study, in sagittal slices from the rat dorsal striatum, excitatory postsynaptic potentials (EPSPs) were recorded in MSNs after electrical stimulation of corticostriatal axons. The effect of H3R activation and blockers of calcium and potassium channels was evaluated with the paired-pulse facilitation protocol. In the presence of the H3R antagonist/inverse agonist clobenpropit (1 µM), the H3R agonist immepip (1 µM) had no effect on the paired-pulse ratio (PPR), but in the absence of clobenpropit, immepip induced a significant increase in PPR, accompanied by a reduction in EPSP amplitude, suggesting presynaptic inhibition. The blockade of CaV2.1 (P/Q-type) channels with ω-agatoxin TK (400 nM) increased PPR and prevented the effect of immepip. The CaV2.2 (N-type) channel blocker ω-conotoxin GVIA (1 µM) also increased PPR, but did not occlude the immepip action. Functional KIR3 channels are present in corticostriatal terminals, and in experiments in which immepip increased PPR, the KIR3 blocker tertiapin-Q (30 nM) prevented the effect of the H3R agonist. These results indicate that the presynaptic modulation by H3Rs of corticostriatal synapses involves the inhibition of Cav2.1 calcium channels and the activation of KIR3 potassium channels.


Assuntos
Canais de Cálcio Tipo N , Córtex Cerebral , Ácido Glutâmico , Canais de Potássio , Receptores Histamínicos H3/metabolismo , Sinapses , Animais , Cálcio , Canais de Cálcio Tipo N/metabolismo , Córtex Cerebral/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Ácido Glutâmico/metabolismo , Ratos , Sinapses/metabolismo
2.
Epilepsia ; 57(4): e76-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26915454

RESUMO

Experiments were designed to evaluate the tissue content of tele-methylhistamine (t-MeHA) and histamine as well as H3 receptor (H3 Rs) binding and activation of the heterotrimeric guanine nucleotide binding αi/o proteins (Gαi/o) coupled to these receptors in the hippocampus and temporal neocortex of patients (n = 10) with pharmacoresistant mesial temporal lobe epilepsy (MTLE). Patients with MTLE showed elevated tissue content of t-MeHA in the hippocampus. Analyses revealed that a younger age at seizure onset was correlated with a higher tissue content of t-MeHA, lower H3 R binding, and lower efficacy of Gαi/o protein activation in the hippocampus. We conclude that the hippocampus shows a reduction in the H3 R function associated with enhanced histamine. In contrast, the temporal neocortex displayed a high efficacy of H3 Rs Gαi/o protein activation that was associated with low tissue contents of histamine and t-MeHA. These results indicate an overactivation of H3 Rs leading to decreased histamine in the temporal neocortex. However, this situation was lessened in circumstances such as a longer duration of epilepsy or higher seizure frequency. It is concluded that decrease in H3 Rs function and enhanced levels of histamine may contribute to the epileptic activity in the hippocampus and temporal neocortex of patients with pharmacoresistant MTLE.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Histamina/metabolismo , Receptores Histamínicos H3/metabolismo , Lobo Temporal/metabolismo , Adulto , Epilepsia Resistente a Medicamentos/patologia , Epilepsia do Lobo Temporal/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Neocórtex/metabolismo , Lobo Temporal/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA