Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892440

RESUMO

NOTCH3 receptor signaling has been linked to the regulation of smooth muscle cell proliferation and the maintenance of smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (World Health Organization Group 1 idiopathic disease: PAH) is a fatal disease characterized clinically by elevated pulmonary vascular resistance caused by extensive vascular smooth muscle cell proliferation, perivascular inflammation, and asymmetric neointimal hyperplasia in precapillary pulmonary arteries. In this review, a detailed overview of the specific role of NOTCH3 signaling in PAH, including its mechanisms of activation by a select ligand, downstream signaling effectors, and physiologic effects within the pulmonary vascular tree, is provided. Animal models showing the importance of the NOTCH3 pathway in clinical PAH will be discussed. New drugs and biologics that inhibit NOTCH3 signaling and reverse this deadly disease are highlighted.


Assuntos
Hipertensão Arterial Pulmonar , Receptor Notch3 , Transdução de Sinais , Humanos , Receptor Notch3/metabolismo , Receptor Notch3/genética , Animais , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
2.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860486

RESUMO

Cerebellar granule neuron progenitors (GNPs) originate from the upper rhombic lip (URL), a germinative niche in which developmental defects produce human diseases. T-cell factor (TCF) responsiveness and Notch dependence are hallmarks of self-renewal in neural stem cells. TCF activity, together with transcripts encoding proneural gene repressors hairy and enhancer of split (Hes/Hey), are detected in the URL; however, their functions and regulatory modes are undeciphered. Here, we established amphibian as a pertinent model for studying vertebrate URL development. The amphibian long-lived URL is TCF active, whereas the external granular layer (EGL) is non-proliferative and expresses hes4 and hes5 genes. Using functional and transcriptomic approaches, we show that TCF activity is necessary for URL emergence and maintenance. We establish that the transcription factor Barhl1 controls GNP exit from the URL, acting partly through direct TCF inhibition. Identification of Barhl1 target genes suggests that, besides TCF, Barhl1 inhibits transcription of hes5 genes independently of Notch signaling. Observations in amniotes suggest a conserved role for Barhl in maintenance of the URL and/or EGL via co-regulation of TCF, Hes and Hey genes.


Assuntos
Cerebelo , Células-Tronco Neurais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Cerebelo/citologia , Cerebelo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Neurônios/citologia , Receptores Notch/metabolismo , Receptores Notch/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Rombencéfalo/metabolismo , Rombencéfalo/citologia , Nicho de Células-Tronco , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética
3.
Int J Med Microbiol ; 316: 151627, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908301

RESUMO

The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.

4.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791169

RESUMO

The Notch pathway is a key cancer driver and is important in tumor progression. Early research suggested that Notch activity was highly dependent on the expression of the intracellular cleaved domain of Notch-1 (NICD). However, recent insights into Notch signaling reveal the presence of Notch pathway signatures, which may vary depending on different cancer types and tumor microenvironments. Herein, we perform a comprehensive investigation of the Notch signaling pathway in adult T-cell leukemia (ATL) primary patient samples. Using gene arrays, we demonstrate that the Notch pathway is constitutively activated in ATL patient samples. Furthermore, the activation of Notch in ATL cells remains elevated irrespective of the presence of activating mutations in Notch itself or its repressor, FBXW7, and that ATL cells are dependent upon Notch-1 expression for proliferation and survival. We demonstrate that ATL cells exhibit the expression of pivotal Notch-related genes, including notch-1, hes1, c-myc, H19, and hes4, thereby defining a critical Notch signature associated with ATL disease. Finally, we demonstrate that lncRNA H19 is highly expressed in ATL patient samples and ATL cells and contributes to Notch signaling activation. Collectively, our results shed further light on the Notch pathway in ATL leukemia and reveal new therapeutic approaches to inhibit Notch activation in ATL cells.


