Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Int J Cardiol ; 413: 132364, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39025135

RESUMO

BACKGROUND: Kawasaki disease (KD) is a kind of pediatric vasculitis, whose pathogenesis has not been elucidated until now. Many scholars believe that KD is one type of infectious diseases in the susceptible groups. However, no recognized pathogens are confirmed. Human cytomegalovirus (HCMV) is a ubiquitous human herpes virus, which can infect varieties of cells including endothelial cells. Studies reported that the viral protein pUL135 is very important for virus replication, reactivation and immune escape. Therefore, we hypothesize that HCMV pUL135 may have a pathogenic effect on KD. METHODS: We first determined pUL135 levels in the serum from KD patients. Next, we examined the effects and mechanisms of pUL135 on endothelial cell proliferation and migration. Finally, we assessed the effect of pUL135 on cardiac inflammation in a KD murine model. RESULTS: Data showed that pUL135 level was significantly increased in the serum from KD patients compared with the healthy and fever controls. And pUL135 expression in endothelial cells remarkably inhibited cell proliferation, migration and tube formation. Moreover, expression of pUL135 obviously affected actin cytoskeleton. Mechanism investigation substantiated that pUL135 mediated endothelial cell dysfunction via regulating CD2AP. Ultimately, we found that HCMV pUL135 aggravated coronary arteritis in the Candida albicans cell wall extracts (CAWS)-induced KD mouse model. CONCLUSION: Our findings imply that HCMV pUL135-mediated endothelial dysfunction plays an important role in exacerbating coronary artery injury in KD conditions.

2.
Cancers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893091

RESUMO

Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.

3.
mBio ; 15(7): e0119124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829126

RESUMO

Human cytomegalovirus (HCMV), a widely prevalent human beta-herpesvirus, establishes lifelong persistence in the host following primary infection. In healthy individuals, the virus is effectively controlled by HCMV-specific T cells and typically exhibits asymptomatic. The T cell immune response plays a pivotal role in combating HCMV infection, while HCMV employs various strategies to counteract it within the host. Previously, we reported that UL23, a tegument protein of HCMV, facilitates viral immune evasion from interferon-gamma (IFN-γ) responses, and it is well known that IFN-γ is mainly derived from T cells. However, the involvement of UL23 in viral immune evasion from T cell-mediated immunity remains unclear. Herein, we present compelling evidence that UL23 significantly enhances viral resistance against T cell-mediated cytotoxicity during HCMV infection from the co-culture assays of HCMV-infected cells with T cells. We found that IFN-γ plays a major role in regulating T cell cytotoxicity mediated by UL23. More interestingly, we demonstrated that UL23 not only regulates the IFN-γ downstream responses but also modulates the IFN-γ secretion by regulating T cell activities. Further experiments indicate that UL23 upregulates the expression and signaling of programmed death ligand 1 (PD-L1), which is responsible for inhibiting multiple aspects of T cell activities, including activation, apoptosis, and IFN-γ secretion, as determined through RNA-seq analysis and inhibitor-blocking experiments, ultimately facilitating viral replication and spread. Our findings highlight the potential role of UL23 as an alternative antagonist in suppressing T cell cytotoxicity and unveil a novel strategy for HCMV to evade T cell immunity. IMPORTANCE: T cell immunity is pivotal in controlling primary human cytomegalovirus (HCMV) infection, restricting periodic reactivation, and preventing HCMV-associated diseases. Despite inducing a robust T cell immune response, HCMV has developed sophisticated immune evasion mechanisms that specifically target T cell responses. Although numerous studies have been conducted on HCMV-specific T cells, the primary focus has been on the impact of HCMV on T cell recognition via major histocompatibility complex molecules. Our studies show for the first time that HCMV exploits the programmed death ligand 1 (PD-L1) inhibitory signaling pathway to evade T cell immunity by modulating the activities of T cells and thereby blocking the secretion of IFN-γ, which is directly mediated by HCMV-encoded tegument protein UL23. While PD-L1 has been extensively studied in the context of tumors and viruses, its involvement in HCMV infection and viral immune evasion is rarely reported. We observed an upregulation of PD-L1 in normal cells during HCMV infection and provided strong evidence supporting its critical role in UL23-induced inhibition of T cell-mediated cytotoxicity. The novel strategy employed by HCMV to manipulate the inhibitory signaling pathway of T cell immune activation for viral evasion through its encoded protein offers valuable insights for the understanding of HCMV-mediated T cell immunomodulation and developing innovative antiviral treatment strategies.


