Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.796
Filtrar
1.
J Neuroimmunol ; 393: 578401, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38996718

RESUMO

BACKGROUND: We previously reported that the HMGB1/TLR4 axis promoted inflammation during the acute phase of intracerebral hemorrhage. Given that this phase is known to involve neuronal pyroptosis and neuroinflammation, here we explore whether HMGB1/TLR signaling activate inflammasome and pyroptosis after intracerebral hemorrhage. METHODS: Autologous blood was injected into Sprague-Dawley rats to induce intracerebral hemorrhage. Neurological deficits were assessed using a modified neurological severity score. These expression and localization of NLRP1 and NLRP3 inflammasomes, as well as the levels of pyroptosis and pyroptosis-associated proteins were assessed using Western blot or immunocytochemistry. These experiments were repeated in animals that received treatment with short interfering RNAs against NLRP1 or NLRP3, with HMGB1 inhibitor ethyl pyruvate or TLR4 inhibitor TAK-242. RESULTS: Intracerebral hemorrhage upregulated NLRP1 and NLRP3 in the ipsilateral striatum and increased the proportions of these cells that were pyroptosis-positive. Additionally, the levels of caspase protein family (e.g., pro-caspase-1 and caspase-1), apoptosis-associated speck-like protein (ASC), pro-interleukin-1ß (IL-1ß), and IL-1ß were also elevated. These effects on pyroptosis and associated neurological deficit, were partially reversed by knockdown of NLRP1 or NLRP3, or by inhibition of HMGB1 or TLR4. Inhibition of HMGB1 or TLR4 resulted in the downregulation NLRP3 but not NLRP1. CONCLUSIONS: The HMGB1/TLR4 signaling may activate the NLRP3 inflammasome during the acute phase of intracerebral hemorrhage, resulting in the inflammatory process known as pyroptosis. These insights suggest potential therapeutic targets for the mitigation tissue injury and associated neurological deficits following hemorrhagic stroke.

2.
Environ Geochem Health ; 46(8): 296, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980420

RESUMO

Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.


Assuntos
COVID-19 , Resíduo Eletrônico , Exposição Ambiental , Resistência à Insulina , Chumbo , Material Particulado , Humanos , Criança , Chumbo/sangue , COVID-19/sangue , COVID-19/epidemiologia , Pré-Escolar , Masculino , Feminino , Glicemia/análise , Inflamação/sangue , Reciclagem , Proteína HMGB1/sangue , Insulina/sangue , Poluentes Atmosféricos , SARS-CoV-2
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000266

RESUMO

Liver resection (LR) is the primary treatment for hepatic tumors, yet posthepatectomy liver failure (PHLF) remains a significant concern. While the precise etiology of PHLF remains elusive, dysregulated inflammatory processes are pivotal. Therefore, we explored the theragnostic potential of extracellular high-mobility-group-box protein 1 (HMGB1), a key damage-associated molecular pattern (DAMP) released by hepatocytes, in liver recovery post LR in patients and animal models. Plasma from 96 LR patients and liver tissues from a subset of 24 LR patients were analyzed for HMGB1 levels, and associations with PHLF and liver injury markers were assessed. In a murine LR model, the HMGB1 inhibitor glycyrrhizin, was administered to assess its impact on liver regeneration. Furthermore, plasma levels of keratin-18 (K18) and cleaved cytokeratin-18 (ccK18) were quantified to assess suitability as predictive biomarkers for PHLF. Patients experiencing PHLF exhibited elevated levels of intrahepatic and circulating HMGB1, correlating with markers of liver injury. In a murine LR model, inhibition of HMGB1 improved liver function, reduced steatosis, enhanced regeneration and decreased hepatic cell death. Elevated levels of hepatic cell death markers K18 and ccK18 were detected in patients with PHLF and correlations with levels of circulating HMGB1 was observed. Our study underscores the therapeutic and predictive potential of HMGB1 in PHLF mitigation. Elevated HMGB1, K18, and ccK18 levels correlate with patient outcomes, highlighting their predictive significance. Targeting HMGB1 enhances liver regeneration in murine LR models, emphasizing its role in potential intervention and prediction strategies for liver surgery.