Assuntos
Leucemia-Linfoma de Células T do Adulto , MicroRNAs , RNA Longo não Codificante , Transdução de Sinais , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Receptor Notch1/metabolismo , Receptor Notch1/genética , Regulação Leucêmica da Expressão Gênica , Receptores Notch/metabolismo , Receptores Notch/genética , Proliferação de Células/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Regulação Neoplásica da Expressão Gênica , Adulto
5.
Br J Haematol ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797527

RESUMO

Idiopathic hypereosinophilic syndrome (iHES) is a condition wherein persistent hypereosinophilia associated with end-organ damage occurs without any known causes. Due to the rarity of the disease, insufficient knowledge has been accumulated. We therefore conducted a retrospective, multicentre, nationwide survey on iHES in Japan. A total of 57 patients were identified. For 43 patients who received any treatment, all cases were first treated with corticosteroids. An eosinophil percentage of less than 30% in the bone marrow and the absence of oedema were identified as factors associated with steroid dependency. The 5-year overall survival was 88.2%, and five patients died during follow-up; factors associated with worse overall survival were age >50, haemoglobin <12 g/dL, activated partial thromboplastin time >34 s, the presence of dyspnoea, the presence of thrombotic tendency and the presence of renal failure. Given the rarity of fatalities in our cohort, time-to-next-treatment (TTNT) was further analysed; the presence of renal failure, splenomegaly and lung abnormalities were associated with worse TTNT. Our nationwide study not only demonstrated clinical characteristics and the outcome of patients with iHES but also for the first time revealed clinical factors associated with steroid dependency and duration of first-line corticosteroid efficacy.

6.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791966

RESUMO

The KEAP1/NRF2 pathway is a master regulator of several redox-sensitive genes implicated in the resistance of tumor cells against therapeutic drugs. The dysfunction of the KEAP1/NRF2 system has been correlated with neoplastic patients' outcomes and responses to conventional therapies. In lung tumors, the growth and the progression of cancer cells may also involve the intersection between the molecular NRF2/KEAP1 axis and other pathways, including NOTCH, with implications for antioxidant protection, survival of cancer cells, and drug resistance to therapies. At present, the data concerning the mechanism of aberrant NRF2/NOTCH crosstalk as well as its genetic and epigenetic basis in SCLC are incomplete. To better clarify this point and elucidate the contribution of NRF2/NOTCH crosstalk deregulation in tumorigenesis of SCLC, we investigated genetic and epigenetic dysfunctions of the KEAP1 gene in a subset of SCLC cell lines. Moreover, we assessed its impact on SCLC cells' response to conventional chemotherapies (etoposide, cisplatin, and their combination) and NOTCH inhibitor treatments using DAPT, a γ-secretase inhibitor (GSI). We demonstrated that the KEAP1/NRF2 axis is epigenetically controlled in SCLC cell lines and that silencing of KEAP1 by siRNA induced the upregulation of NRF2 with a consequent increase in SCLC cells' chemoresistance under cisplatin and etoposide treatment. Moreover, KEAP1 modulation also interfered with NOTCH1, HES1, and DLL3 transcription. Our preliminary data provide new insights about the downstream effects of KEAP1 dysfunction on NRF2 and NOTCH deregulation in this type of tumor and corroborate the hypothesis of a cooperation of these two pathways in the tumorigenesis of SCLC.

7.
Dev Cell ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38772376

RESUMO

Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.