Assuntos
Antígeno B7-H1 , Infecções por Citomegalovirus , Citomegalovirus , Evasão da Resposta Imune , Interferon gama , Transdução de Sinais , Humanos , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/genética
4.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932169

RESUMO

Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNß transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNß accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.


Assuntos
Citomegalovirus , Proteínas de Membrana , Células Mieloides , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ácido Valproico , Humanos , Ácido Valproico/farmacologia , Células Mieloides/virologia , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Citomegalovirus/fisiologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Latência Viral/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes Precoces , Interferon beta/metabolismo , Interferon beta/genética
5.
Virology ; 596: 110115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805802

RESUMO

Human cytomegalovirus (HCMV) replication relies on a nucleocapsid coat of the 150 kDa, subfamily-specific tegument phosphoprotein (pp150) to regulate cytoplasmic virion maturation. While recent structural studies revealed pp150-capsid interactions, the role of specific amino-acids involved in these interactions have not been established experimentally. In this study, pp150 and the small capsid protein (SCP), one of pp150's binding partners found atop the major capsid protein (MCP), were subjected to mutational and structural analyses. Mutations to clusters of polar or hydrophobic residues along the pp150-SCP interface abolished viral replication, with no replication detected in mutant virus-infected cells. Notably, a single amino acid mutation (pp150 K255E) at the pp150-MCP interface significantly attenuated viral replication, unlike in pp150-deletion mutants where capsids degraded outside host nuclei. These functionally significant mutations targeting pp150-capsid interactions, particularly the pp150 K255E replication-attenuated mutant, can be explored to overcome the historical challenges of developing effective antivirals and vaccines against HCMV infection.


Assuntos
Proteínas do Capsídeo , Citomegalovirus , Fosfoproteínas , Replicação Viral , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Humanos , Citomegalovirus/genética , Citomegalovirus/fisiologia , Citomegalovirus/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/química , Ligação Proteica , Mutagênese , Mutação , Linhagem Celular , Modelos Moleculares
6.
Pathogens ; 13(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38787269

RESUMO

A common infection, human cytomegalovirus (HCMV) has been associated with a variety of human diseases, including cardiovascular disease and possibly certain cancers. HCMV has also been associated with cognitive, psychiatric, and neurological conditions. Children with congenital or early-life HCMV are at risk for microcephaly, cerebral palsy, and sensorineural hearing loss, although in many cases sensorineural loss may resolve. In addition, HCMV can be associated with neurodevelopmental impairment, which may improve with time. In young, middle-aged, and older adults, HCMV has been adversely associated with cognitive function in some but not in all studies. Research has linked HCMV to Alzheimer's and vascular dementia, but again not all findings consistently support these associations. In addition, HCMV has been associated with depressive disorder, bipolar disorder, anxiety, and autism-spectrum disorder, although the available findings are likewise inconsistent. Given associations between HCMV and a variety of neurocognitive and neuropsychiatric disorders, additional research investigating reasons for the considerable inconsistencies in the currently available findings is needed. Additional meta-analyses and more longitudinal studies are needed as well. Research into the effects of antiviral medication on cognitive and neurological outcomes and continued efforts in vaccine development have potential to lower the neurocognitive, neuropsychiatric, and neurological burden of HCMV infection.