Assuntos
Proteína HMGB1 , Hepatectomia , Falência Hepática , Proteína HMGB1/metabolismo , Proteína HMGB1/sangue , Animais , Humanos , Hepatectomia/efeitos adversos , Camundongos , Falência Hepática/etiologia , Falência Hepática/metabolismo , Falência Hepática/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Regeneração Hepática , Biomarcadores , Morte Celular , Queratina-18/metabolismo , Queratina-18/sangue , Idoso , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Ácido Glicirrízico/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Mol Brain ; 17(1): 43, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003465

RESUMO

Dorsal switch protein 1(DSP1), a mammalian homolog of HMGB1, is firstly identified as a dorsal co-repressor in 1994. DSP1 contains HMG-box domain and functions as a transcriptional regulator in Drosophila melanogaster. It plays a crucial role in embryonic development, particularly in dorsal-ventral patterning during early embryogenesis, through the regulation of gene expression. Moreover, DSP1 is implicated in various cellular processes, including cell fate determination and tissue differentiation, which are essential for embryonic development. While the function of DSP1 in embryonic development has been relatively well-studied, its role in the adult Drosophila brain remains less understood. In this study, we investigated the role of DSP1 in the brain by using neuronal-specific DSP1 overexpression flies. We observed that climbing ability and life span are decreased in DSP1-overexpressed flies. Furthermore, these flies demonstrated neuromuscular junction (NMJ) defect, reduced eye size and a decrease in tyrosine hydroxylase (TH)-positive neurons, indicating neuronal toxicity induced by DSP1 overexpression. Our data suggest that DSP1 overexpression leads to neuronal dysfunction and toxicity, positioning DSP1 as a potential therapeutic target for neurodegenerative diseases.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Degeneração Neural , Junção Neuromuscular , Neurônios , Fenótipo , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/metabolismo , Neurônios/patologia , Degeneração Neural/patologia , Degeneração Neural/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Olho/patologia , Longevidade/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999957

RESUMO

Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.


Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Colite Ulcerativa , Proteína HMGB1 , Imunidade nas Mucosas , Mucosa Intestinal , Proteína HMGB1/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Colite Ulcerativa/patologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Masculino , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/imunologia , Camundongos Endogâmicos C57BL , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinogênese/metabolismo
6.
Cell Biol Toxicol ; 40(1): 55, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008169

RESUMO

Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.


Assuntos
Citocinas , Proteína HMGB1 , Inflamação , Proteína HMGB1/metabolismo , Humanos , Animais , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Citocinas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
7.
Front Neurosci ; 18: 1426718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975244

RESUMO

Background: Brain lymphatic drainage impairment is a prevalent characteristic in both aging and neurodegeneration. Surgery is more likely to induce excessive neuroinflammation and postoperative neurocognitive disorder (PND) among patients with aging and neurodegeneration. We hypothesized that surgical trauma may aggravate PND through preexisting cerebral lymphatic drainage impairment. However, there remains limited understanding about the role of surgery in changes of neurocognitive function in the populations with preoperative brain lymphatic drainage impairment. This study aims to expand our insight into surgery-induced glymphatic dysfunction, neuroinflammation and PND in middle-aged mice with preoperative brain lymphatic drainage impairment. Materials and methods: Deep cervical lymph nodes ligation (LdcLNs) was performed on middle-aged mice to establish preoperative brain lymphatic drainage impairment. A month later, laparotomy was performed on these mice with or without LdcLNs followed by analysis of brain neuroinflammation, glymphatic function, neuronal damage, and behavioral test. Results: LdcLNs disrupted meningeal lymphatic drainage. In middle-aged mice with LdcLNs, surgery exacerbated more serious glymphatic dysfunction accompanied by aggravation of A1 astrocytes activation and AQP4 depolarization. Furthermore, surgery caused neuronal damage via reducing expression of neuronal nuclei (NeuN), post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), as well as impairment in exploratory behavior and spatial working memory in middle-aged mice with LdcLNs. Additionally, surgery induced neuroinflammation with elevated microglia activation and increased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6, as well as activated more expression of HMGB1/TLR-4/NF-κB pathway in middle-aged mice with LdcLNs. Conclusion: Surgery exacerbates neuroinflammation and glymphatic dysfunction, ultimately resulting in neuronal damage and neurocognitive disorder in middle-aged mice with preoperative brain lymphatic drainage impairment. These results suggest that brain lymphatic drainage impairment may be a deteriorating factor in the progression of PND, and restoring its function may serve as a potential strategy against PND.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38982736

