Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Pestic Biochem Physiol ; 202: 105961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879309

RESUMO

Exposure to specific pesticides has been demonstrated to alter normal thyroid function of aquatic vertebrates. This study aimed to investigate the impact of penthiopyrad (PO) on the thyroid function of zebrafish, further elucidating its toxic mechanisms on the early developmental stages of zebrafish. Exposure to sublethal doses of PO (0.3-1.2 mg/L) for 8 days from 2 h after fertilization resulted in a significant reduction in larval swim bladder size and body weight, accompanied by developmental abnormalities such as pigment deposition and abnormal abdominal development. Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis in larvae manifested as a marked upregulation of crh, tg, ttr, and ugt1ab expression, alongside downregulation of trß expression, culminating in elevated thyroxine (T4) and triiodothyronine (T3) levels. Additionally, molecular docking results suggest that PO and its metabolites may disrupt the binding of thyroid hormones to thyroid hormone receptor beta (TRß), compromising the normal physiological function of TRß. These findings highlight the PO-induced adverse effects on the HPT axis of larvae under sublethal doses, eventually leading to abnormal development and growth inhibition.


Assuntos
Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Simulação de Acoplamento Molecular , Hormônios Tireóideos/metabolismo , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética
2.
Chemosphere ; 361: 142462, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815816

RESUMO

As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trß), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.


Assuntos
Embrião não Mamífero , Fluorocarbonos , Glândula Tireoide , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Fluorocarbonos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Caprilatos/toxicidade , Disruptores Endócrinos/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Hormônios Tireóideos/metabolismo
3.
Eur Thyroid J ; 13(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805593

RESUMO

Introduction: Thyroid hormones have systemic effects on the human body and play a key role in the development and function of virtually all tissues. They are regulated via the hypothalamic-pituitary-thyroid (HPT) axis and have a heritable component. Using genetic information, we applied tissue-specific transcriptome-wide association studies (TWAS) and plasma proteome-wide association studies (PWAS) to elucidate gene products related to thyrotropin (TSH) and free thyroxine (FT4) levels. Results: TWAS identified 297 and 113 transcripts associated with TSH and FT4 levels, respectively (25 shared), including transcripts not identified by genome-wide association studies (GWAS) of these traits, demonstrating the increased power of this approach. Testing for genetic colocalization revealed a shared genetic basis of 158 transcripts with TSH and 45 transcripts with FT4, including independent, FT4-associated genetic signals within the CAPZB locus that were differentially associated with CAPZB expression in different tissues. PWAS identified 18 and ten proteins associated with TSH and FT4, respectively (HEXIM1 and QSOX2 with both). Among these, the cognate genes of five TSH- and 7 FT4-associated proteins mapped outside significant GWAS loci. Colocalization was observed for five plasma proteins each with TSH and FT4. There were ten TSH and one FT4-related gene(s) significant in both TWAS and PWAS. Of these, ANXA5 expression and plasma annexin A5 levels were inversely associated with TSH (PWAS: P = 1.18 × 10-13, TWAS: P = 7.61 × 10-12 (whole blood), P = 6.40 × 10-13 (hypothalamus), P = 1.57 × 10-15 (pituitary), P = 4.27 × 10-15 (thyroid)), supported by colocalizations. Conclusion: Our analyses revealed new thyroid function-associated genes and prioritized candidates in known GWAS loci, contributing to a better understanding of transcriptional regulation and protein levels relevant to thyroid function.


Assuntos
Estudo de Associação Genômica Ampla , Sistema Hipotálamo-Hipofisário , Proteoma , Glândula Tireoide , Tireotropina , Tiroxina , Transcriptoma , Humanos , Glândula Tireoide/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Tireotropina/sangue , Tireotropina/metabolismo , Tiroxina/sangue , Tiroxina/metabolismo , Perfilação da Expressão Gênica
4.
Chemosphere ; 360: 142422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795916