8.
Heliyon ; 10(8): e29369, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699730

RESUMO

In least-developed countries (LDCs), electricity shortages are the primary barrier to economic and social growth. Some remote areas in LDC rely on diesel-based systems. However, renewable energy must be taken into account for generating electricity because of the uncertainty of diesel fuel prices and the emissions of carbon dioxide. Hybrid energy systems (HES) are becoming increasingly popular, which is unsurprising given the rapid advancement of renewable energy technologies, which have made them the preferred method to respond to the current unreliable electricity supply, reduce the impact of global warming that occurs from electricity production, and contribute to cost reduction. This study explores the feasibility of utilizing a combination of solar PV, wind energy, and battery systems with the existing diesel generator in four different locations in Cambodia, Laos, Myanmar, and Bangladesh. Hybrid optimization multiples for electric renewables (HOMER) is used as a tool for techno-economic analysis and finding the possible combination of solar PV, wind, diesel, and battery. The multi-criteria decision-making (MCDM) technique was used to verify all configurations obtained from HOMER's results. This approach considers environmental, economic, and technological factors by utilizing the AHP, TOPSIS, EDAS, and PROMETHEEE II techniques. The results show that PV/diesel with batteries is the optimum solution. This hybrid system comprises 89% PV penetration, a cost of electricity (COE) of 0.257 $/kWh, an initial capital cost (IC) of $244,277, and a net present cost (NPC) of $476,216 for a case study in Cambodia. Furthermore, this system can reduce almost 51,005 kg/year of carbon dioxide compared to a diesel-only system, while the cost of electricity is reduced.

9.
J Pak Med Assoc ; 74(4): 788-790, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38751280

RESUMO

Endomyocardial fibrosis secondary to hyper-eosinophilic syndrome also known as Loeffler's Endocarditis is a rare cause of restrictive cardiomyopathy. If left untreated, it carries a very high morbidity and mortality rate. The case of a 20 years old girl, a known case of polyarticular juvenile idiopathic arthritis since the age of 13 years was reported at Federal Government Polyclinic Hospital, Islamabad on 14th May 2022. She presented with an acute history of shortness of breath and cough for two weeks. Her initial echocardiogram showed suspicion of Loeffler's Endocarditis, which is attributed to be an adverse effect of etanercept- a tumour necrosis factor (TNF) inhibitor, which she had been prescribed for her arthritis. The patient is currently being managed with high doses of steroids, therapeutic anticoagulation with rivaroxaban, carvedilol for tachycardia and mycophenolate mofetil as an immunosuppressant.


Assuntos
Artrite Juvenil , Fibrose Endomiocárdica , Etanercepte , Humanos , Feminino , Artrite Juvenil/tratamento farmacológico , Artrite Juvenil/complicações , Fibrose Endomiocárdica/tratamento farmacológico , Fibrose Endomiocárdica/etiologia , Adulto Jovem , Etanercepte/uso terapêutico , Etanercepte/efeitos adversos , Síndrome Hipereosinofílica/tratamento farmacológico , Síndrome Hipereosinofílica/complicações , Síndrome Hipereosinofílica/diagnóstico , Ecocardiografia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38546414

RESUMO

Summary: Eosinophil-associated diseases (EADs) refer to heterogeneous conditions in which eosinophils are believed to play critical pathological roles. They encompass common respiratory conditions, such as asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), less common primary eosinophilic disorders of gastrointestinal tract, and rare conditions including eosinophilic granulomatosis with polyangiitis (EGPA) and hypereosinophilic syndrome (HES). A literature search was carried out in January 2024 in the MEDLINE and Scopus databases using the PubMed search engine (PubMed, National Library of Medicine, Bethesda, MD). We focused on blood eosinophilia and hypereosinophilia. A diagnostic workup is proposed. From allergist's point of view, we focused the review on 4 groups of eosinophilic disorders of specific interest. Our increased understanding of type 2 inflammation and biology has recently led to development of highly effective precision targeted therapies that are now approved for a growing number of eosinophilic disorders. Novel targeted biologics have a major impact on treatment strategies and have resulted in major advances in our understanding of the pathogenesis of these disorders. In the context of EADs, according to the heterogeneity of eosinophilic disorders a multidisciplinary approach should be adopted. Allergists and Clinical Immunologists play an important role as they have a clear understanding of the eosinophilic inflammation and the role of cytokines and are trained to recognize and characterize type 2 (T2) inflammation and its associated pathologies.