RESUMO

Circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. This study aimed to investigate the role and molecular mechanisms of circMYO1C in OA. CircMYO1C was upregulated in OA- and interleukin-1ß (IL-1ß)-exposed chondrocytes. The results indicated that circMYO1C knockdown repressed the inflammatory factors (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], interleukin-8 [IL-8], etc.) and apoptosis of chondrocytes following IL-1ß exposure. CircMYO1C was an N6-methyladenosine (m6A)-modified circRNA with m6A characteristics. High mobility group box 1 (HMGB1) was a target of circMYO1C. IL-1ß exposure increased the stability and half-life (t1/2) of HMGB1 mRNA, while silencing circMYO1C reduced HMGB1 mRNA stability. Taken together, circMYO1C targets the m6A/HMGB1 axis to promote chondrocyte apoptosis and inflammation. The present study demonstrates that the circMYO1C/m6A/HMGB1 axis is essential for OA progression, highlighting a novel potential therapeutic target for clinical OA.

9.
Front Immunol ; 15: 1403018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881893

RESUMO

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.


Assuntos
Alarminas , Cromatina , Enterocolite Necrosante , Humanos , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/imunologia , Alarminas/metabolismo , Alarminas/imunologia , Cromatina/metabolismo , Animais , Transdução de Sinais , Recém-Nascido , Proteína HMGB1/metabolismo
10.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845211

RESUMO

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Assuntos
Alcaloides , Proteína HMGB1 , Inflamação , Lipopolissacarídeos , NF-kappa B , Quinolizinas , Receptor para Produtos Finais de Glicação Avançada , Sepse , Transdução de Sinais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Animais , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , NF-kappa B/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/antagonistas & inibidores , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células THP-1 , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Matrinas
11.
Biomed Pharmacother ; 176: 116854, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824834

RESUMO

BACKGROUND: Acute pancreatitis (APS) is a prevalent acute pancreatic inflammation, where oxidative stress, inflammatory signaling pathways, and apoptosis activation contribute to pancreatic injury. METHODS: Pinocembrin, the predominant flavonoid in propolis, was explored for its likely shielding effect against APS provoked by two intraperitoneal doses of L-arginine (250 mg / 100 g) in a rat model. RESULTS: Pinocembrin ameliorated the histological and immunohistochemical changes in pancreatic tissues and lowered the activities of pancreatic amylase and lipase that were markedly elevated with L-arginine administration. Moreover, pinocembrin reinstated the oxidant/antioxidant equilibrium, which was perturbed by L-arginine, and boosted the pancreatic levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Pinocembrin markedly reduced the elevation in serum C-reactive protein (CRP) level induced by L-arginine. Additionally, it decreased the expression of high motility group box protein 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and NOD-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in the pancreas. Furthermore, it also reduced myeloperoxidase (MPO) activity. Pinocembrin markedly downregulated miR-34a-5p expression and upregulated the protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and Sirtuin 1 (SIRT1) and the gene expression level of the inhibitor protein of NF-κB (IκB-α), along with normalizing the Bax/Bcl-2 ratio. CONCLUSIONS: Pinocembrin notably improved L-arginine-induced APS by its antioxidant, anti-inflammatory, and anti-apoptotic activities. Pinocembrin exhibited a protective role in APS by suppressing inflammatory signaling via the TLR4/NF-κB/NLRP3 pathway and enhancing cytoprotective signaling via the miR-34a-5p/SIRT1/Nrf2/HO-1 pathway.