7.
J Proteome Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564653

RESUMO

Fundamental to mammalian intrinsic and innate immune defenses against pathogens is the production of Type I and Type II interferons, such as IFN-ß and IFN-γ, respectively. The comparative effects of IFN classes on the cellular proteome, protein interactions, and virus restriction within cell types that differentially contribute to immune defenses are needed for understanding immune signaling. Here, a multilayered proteomic analysis, paired with biochemical and molecular virology assays, allows distinguishing host responses to IFN-ß and IFN-γ and associated antiviral impacts during infection with several ubiquitous human viruses. In differentiated macrophage-like monocytic cells, we classified proteins upregulated by IFN-ß, IFN-γ, or pro-inflammatory LPS. Using parallel reaction monitoring, we developed a proteotypic peptide library for shared and unique ISG signatures of each IFN class, enabling orthogonal confirmation of protein alterations. Thermal proximity coaggregation analysis identified the assembly and maintenance of IFN-induced protein interactions. Comparative proteomics and cytokine responses in macrophage-like monocytic cells and primary keratinocytes provided contextualization of their relative capacities to restrict virus production during infection with herpes simplex virus type-1, adenovirus, and human cytomegalovirus. Our findings demonstrate how IFN classes induce distinct ISG abundance and interaction profiles that drive antiviral defenses within cell types that differentially coordinate mammalian immune responses.

8.
Cell Rep ; 43(4): 114089, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615318

RESUMO

Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Receptor 2 Desencadeador da Citotoxicidade Natural , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Citomegalovirus/imunologia , Haplótipos , Ativação Linfocitária/imunologia
9.
Virus Res ; 345: 199375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642618

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has posed significant challenges to global health. While much attention has been directed towards understanding the primary mechanisms of SARS-CoV-2 infection, emerging evidence suggests co-infections or superinfections with other viruses may contribute to increased morbidity and mortality, particularly in severe cases of COVID-19. Among viruses that have been reported in patients with SARS-CoV-2, seropositivity for Human cytomegalovirus (HCMV) is associated with increased COVID-19 risk and hospitalization. HCMV is a ubiquitous beta-herpesvirus with a seroprevalence of 60-90 % worldwide and one of the leading causes of mortality in immunocompromised individuals. The primary sites of latency for HCMV include CD14+ monocytes and CD34+ hematopoietic cells. In this study, we sought to investigate SARS-CoV-2 infection of CD14+ monocytes latently infected with HCMV. We demonstrate that CD14+ cells are susceptible and permissive to SARS-CoV-2 infection and detect subgenomic transcripts indicative of replication. To further investigate the molecular changes triggered by SARS-CoV-2 infection in HCMV-latent CD14+ monocytes, we conducted RNA sequencing coupled with bioinformatic differential gene analysis. The results revealed significant differences in cytokine-cytokine receptor interactions and inflammatory pathways in cells superinfected with replication-competent SARS-CoV-2 compared to the heat-inactivated and mock controls. Notably, there was a significant upregulation in transcripts associated with pro-inflammatory response factors and a decrease in anti-inflammatory factors. Taken together, these findings provide a basis for the heightened inflammatory response, offering potential avenues for targeted therapeutic interventions among HCMV-infected severe cases of COVID-19. SUMMARY: COVID-19 patients infected with secondary viruses have been associated with a higher prevalence of severe symptoms. Individuals seropositive for human cytomegalovirus (HCMV) infection are at an increased risk for severe COVID-19 disease and hospitalization. HCMV reactivation has been reported in severe COVID-19 cases with respiratory failure and could be the result of co-infection with SARS-CoV-2 and HCMV. In a cell culture model of superinfection, HCMV has previously been shown to increase infection of SARS-CoV-2 of epithelial cells by upregulating the human angiotensin-converting enzyme-2 (ACE2) receptor. In this study, we utilize CD14+ monocytes, a major cell type that harbors latent HCMV, to investigate co-infection of SARS-CoV-2 and HCMV. This study is a first step toward understanding the mechanism that may facilitate increased COVID-19 disease severity in patients infected with SARS-CoV-2 and HCMV.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Citomegalovirus , Receptores de Lipopolissacarídeos , Monócitos , SARS-CoV-2 , Superinfecção , Humanos , Monócitos/virologia , Monócitos/imunologia , Citomegalovirus/imunologia , Receptores de Lipopolissacarídeos/metabolismo , SARS-CoV-2/imunologia , COVID-19/virologia , COVID-19/imunologia , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Superinfecção/virologia , Superinfecção/imunologia , Latência Viral , Inflamação , Coinfecção/virologia , Citocinas/metabolismo , Replicação Viral
10.
Heliyon ; 10(7): e28726, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586394