RESUMO

The widespread use of silver nanoparticles (AgNPs) in commercial and industrial applications has led to their increased presence in the environment, raising concerns about their ecological and health impacts. This study pioneers an investigation into the chronic versus short-term acute toxicological impacts of differently coated AgNPs on zebrafish, with a novel focus on the thyroid-disrupting effects previously unexplored. The results showed that acute toxicity ranked from highest to lowest as AgNO3 (0.128 mg/L), PVP-AgNPs (1.294 mg/L), Citrate-AgNPs (6.984 mg/L), Uncoated-AgNPs (8.269 mg/L). For bioaccumulation, initial peaks were observed at 2 days, followed by fluctuations over time, with the eventual highest enrichment seen in Uncoated-AgNPs and Citrate-AgNPs at concentrations of 13 and 130 µg/L. Additionally, the four exposure groups showed a significant increase in T3 levels, which was 1.28-2.11 times higher than controls, and significant changes in thyroid peroxidase (TPO) and thyroglobulin (TG) content, indicating thyroid disruption. Gene expression analysis revealed distinct changes in the HPT axis-related genes, providing potential mechanisms underlying the thyroid toxicity induced by different AgNPs. The higher the Ag concentration in zebrafish, the stronger the thyroid disrupting effects, which in turn affected growth and development, in the order of Citrate-AgNPs, Uncoated-AgNPs > AgNO3, PVP-AgNPs. This research underscores the importance of considering nanoparticle coatings in risk assessments and offers insights into the mechanisms by which AgNPs affect aquatic organisms' endocrine systems, highlighting the need for careful nanotechnology use and the relevance of these findings for understanding environmental pollutants' role in thyroid disease.


Assuntos
Nanopartículas Metálicas , Prata , Glândula Tireoide , Poluentes Químicos da Água , Peixe-Zebra , Animais , Prata/toxicidade , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Poluentes Químicos da Água/toxicidade , Bioacumulação , Tireoglobulina/metabolismo
5.
Open Vet J ; 14(1): 428-437, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633156

RESUMO

Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.


Assuntos
Hipogonadismo , Obesidade , Doenças dos Roedores , Ratos , Masculino , Animais , Leptina/metabolismo , Leptina/uso terapêutico , Orlistate/metabolismo , Orlistate/farmacologia , Orlistate/uso terapêutico , Testículo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/veterinária , Hipogonadismo/metabolismo , Hipogonadismo/veterinária , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro
6.
Zoolog Sci ; 41(1): 32-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587515

RESUMO

Bullfrog (Rana catesbeiana) larvae inhabiting the main island of Japan overwinter as preclimax animals, whereas the larvae that reached climax in summer complete metamorphosis. We analyzed the mRNA expression levels of the adenohypophyseal hormones, hypothalamic hormones, and their receptors that are involved in controlling metamorphosis in tadpoles at various developmental stages available in summer and winter in order to understand the hormonal mechanism regulating metamorphosis progression. Corticotropin-releasing factor (CRF) and thyrotropin ß-subunit (TSHß) mRNA expression was enhanced as they reached the climax stage in metamorphosing summer tadpoles, although type 2 CRF receptor (CRFR2) mRNA levels demonstrated a tendency of elevation, indicating the activation of the hypothalamo-hypophyseal axis for stimulating the release of thyroid hormone in summer. Arginine vasotocin (AVT) mRNA levels were elevated as metamorphosis progressed, but mRNA expression levels were not synchronized with those of proopiomelanocortin (POMC) and V1b-type AVT receptor (V1bR). The elevation of mRNA levels of prolactin (PRL) 1A and type 3 thyrotropin-releasing hormone receptor (TRHR3), but not of thyrotropin-releasing hormone (TRH) precursor mRNA levels, was noted in climactic tadpoles, indicating that PRL mRNA levels are not simply dependent on the expression levels of TRH precursor mRNA. In the preclimactic larvae captured in winter, which are in metamorphic stasis, mRNA levels of pituitary hormones, hypothalamic factors, and their receptors remained low or at levels similar to those of the larvae captured in summer. These results indicate the relationship between the mRNA expression of metamorphosis-related factors and the seasonal progression/stasis of metamorphosis.