Assuntos
Modelos Animais de Doenças , Flavanonas , Heme Oxigenase (Desciclizante) , MicroRNAs , Fator 2 Relacionado a NF-E2 , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pancreatite , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1 , Receptor 4 Toll-Like , Animais , Pancreatite/induzido quimicamente , Pancreatite/prevenção & controle , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/tratamento farmacológico , Sirtuína 1/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Flavanonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Arginina/farmacologia , Doença Aguda , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos
12.
Kaohsiung J Med Sci ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837857

RESUMO

The proinflammatory properties of high-mobility group box protein 1 (HMGB1) in sepsis have been extensively studied. This study aimed to investigate the impact of HMGB1 on ferroptosis and its molecular mechanism in sepsis-induced acute lung injury (ALI). A septic mouse model was established using the cecal ligation and puncture method. Blocking HMGB1 resulted in improved survival rates, reduced lung injury, decreased levels of ferroptosis markers (reactive oxygen species, malondialdehyde, and Fe2+), and enhanced antioxidant enzyme activities (superoxide dismutase and catalase) in septic mice. In addition, knockdown of HMGB1 reduced cellular permeability, ferroptosis markers, and raised antioxidant enzyme levels in lipopolysaccharide (LPS)-stimulated MLE-12 cells. Silencing of HMGB1 led to elevations in the expressions of ferroptosis core-regulators in LPS-treated MLE-12 cells, such as solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member A2 (SLC3A2), and glutathione peroxidase 4. Furthermore, blocking HMGB1 did not alter ferroptosis, oxidative stress-related changes, and permeability in LPS-treated MLE-12 cells that were pretreated with ferrostatin-1 (a ferroptosis inhibitor). HMGB1 inhibition also led to elevated expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in LPS-treated MLE-12 cells and lung tissues from septic mice. The Nrf2-specific inhibitor ML385 reversed the effects of HMGB1 silencing on ferroptosis and cell permeability in LPS-treated MLE-12 cells. Our findings indicated that the inhibition of HMGB1 restrains ferroptosis and oxidative stress, thereby alleviating sepsis-induced ALI through the activation of Nrf2 signaling.

13.
Vaccines (Basel) ; 12(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38932366

RESUMO

Although vaccines address critical public health needs, inter-individual differences in responses are not always considered in their development. Understanding the underlying basis for these differences is needed to optimize vaccine effectiveness and ultimately improve disease control. In this pilot study, pre- and post-antiviral immunological and gut microbiota features were characterized to examine inter-individual differences in SARS-CoV-2 mRNA vaccine response. Blood and stool samples were collected before administration of the vaccine and at 2-to-4-week intervals after the first dose. A cohort of 14 adults was separated post hoc into two groups based on neutralizing antibody levels (high [HN] or low [LN]) at 10 weeks following vaccination. Bivariate correlation analysis was performed to examine associations between gut microbiota, inflammation, and neutralization capacity at that timepoint. These analyses revealed significant differences in gut microbiome composition and inflammation states pre-vaccination, which predicted later viral neutralization capacity, with certain bacterial taxa, such as those in the genus Prevotella, found at higher abundance in the LN vs HN group that were also negatively correlated with a panel of inflammatory factors such as IL-17, yet positively correlated with plasma levels of the high mobility group box 1 (HMGB-1) protein at pre-vaccination. In particular, we observed a significant inverse relationship (Pearson = -0.54, p = 0.03) between HMGB-1 pre-vaccination and neutralization capacity at 10 weeks post-vaccination. Consistent with known roles as mediators of inflammation, our results altogether implicate HMGB-1 and related gut microbial signatures as potential biomarkers in predicting SARS-CoV-2 mRNA vaccine effectiveness measured by the production of viral neutralization antibodies.

14.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930536

RESUMO

Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.