RESUMO

Background: Human cytomegalovirus (HCMV) is a common herpesvirus that can cause a range of symptoms, from mild conditions such as fevers to severe illnesses like pneumonia. Early and accurate diagnosis of HCMV infection is crucial, particularly for vulnerable populations with limited medical care. However, current diagnostic methods are often expensive, time-consuming, and require skilled technicians. Materials and methods: We developed an HCMV-RPA-CRISPR diagnosis platform for the rapid and cost-effective detection of HCMV infection. This method utilizes recombinase polymerase amplification (RPA) to amplify the HCMV target gene isothermally without the need for thermal cycling equipment. The platform integrates the CRISPR/Cas12a system, significantly enhancing specificity and sensitivity. A total of 13 clinical blood samples were tested to evaluate the platform's effectiveness and accuracy. Additionally, a lateral flow assay (LFA) and fluorescence detection were incorporated for straightforward and rapid visual interpretation of the results. Results: The assay effectively detected concentrations as low as a single copy of the positive control plasmid per microliter in under 1 h, without requiring specialized equipment or training. In clinical sample evaluations, both the fluorescence readout and LFA exhibited 100% sensitivity and specificity, identifying four HCMV-positive and nine HCMV-negative samples. Conclusion: The HCMV-RPA-CRISPR diagnosis platform is comparably effective to qPCR for HCMV diagnosis. Its applicability in common clinical laboratories, clinics, and point-of-care settings, particularly in resource-limited environments, makes it a valuable tool for widespread HCMV screening and diagnosis.

11.
Pathogens ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668300

RESUMO

Molar incisor hypomineralization (MIH) is a congenital disorder of the enamel tissue, characterized by a quantitative deficiency. In childhood, infections such as EBV, HSV-1, HCMV, or H. pylori may occur and cause various diseases. This study aimed to investigate the prevalence of HPV, EBV, HSV-1, HCMV, and H. pylori infections in two groups of children: children with molar incisor hypomineralization (MIH) and a control group, using molecular methods. The study group included 47 children aged between 6-13 years who had been diagnosed with MIH. The control group consisted of 42 children. The study found that, in the MIH group, the prevalence of HPV-16 was 6.38%, HPV-18 was 4.26%, EBV was 31.91%, HSV-1 was 4.26%, HCMV was 4.26%, and H. pylori was 12.77%. There were no significant differences in the prevalence of any of tested pathogens between the study and the control group (p > 0.05). However, the study found a higher prevalence of EBV infection in children who had smallpox/pneumonia by the age of 3 years. Ten children were found to have at least two pathogens present. Moreover, both groups had a high prevalence and activity of EBV. These findings provide new insights into the carriage of pathogens among children with MIH, providing new information for parents, scientists, and healthcare professionals.

12.
Immunology ; 172(3): 420-439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501302

RESUMO

Latent human cytomegalovirus (hCMV) infection can pose a serious threat of reactivation and disease occurrence in immune-compromised individuals. Although T cells are at the core of the protective immune response to hCMV infection, a detailed characterization of different T cell subsets involved in hCMV immunity is lacking. Here, in an unbiased manner, we characterized over 8000 hCMV-reactive peripheral memory T cells isolated from seropositive human donors, at a single-cell resolution by analysing their single-cell transcriptomes paired with the T cell antigen receptor (TCR) repertoires. The hCMV-reactive T cells were highly heterogeneous and consisted of different developmental and functional memory T cell subsets such as, long-term memory precursors and effectors, T helper-17, T regulatory cells (TREGs) and cytotoxic T lymphocytes (CTLs) of both CD4 and CD8 origin. The hCMV-specific TREGs, in addition to being enriched for molecules known for their suppressive functions, showed enrichment for the interferon response signature gene sets. The hCMV-specific CTLs were of two types, the pre-effector- and effector-like. The co-clustering of hCMV-specific CD4-CTLs and CD8-CTLs in both pre-effector as well as effector clusters suggest shared transcriptomic signatures between them. The huge TCR clonal expansion of cytotoxic clusters suggests a dominant role in the protective immune response to CMV. The study uncovers the heterogeneity in the hCMV-specific memory T cells revealing many functional subsets with potential implications in better understanding of hCMV-specific T cell immunity. The data presented can serve as a knowledge base for designing vaccines and therapeutics.