11.
Mol Oncol ; 18(6): 1510-1530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459621

RESUMO

The transcription factor receptor-interacting protein 140 (RIP140) regulates intestinal homeostasis and tumorigenesis through Wnt signaling. In this study, we investigated its effect on the Notch/HES1 signaling pathway. In colorectal cancer (CRC) cell lines, RIP140 positively regulated HES1 gene expression at the transcriptional level via a recombining binding protein suppressor of hairless (RBPJ)/neurogenic locus notch homolog protein 1 (NICD)-mediated mechanism. In support of these in vitro data, RIP140 and HES1 expression significantly correlated in mouse intestine and in a cohort of CRC samples, thus supporting the positive regulation of HES1 gene expression by RIP140. Interestingly, when the Notch pathway is fully activated, RIP140 exerted a strong inhibition of HES1 gene transcription controlled by the level of HES1 itself. Moreover, RIP140 directly interacts with HES1 and reversed its mitogenic activity in human CRC cells. In line with this observation, HES1 levels were associated with a better patient survival only when tumors expressed high levels of RIP140. Our data identify RIP140 as a key regulator of the Notch/HES1 signaling pathway, with a dual effect on HES1 gene expression at the transcriptional level and a strong impact on colon cancer cell proliferation.


Assuntos
Proliferação de Células , Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Proteína 1 de Interação com Receptor Nuclear , Fatores de Transcrição HES-1 , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
12.
Transl Cancer Res ; 13(2): 661-675, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482414

RESUMO

Background: Pituitary adenomas (PAs) are prevalent intracranial tumors necessitating a comprehensive exploration of their molecular intricacies. This study delved into the molecular interactions among HES1 (hairy and enhancer of split 1), ITPR1 (inositol 1,4,5-trisphosphate receptor, type 1), and autophagy to elucidate their contributions to PA progression. Methods: Our in-depth bioinformatics analysis identified ITPR1 as a central hub gene in the PA-associated dataset. It exhibited reduced expression in PA and held significant clinical diagnostic relevance. Motivated by this discovery, we investigated the consequences of ITPR1 overexpression, as well as the use of autophagy inhibitors 3-Methyladenine (3-MA) and Baf A1, while considering the transcriptional influence of HES1. Results: In vitro experiments utilizing PA cell lines revealed that ITPR1 overexpression significantly hindered tumorigenic activities. In contrast, both 3-MA and Baf A1 exacerbated these tumorigenic properties, confirmed by a decreased LC3 II/LC3 I ratio, indicative of autophagy inhibition. Intriguingly, the concurrent introduction of ITPR1 and these inhibitors mitigated these intensified effects, implying a tumor-suppressive role for ITPR1. Further investigations pinpoint HES1 as a potential upstream regulator of ITPR1 transcription. Silencing HES1 lead to reduced ITPR1 promoter activity, weakening the impact of ITPR1 overexpression on autophagy. This neutralized the ITPR1-mediated suppressions on PA cell activities, including proliferation, invasion, and migration. Conclusions: In summary, our research uncovered a complex regulatory interplay among HES1, ITPR1, and autophagy in the context of PA progression. These findings opened up promising avenues for novel therapeutic interventions targeting this intricate network to enhance PA treatment.

13.
J Pharmacol Sci ; 154(4): 312-315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485349

RESUMO

We previously identified a spinal astrocyte population that expresses hairy and enhancer of split 5 (Hes5) and is selectively present in superficial laminae in mice. However, it was unclear whether such astrocyte heterogeneity is commonly observed across species. Using adeno-associated viral (AAV) vectors incorporating a rat Hes5 promotor (AAV-Hes5P), we found that AAV-Hes5P-captured astrocytes were selectively located in the superficial laminae in rats. Furthermore, activation of AAV-Hes5P+ astrocytes elicited allodynia-like behavior and increased c-FOS+ cells in the superficial laminae. Thus, laminar-selective Hes5+ astrocytes are conserved beyond species and have the capability to convert tactile information to nociceptive.