15.
Pharmaceuticals (Basel) ; 17(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38931349

RESUMO

Despite being an effective chemotherapeutic agent, the clinical use of doxorubicin (DOX) is limited by several organ toxicities including hepatic injury. Pentoxifylline (PTX) is a methylxanthine derivative with marked anti-inflammatory and anti-apoptotic features. It is unknown, however, whether PTX can mitigate DOX-evoked hepatotoxicity. This study aims to explore the potential hepatoprotective impact of PTX in DOX-induced hepatic injury and the underlying molecular mechanisms. Histopathology, immunohistochemistry, and ELISA were used to examine liver tissues. The current findings revealed that PTX administration to DOX-intoxicated rats mitigated the pathological manifestations of hepatic injury, reduced microscopical damage scores, and improved serum ALT and AST markers, revealing restored hepatic cellular integrity. These favorable effects were attributed to PTX's ability to mitigate inflammation by reducing hepatic IL-1ß and TNF-α levels and suppressing the pro-inflammatory HMGB1/TLR4/NF-κB axis. Moreover, PTX curtailed the hepatic apoptotic abnormalities by suppressing caspase 3 activity and lowering the Bax/Bcl-2 ratio. In tandem, PTX improved the defective autophagy events by lowering hepatic SQSTM-1/p62 accumulation and enhancing the AMPK/mTOR pathway, favoring autophagy and hepatic cell preservation. Together, for the first time, our findings demonstrate the ameliorative effect of PTX against DOX-evoked hepatotoxicity by dampening the hepatic HMGB1/TLR4/NF-κB pro-inflammatory axis and augmenting hepatic AMPK/mTOR-driven autophagy. Thus, PTX could be utilized as an adjunct agent with DOX regimens to mitigate DOX-induced hepatic injury.

16.
Clinics (Sao Paulo) ; 79: 100391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848634

RESUMO

BACKGROUND: The newly discovered CircUBE2D2 has been shown to abnormally upregulate and promote cancer progression in a variety of cancers. The present study explored circUBE2D2 (hsa_circ_0005728) in Ovarian Cancer (OC) progression. METHODS: CircUBE2D2, miR-885-5p, and HMGB1 were examined by RT-qPCR or WB. SKOV-3 cell functions (including cell viability, apoptosis, migration, and invasion) were validated using the CCK-8, flow cytometry, scratch assay, and transwell assay, respectively. The direct relationship between miR-885-5p and circUBE2D2 or HMGB1 was confirmed by a dual-luciferase reporter and RNA pull-down analysis. circUBE2D2's role in vivo tumor xenograft experiment was further probed. RESULTS: OC tissue and cell lines had higher circUBE2D2 and HMGB1 and lower miR-885-5p. Mechanically, CircUBE2D2 shared a binding relation with miR-885-5p, while miR-885-5p can directly target HMGB1. Eliminating circUBE2D2 or miR-885-5p induction inhibited OC cell activities. However, these functions were relieved by down-regulating miR-885-5p or HMGB1 induction. Furthermore, circUBE2D2 knockout reduced tumor growth. CONCLUSION: CircUBE2D2 regulates the expression of HMGB1 by acting as a sponge of ceRNA as miR-885-5p, thereby promoting the control of OC cell proliferation and migration and inhibiting cell apoptosis. Targeting CircUBE2D2 could serve as a new potential treatment strategy for OC.


Assuntos
Apoptose , Proteína HMGB1 , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Animais , Feminino , Humanos , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , RNA Circular/genética
17.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892032

RESUMO

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Assuntos
Fibroblastos , Queloide , Piruvatos , Esferoides Celulares , Humanos , Queloide/metabolismo , Queloide/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Piruvatos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Colágeno/metabolismo , Colágeno/biossíntese , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Regulação para Cima/efeitos dos fármacos , Masculino
18.
Eur J Pharmacol ; 978: 176769, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925287

RESUMO

Preeclampsia (PE) is often associated with multiple organ damage that remains noticeable postnatally. Here, we tested the hypotheses that antenatal therapy with nonsteroidal antiinflammatory drugs (NSAIDs) refashions liver damage induced by PE in weaning rats and that the high mobility group box 1 (HMGB1) signaling modulates this interaction. PE was induced by pharmacologic nitric oxide deprivation during the last week of gestation (Nω-nitro-L-arginine methyl ester, L-NAME, 50 mg/kg/day, oral gavage). Compared with control rats, weaning PE rats revealed substantial rises in serum transaminases together with histopathological signs of hepatic cytoplasmic changes, portal inflammation, and central vein dilation. While gestational NSAIDs reversed the elevated transaminases, they had no effects (celecoxib, naproxen) or even worsened (diclofenac) the structural damage. Molecularly, celecoxib was the most effective NSAID in (i) reversing PE-evoked upregulation of hepatic HMGB1 gene expression and concomitant increments and decrements in mitogen-activated protein kinases MAPKERK and MAPKp38 expression, respectively, and (ii) elevating and suppressing serum interleukin-10 and tumor necrosis factor-α, respectively. Alternatively, rises in serum interleukin-1ß and shifts in macrophage polarization towards an inflammatory phenotype caused by PE were comparably diminished by all NSAIDs. The data disclose an advantageous therapeutic potential for gestational celecoxib over diclofenac or naproxen in controlling hepatic dysfunction and HMGB1-interrelated inflammatory and oxidative sequels of PE.