Assuntos
Linfócitos T CD8-Positivos , Infecções por Citomegalovirus , Citomegalovirus , Células T de Memória , Receptores de Antígenos de Linfócitos T , Análise de Célula Única , Linfócitos T Citotóxicos , Transcriptoma , Humanos , Citomegalovirus/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Perfilação da Expressão Gênica , Linfócitos T CD4-Positivos/imunologia
13.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474070

RESUMO

The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.


Assuntos
Citomegalovirus , Herpesviridae , Citomegalovirus/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virais/metabolismo , Herpesviridae/metabolismo , Fosforilação , Simplexvirus/metabolismo , Núcleo Celular/metabolismo
14.
Methods Mol Biol ; 2768: 305-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502401

RESUMO

Interferon-gamma (IFNγ) ELISpot and FluoroSpot are widely used assays to detect functional cell responses in immunotherapy clinical studies. Recognized for their importance in vaccine development studies to quantitate immune responses, these assays have more recently risen to the forefront in cell and gene therapy as well as cancer immunotherapy fields where responses against cancer neoantigens are not easily detectable above assay background. Here, we test a new class of fetal bovine serum (FBS), CultraPure FBS, in ex vivo ELISpot and FluoroSpot assays and cultured FluoroSpot assays following in vitro expansion. Several CultraPure FBS lots that have been specially formulated through the process of lyophilization (lyo-FBS) were compared to liquid CultraPure FBS. We stimulated human PBMCs with antigen-specific peptide pools diluted in media supplemented with liquid CultraPure FBS or lyo-FBS and found equivalent cytokine production with negligible to no assay background with both liquid and lyo-FBS formats. Moreover, the lyo-FBS showed lot-to-lot consistency and 90-day refrigerated (4 °C) stability in both ex vivo direct and in vitro cultured assays. In addition, we present here a method using lyo-FBS for the expansion of low-frequency antigen-specific T cells, mimicking the low frequency seen with cancer neoantigens by utilizing a cultured FluoroSpot assay. Our results demonstrate the presence of Granzyme B, interferon-gamma (IFNγ), and tumor necrosis factor (TNF) production by antigen-specific polyfunctional T cells following a 9-day culture using media supplemented with lyo-FBS.


Assuntos
Neoplasias , Vacinas , Humanos , Soroalbumina Bovina , Interferon gama , Imunidade
15.
Cureus ; 16(2): e54540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38516453

RESUMO

Human cytomegalovirus infection usually proceeds asymptomatically in immunocompetent patients. In symptomatic forms, mononucleosis syndrome is the most common manifestation. However, atypical cases of cytomegalovirus infections in immunocompetent subjects are reported in the literature. Here, we describe a case of cytomegalovirus-related mononucleosis syndrome that presented with an atypical erythema multiforme-like skin rash and high fever. Very few cases have been described in the literature previously. In our case, the diagnosis was supported by specific serology, and human cytomegalovirus DNA was detected in the blood sample. The clinical picture resolved without the administration of antiviral therapy.

16.
Adv Virus Res ; 118: 1-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461029

RESUMO

G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.


Assuntos
Infecções por Citomegalovirus , Receptores Acoplados a Proteínas G , Humanos , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Mamíferos/metabolismo
17.
Cells ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534374