Assuntos
Hormônios Hipofisários , Prolactina , Animais , Estações do Ano , Japão , Larva/genética
7.
Front Psychiatry ; 15: 1275177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328763

RESUMO

Objective: The treatment of bipolar disorder (BD) remains challenging. The study evaluated the impact of the hypothalamic-pituitary-adrenal (HPA) axis/hypothalamic-pituitary-thyroid (HPT) axis and glucose metabolism on the clinical outcomes in patients with bipolar depression (BD-D) and manic bipolar (BD-M) disorders. Methods: The research design involved a longitudinal prospective study. A total of 500 BD patients aged between 18 and 65 years treated in 15 hospitals located in Western China were enrolled in the study. The Young Mania Rating Scale (YMRS) and Montgomery and Asberg Depression Rating Scale (MADRS) were used to assess the BD symptoms. An effective treatment response was defined as a reduction in the symptom score of more than 25% after 12 weeks of treatment. The score of symptoms was correlated with the homeostatic model assessment of insulin resistance (HOMA-IR) index, the HPA axis hormone levels (adrenocorticotropic hormone (ACTH) and cortisol), and the HPT axis hormone levels (thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), free triiodothyronine (fT3), and free thyroxine (fT4)). Results: In the BD-M group, the YMRS was positively correlated with baseline T4 (r = 0.349, p = 0.010) and fT4 (r = 0.335, p = 0.013) and negatively correlated with fasting insulin (r = -0.289, p = 0.013). The pre-treatment HOMA-IR was significantly correlated with adverse course (p = 0.045, OR = 0.728). In the BD-D group, the baseline MADRS was significantly positively correlated with baseline fT3 (r = 0.223, p = 0.032) and fT4 (r = 0.315, p = 0.002), while baseline T3 (p = 0.032, OR = 5.071) was significantly positively related to treatment response. Conclusion: The HPT axis and glucose metabolism were closely associated with clinical outcomes at 12 weeks in both BD-D and BD-M groups. If confirmed in further longitudinal studies, monitoring T3 in BD-D patients and HOMA-IR for BD-M could be used as potential treatment response biomarkers.

8.
Poult Sci ; 103(3): 103478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295497

RESUMO

Age at first egg (AFE) has consistently garnered interest as a crucial reproductive indicator within poultry production. Previous studies have elucidated the involvement of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-thyroid (HPT) axes in regulating poultry sexual maturity. Concurrently, there was evidence suggesting a potential co-regulatory relationship between these 2 axes. However, as of now, no comprehensive exploration of the key pathways and genes responsible for the crosstalk between the HPO and HPT axes in the regulation of AFE has been reported. In this study, we conducted a comparative analysis of morphological differences and performed transcriptomic analysis on the hypothalamus, pituitary, thyroid, and ovarian stroma between normal laying group (NG) and abnormal laying group (AG). Morphological results showed that the thyroid index difference (D-) value (thyroid index D-value=right thyroid index-left thyroid index) was significantly (P < 0.05) lower in the NG than in the AG, while the ovarian index was significantly (P < 0.01) higher in the NG than in the AG. Furthermore, between NG and AG, we identified 99, 415, 167, and 1182 differentially expressed genes (DEGs) in the hypothalamus, pituitary, thyroid, and ovarian stroma, respectively. Gene ontology (GO) analysis highlighted that DEGs from 4 tissues were predominantly enriched in the "biological processes" category. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that 16, 14, 3, and 26 KEGG pathways were significantly enriched (P < 0.05) in the hypothalamus, pituitary, thyroid, and ovarian stroma. The MAPK signaling pathway emerged as the sole enriched pathway across all 4 tissues. Employing an integrated analysis of the protein-protein interaction (PPI) network and correlation analysis, we found GREB1 emerged as a pivotal component within the HPO axis to regulate estrogen-related signaling in the HPT axis, meanwhile, the HPT axis influenced ovarian development by regulating thyroid hormone-related signaling mainly through OPN5. Then, 10 potential candidate genes were identified, namely IGF1, JUN, ERBB4, KDR, PGF, FGFR1, GREB1, OPN5, DIO3, and THRB. These findings establish a foundation for elucidating the physiological and genetic mechanisms by which the HPO and HPT axes co-regulate goose AFE.


Assuntos
Gansos , Glândula Tireoide , Animais , Feminino , Gansos/genética , Galinhas , Ovário , Estrogênios
9.
Endocrine ; 84(2): 745-756, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38285410