Assuntos
Astrócitos , Medula Espinal , Ratos , Camundongos , Animais , Nociceptividade , Proteínas Proto-Oncogênicas c-fos/genética , Hiperalgesia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38517080

RESUMO

With the prevalence of human immunodeficiency virus type 1 (HIV-1) CRF01_AE and CRF07_BC subtypes in China, the co-circulation of multiple subtypes in the HIV-1-positive population may result in dual infection or superinfection in the population, leading to the emergence of unique recombinant forms (URFs) of the HIV-1 virus. In this study, two second-generation unique recombinant strains, BI0114 and BI0116, were identified, and their near full-length genome sequences were obtained. Recombination analysis showed that both sequences were isoforms of URF_0107, and they were second-generation unique recombinant strains formed by the recombination of CRF01_AE and CRF07_BC, with the isoforms being CRF01_AE and CRF0107_BC, respectively. The continued emergence of novel CRF01_AE/CRF07_BC recombinant strains suggests that the epidemiological, preventive, and control situation of HIV-1 is complex and that the relevant health authorities urgently need to establish responses to the challenges posed by changes in the pattern of strain recombination.

15.
Animal Model Exp Med ; 7(1): 24-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369683

RESUMO

BACKGROUND: Our previous study found that mouse embryonic neural stem cell (NSC)-derived exosomes (EXOs) regulated NSC differentiation via the miR-9/Hes1 axis. However, the effects of EXOs on brain microvascular endothelial cell (BMEC) dysfunction via the miR-9/Hes1 axis remain unknown. Therefore, the current study aimed to determine the effects of EXOs on BMEC proliferation, migration, and death via the miR-9/Hes1 axis. METHODS: Immunofluorescence, quantitative real-time polymerase chain reaction, cell counting kit-8 assay, wound healing assay, calcein-acetoxymethyl/propidium iodide staining, and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs. RESULTS: EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions. The overexpression of miR-9 promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions. Moreover, miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death. Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death. Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice. Meanwhile, EXO treatment improved cerebrovascular alterations. CONCLUSION: NSC-derived EXOs can promote BMEC proliferation and migration and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions. Therefore, EXO therapeutic strategies could be considered for hypoxia-induced vascular injury.


Assuntos
Exossomos , MicroRNAs , Células-Tronco Neurais , Animais , Camundongos , Células Endoteliais/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Hipóxia/metabolismo , Proliferação de Células/genética , Morte Celular , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição HES-1/metabolismo
17.
Animals (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396553

RESUMO

The NOTCH signaling pathway plays a pivotal role in diverse developmental processes, including cell proliferation and differentiation. In this study, we investigated whether this signaling molecules also contribute to avian adipogenesis. Using previous mRNA-seq datasets, we examined the expression of 11 signaling members during avian adipocyte differentiation. We found most members are down-regulated throughout differentiation (p < 0.05). As a representative, NOTCH1 was decreased in cultured chicken abdominal adipocytes during adipogenesis at mRNA and protein levels (p < 0.05). Moreover, using an overexpression plasmid for NOTCH1's intracellular domain (NICD1), as well as siRNA and DAPT to activate or deplete NOTCH1 in cells, we investigated the role of NOTCH1 in avian adipogenesis. Our findings illuminate that NOTCH1 activates the expression of HES1 and SOCS3 while it decreases NR2F2 and NUMB (p < 0.05), as well as inhibits oleic acid-induced adipocyte differentiation (p < 0.01). We further demonstrate that HES1, a downstream transcription factor activated by NOTCH1, also significantly inhibits adipogenesis by suppressing PPARγ and C/EBPα (p < 0.01). Collectively, these findings establish NOTCH1 as a negative regulator of avian adipocyte differentiation, unveiling NOTCH signaling as a potential target for regulating avian fat deposition.