RESUMO

NK cells play a decisive role in controlling hCMV infection by combining innate and adaptive-like immune reactions. The hCMV-derived VMAPRTLFL (LFL) peptide is a potent activator of NKG2C+ NK cells. Proposed here is an autologous system of LFL stimulation without T lymphocytes and exogenous cytokines that allows us to evaluate NK-cell hCMV-specific responses in more native settings. In this model, we evaluated LFL-induced IFNγ production, focusing on signaling pathways and the degranulation and proliferation of NK cells orchestrated by microenvironment cytokine production and analyzed the transcriptome of expanded NK cells. NK cells of individuals having high anti-hCMV-IgG levels, in contrast to NK cells of hCMV-seronegative and low-positive donors, displayed increased IFNγ production and degranulation and activation levels and enhanced proliferation upon LFL stimulation. Cytokine profiles of these LFL-stimulated cultures demonstrated a proinflammatory shift. LFL-induced NK-cell IFNγ production was dependent on the PI3K and Ras/Raf/Mek signaling pathways, independently of cytokines. In hCMV-seropositive individuals, this model allowed obtaining NK-cell antigen-specific populations proliferating in response to LFL. The transcriptomic profile of these expanded NK cells showed increased adaptive gene expression and metabolic activation. The results complement the existing knowledge about hCMV-specific NK-cell response. This model may be further exploited for the identification and characterization of antigen-specific NK cells.


Assuntos
Apresentação de Antígeno , Infecções por Citomegalovirus , Humanos , Citomegalovirus , Células Matadoras Naturais , Citocinas/metabolismo
18.
Cells ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534385

RESUMO

Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.


Assuntos
Infecções por Citomegalovirus , Neoplasias , Humanos , Citomegalovirus/genética , Regulação da Expressão Gênica , Carcinogênese , Transformação Celular Neoplásica , Proteína Potenciadora do Homólogo 2 de Zeste/genética
19.
Proc Natl Acad Sci U S A ; 121(12): e2312290121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483999

RESUMO

Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to ß1/ß3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.


Assuntos
Monócitos , Internalização do Vírus , Humanos , Células Cultivadas , Monócitos/metabolismo , Citomegalovirus/fisiologia , Receptores ErbB/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
20.
EBioMedicine ; 100: 104983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38365322

RESUMO

BACKGROUND: Prenatal hCMV infections can lead to severe embryopathy and neurological sequelae in neonates. Screening during pregnancy is not recommended by global societies, as there is no effective therapy. Recently, several groups showed that maternal-fetal hCMV transmission can be strongly reduced by administering anti-viral agents early in pregnancy. This calls for a screening method to identify at risk pregnancies at an appropriate gestational age, with the possibility for large-scale enrolment. Non-Invasive Prenatal Testing (NIPT) for fetal aneuploidy screening early in pregnancy is already implemented in many countries and performed on a large-scale basis. We investigated the use of whole genome cell-free DNA (cfDNA) sequencing data, generated for the purpose of NIPT, as (pre-)screening tool to identify women with active hCMV-infections, eligible for therapy. METHODS: Coded raw sequencing NIPT data from 204,818 pregnant women from three testing laboratories were analyzed for the presence of hCMV-cfDNA. Samples were stratified by cfDNA-hCMV load. For validation and interpretation, diagnostic hCMV-qPCR and serology testing were performed on a subset of cfDNA-hCMV-positive (n = 112) and -negative (n = 127) samples. FINDINGS: In 1930 samples (0.94%) hCMV fragments were detected. Validation by hCMV-qPCR showed that samples with high cfDNA-hCMV load tested positive and cfDNA-hCMV-negative samples tested negative. In 32/112 cfDNA-hCMV-positive samples (28.6%) the serological profile suggested a recent primary infection: this was more likely in samples with high cfDNA-hCMV load (78.6%) than in samples with low cfDNA-hCMV load (11.0%). In none of the cfDNA-hCMV-negative samples serology was indicative of a recent primary infection. INTERPRETATION: Our study shows that large-scale (pre-)screening for both genetic fetal aberrations and active maternal hCMV infections during pregnancy can be combined in one cfDNA sequencing test, performed on a single blood sample, drawn in the first trimester of pregnancy. FUNDING: This work was partly funded by the Prenatal Screening Foundation Nijmegen, the Netherlands.


Assuntos
Ácidos Nucleicos Livres , Citomegalovirus , Recém-Nascido , Humanos , Feminino , Gravidez , Citomegalovirus/genética , Gestantes , Aneuploidia , Diagnóstico Pré-Natal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...