RESUMO

Gonadotropin inhibitory hormone (GnIH) is essential for regulating the reproduction of mammals and inhibiting testicular activities in mice. This study aimed to explore the mechanism of GnIH on spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis of mice. Mice were subcutaneously injected with different doses of GnIH (1 µg/150 µL, 3 µg/150 µL, 6 µg/150 µL, 150 µL saline, twice daily) for 11 days. Subsequently, luteinizing hormone (LH), testosterone (T), and inhibin B (INH B) levels of peripheral blood were determined, and the expression of GnRH synthesis-related genes (GnRH-1, Kiss-1, NPY) and gonadotropin synthesis-related genes (FSH ß, LH ß, GnRH receptor) in the hypothalamus and pituitary gland were respectively detected. Additionally, the expression of steroidogenesis-related genes/proteins (P450scc, StAR and 3ß-HSD) and spermatogenesis-related proteins/genes including LH receptor (LHR), androgen receptor (AR), heat shock factor-2 (HSF-2) and INH B were analyzed using western blot and q-PCR. Results showed that GnIH treatment significantly reduced the concentration of LH in the peripheral blood. Further analysis revealed that GnIH treatment markedly reduced the expression of GnRHImRNA and Kiss-1 mRNA in the hypothalamus, and mRNA levels of FSH ß, LH ß, and GnRHR genes in the pituitary. We also observed that GnIH treatment significantly decreased T levels and expression of the P450scc, StAR, and 3ß-HSD proteins in the testis. Furthermore, GnIH treatment down-regulated LHR, AR proteins, and HSF-2 gene in the testis. Importantly, the INH B concentration of and INH ßb mRNA levels significantly declined following GnIH treatment. Additionally, GnIH treatment may induce germ cell apoptosis in the testis of mice. In conclusion, GnIH may suppress spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis in mice.


Assuntos
Sistema Hipotálamo-Hipofisário , Hormônio Luteinizante , Neuropeptídeos , Espermatogênese , Testículo , Animais , Masculino , Camundongos , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Inibinas , Hormônio Luteinizante/sangue , Hipófise/metabolismo , Testículo/metabolismo , Testosterona/sangue , Neuropeptídeos/metabolismo
10.
Ecotoxicol Environ Saf ; 270: 115837, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104436

RESUMO

The purpose of this study was to determine the association of prolonged occupational co-exposure to extremely low-frequency electromagnetic fields (ELF-EMFs), noise, and rotating shift work with the levels of thyroid hormones (triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH). From 2016 to 2017, we enrolled all male workers without a history of thyroid disorders and followed them until 2020. To measure ELF-EMFs and noise exposures, we calculated the 8-hour equivalent sound pressure levels (Leq) and the 8-hour average of ELF-EMFs, respectively. Shift work schedules involved 8-hr fixed day and 8-hr clockwise 3-rotating night schedules. The participant's thyroid hormone levels were obtained from blood test results in their medical records. The percentage change in the levels of T3, T4, and TSH was estimated by using different mixed-effects linear regression models. The TSH levels were significantly elevated per a 10-dB increment of noise. The levels of T4 hormone were significantly changed per a unit increase in the levels of ELF-EMFs. Compared to the fixed-day workers, we observed workers exposed to shift work had a significantly lower T4 level. For T4 and TSH hormones, we found significant interactions among noise, ELF-EMFs, and shift work variables. In summary, this study warranted that prolonged exposure to ELF-EMFs, noise, and rotating shift work might be associated with thyroid dysfunction.


Assuntos
Jornada de Trabalho em Turnos , Doenças da Glândula Tireoide , Humanos , Masculino , Campos Eletromagnéticos/efeitos adversos , Hormônios Tireóideos , Tiroxina , Tireotropina
11.
Environ Pollut ; 343: 123242, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154778

RESUMO

Spirotetramat (SPT), a tetronic acid-derived insecticide, is implicated in reproductive and lipid metabolism disorders, as well as developmental toxicity in fish. While these effects are documented, the precise mechanisms underlying its developmental toxicity are not fully elucidated. In this study, zebrafish embryos (2 h post-fertilization, hpf) were exposed to four concentrations of SPT (0, 60, 120, and 240 µg/L) until 21 dpf (days post-fertilization). We delved into the mechanisms by examining its potential disruption of the thyroid endocrine system, employing in vivo, in vitro, and in silico assays. The findings showed notable developmental disturbances, including reduced hatching rates, shortened body lengths, and decelerated heart rates. Additionally, there was an increase in malformations and a decline in locomotor activity. Detailed analyses revealed that SPT exposure led to elevated thyroid hormone levels, perturbed the hypothalamic-pituitary-thyroid (HPT) axis transcript levels, amplified deiodinase type I (Dio1) and deiodinase type II (Dio2) activities, and both transcriptionally and proteomically upregulated thyroid receptor beta (TRß) in larvae. Techniques like molecular docking and surface plasmon resonance (SPR) confirmed SPT's affinity for TRß, consistent with in vitro findings suggesting its antagonistic effect on the T3-TR complex. These insights emphasize the need for caution in using tetronic acid-derived insecticides.