18.
Arch Biochem Biophys ; 753: 109893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309681

RESUMO

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteômica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Regeneração Nervosa , Tecido Adiposo , Diferenciação Celular , Células de Schwann
19.
J Integr Neurosci ; 23(2): 34, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38419443

RESUMO

BACKGROUND: Ischemic stroke is the most common form of stroke and the second most common cause of death and incapacity worldwide. Its pathogenesis and treatment have been the focus of considerable research. In traditional Chinese medicine, the root of Mongolian astragalus has been important in the treatment of stroke since ancient times. Astragalus polysaccharide (APS) is a key active ingredient of astragalus and offers therapeutic potential for conditions affecting the neurological system, the heart, cancer, and other disorders. However, it is not yet known how APS works to protect against ischemic stroke. METHODS: Rats were subjected to middle cerebral artery occlusion (MCAO) to imitate localized cerebral ischemia. Each of four experimental groups (normal, sham, MCAO, and MCAO+APS) contained 12 adult male Sprague-Dawley (SD) rats selected randomly from a total of 48 rats. Following successful establishment of the model, rats in the MCAO+APS group received intraperitoneal injection of APS (50 mg/kg) once daily for 14 days, whereas all other groups received no APS. The Bederson nerve function score and the forelimb placement test were used to detect motor and sensory function defects, while Nissl staining was used to investigate pathological defects in the ventroposterior thalamic nucleus (VPN). Immunohistochemical staining and Western blot were used to evaluate the expression of Neurogenic locus notch homolog protein 1 (Notch1), hairy and enhancer of split 1 (Hes1), phospho-nuclear factor-κB p65 (p-NFκB p65), and nuclear factor-κB p65 (NFκB p65) proteins in the VPN on the ischemic side of MCAO rats. RESULTS: APS promoted the recovery of sensory and motor function, enhanced neuronal morphology, increased the number of neurons, and inhibited the expression of Notch1/NFκB signaling pathway proteins in the VPN of rats with cerebral ischemia. CONCLUSION: After cerebral ischemia, APS can alleviate symptoms of secondary damage to the VPN, which may be attributed to the suppression of the Notch1/NFκB pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , NF-kappa B/metabolismo , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Acidente Vascular Cerebral/complicações , AVC Isquêmico/complicações , Receptor Notch1/metabolismo , Receptor Notch1/uso terapêutico
20.
Mol Biol Rep ; 51(1): 115, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227267

RESUMO

BACKGROUND: Recent studies have shown that the expression of bHLH transcription factors Hes1, Ascl1, and Oligo2 has an oscillating balance in neural stem cells (NSCs) to maintain their self-proliferation and multi-directional differentiation potential. This balance can be disrupted by exogenous stimulation. Our previous work has identified that electrical stimulation could induce neuronal differentiation of mouse NSCs. METHODS: To further evaluate if physiological electric fields (EFs)-induced neuronal differentiation is related to the expression patterns of bHLH transcription factors Hes1, Ascl1, and Oligo2, mouse embryonic brain NSCs were used to investigate the expression changes of Ascl1, Hes1 and Oligo2 in mRNA and protein levels during EF-induced neuronal differentiation. RESULTS: Our results showed that NSCs expressed high level of Hes1, while expression of Ascl1 and Oligo2 stayed at very low levels. When NSCs exited proliferation, the expression of Hes1 in differentiated cells began to decrease and oscillated at the low expression level. Oligo2 showed irregular changes in low expression level. EF-stimulation significantly increased the expression of Ascl1 at mRNA and protein levels accompanied by an increased percentage of neuronal differentiation. What's more, over-expression of Hes1 inhibited the neuronal differentiation induced by EFs. CONCLUSION: EF-stimulation directed neuronal differentiation of NSCs by promoting the continuous accumulation of Ascl1 expression and decreasing the expression of Hes1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo , Fator de Transcrição 2 de Oligodendrócitos , Fatores de Transcrição HES-1 , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Estimulação Elétrica , RNA Mensageiro/genética , Fatores de Transcrição HES-1/genética , Fator de Transcrição 2 de Oligodendrócitos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...