19.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928193

RESUMO

A central role for neuroinflammation in epileptogenesis has recently been suggested by several investigations. This systematic review explores the role of inflammatory mediators in epileptogenesis, its association with seizure severity, and its correlation with drug-resistant epilepsy (DRE). The study analysed articles published in JCR journals from 2019 to 2024. The search strategy comprised the MESH, free terms of "Neuroinflammation", and selective searches for the following single biomarkers that had previously been selected from the relevant literature: "High mobility group box 1/HMGB1", "Toll-Like-Receptor 4/TLR-4", "Interleukin-1/IL-1", "Interleukin-6/IL-6", "Transforming growth factor beta/TGF-ß", and "Tumour necrosis factor-alpha/TNF-α". These queries were all combined with the MESH terms "Epileptogenesis" and "Epilepsy". We found 243 articles related to epileptogenesis and neuroinflammation, with 356 articles from selective searches by biomarker type. After eliminating duplicates, 324 articles were evaluated, with 272 excluded and 55 evaluated by the authors. A total of 21 articles were included in the qualitative evaluation, including 18 case-control studies, 2 case series, and 1 prospective study. As conclusion, this systematic review provides acceptable support for five biomarkers, including TNF-α and some of its soluble receptors (sTNFr2), HMGB1, TLR-4, CCL2 and IL-33. Certain receptors, cytokines, and chemokines are examples of neuroinflammation-related biomarkers that may be crucial for the early diagnosis of refractory epilepsy or may be connected to the control of epileptic seizures. Their value will be better defined by future studies.


Assuntos
Biomarcadores , Proteína HMGB1 , Doenças Neuroinflamatórias , Humanos , Doenças Neuroinflamatórias/diagnóstico , Doenças Neuroinflamatórias/metabolismo , Proteína HMGB1/metabolismo , Epilepsia/diagnóstico , Epilepsia/metabolismo , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/metabolismo
20.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892076

RESUMO

Epidural and subdural hematomas are commonly associated with traumatic brain injury. While surgical removal is the primary intervention for these hematomas, it is also critical to prevent and reduce complications such as post-traumatic epilepsy, which may result from inflammatory responses in the injured brain areas. In the present study, we observed that high mobility group box-1 (HMGB1) decreased in the injured brain area beneath the epidural hematoma (EDH) in rats, concurrent with elevated plasma levels of HMGB1. Anti-HMGB1 monoclonal antibody therapy strongly inhibited both HMGB1 release and the subsequent increase in plasma levels. Moreover, this treatment suppressed the up-regulation of inflammatory cytokines and related molecules such as interleukin-1-beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in the injured areas. Our in vitro experiments using SH-SY5Y demonstrated that hematoma components-thrombin, heme, and ferrous ion- prompted HMGB1 translocation from the nuclei to the cytoplasm, a process inhibited by the addition of the anti-HMGB1 mAb. These findings suggest that anti-HMGB1 mAb treatment not only inhibits HMGB1 translocation but also curtails inflammation in injured areas, thereby protecting the neural tissue. Thus, anti-HMGB1 mAb therapy could serve as a complementary therapy for an EDH before/after surgery.


Assuntos
Anticorpos Monoclonais , Proteína HMGB1 , Hematoma Epidural Craniano , Proteína HMGB1/metabolismo , Animais , Ratos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Hematoma Epidural Craniano/tratamento farmacológico , Masculino , Humanos , Ratos Sprague-Dawley , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...