Assuntos
Compostos Aza , Compostos de Espiro , Glândula Tireoide , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Larva , Simulação de Acoplamento Molecular , Iodeto Peroxidase/metabolismo , Poluentes Químicos da Água/metabolismo
12.
Front Endocrinol (Lausanne) ; 14: 1271521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098868

RESUMO

Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.


Assuntos
Antioxidantes , Síndrome de Cushing , Humanos , Antioxidantes/metabolismo , Estresse Oxidativo , Glândulas Suprarrenais/metabolismo , Síndrome de Cushing/diagnóstico , Glucocorticoides
13.
Toxicol Appl Pharmacol ; 479: 116733, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866708

RESUMO

Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 µg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 µg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.


Assuntos
Água Potável , Percloratos , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Ratos Sprague-Dawley , Ratos Long-Evans , Hormônios Tireóideos , Tiroxina/metabolismo , Tireotropina
14.
Aquat Toxicol ; 264: 106714, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862731

RESUMO

Even though manganese is a bioelement essential for metabolism, excessive manganese levels in water can be detrimental to fish development and growth. Therefore, the aim of this study was to evaluate the effects of Mn2+ (0, 0.5,1, 2, and 4 mg·L-1) exposure for 30 d on the growth performance, growth hormone/insulin-like growth factor (GH/IGF) axis, hypothalamic-pituitary-thyroid (HPT) axis, and monoaminergic neurotransmitters of Epinephelus moara♀×Epinephelus lanceolatus♂(Yunlong grouper). Compared with the control and low Mn2+concentration groups of (0.5 and 1 mg·L-1), the high concentration of Mn2+ (4 mg·L-1) significantly reduced body weight (BW), body length (BL), weight gain rate (WGR), and specific growth rate (SGR), increased the feed coefficient rate (FCR) and mortality of Yunlong groupers (P < 0.05). Further, the levels of GH and IGF, along with the expression of ghra and ghrb were significantly reduced after exposure to 2 and 4 mg·L-1 Mn2+for 30 d, whereas the expression of sst5 was significantly up-regulated after exposure to 2 and 4 mg·L-1 Mn2+for 20 and 30 days. Moreover, Mn2+exposure increased thyroid hormone (T3) and thyroid stimulating hormone (TSH) contents, accompanied by increased mRNA levels of dio1 and dio2, however, the T4 level was decreased. Finally, dopamine (DA) and serotonin (5-HT) levels significantly decreased after long-term exposure to higher concentrations of Mn2+, and the levels their metabolites changed as well, suggesting that the synthesis and metabolism of DA and 5-HT were affected. Accordingly, changes in the GH/IGF and HPT axes-related parameters may be the cause of growth inhibition in juvenile groupers under Mn2+ exposure, indicating that the relationship between endocrine disorder and growth inhibition should not be ignored.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Bass/fisiologia , Manganês , Serotonina , Poluentes Químicos da Água/toxicidade , Sistema Endócrino
15.
Ecotoxicol Environ Saf ; 267: 115630, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890255

RESUMO

Progestins are mainly used in pharmacotherapy and animal husbandry and have received increasing attention as they are widely detected in various aquatic ecosystems. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to different concentrations of norethindrone (NET) (solvent control, 5.0 (L), 50.0 (M), and 500.0 (H) ng/L) for 42 days. Behaviors, morphological parameters, histology of the thyroid, thyroid hormone levels (TSH, T3, and T4), and transcriptional levels of nine genes in the hypothalamic-pituitary-thyroid (HPT) axis were examined. The results showed that NET decreased sociality but increased the anxiety of G. affinis. Sociality makes fish tend to cluster, and anxiety may cause G. affinis to reduce exploration of new environments. Female fish showed hyperplasia, hypertrophy, and glial depletion in their thyroid follicular epithelial cells after NET treatment. The plasma levels of TSH and T4 were significantly reduced, but T3 concentrations were significantly increased in the fish from the H group. In addition, the transcripts of genes (tshb, tshr, tg, dio1, dio2, thrb) in the brains of fish in the M and H treatments were significantly stimulated, while those of trh and pax2a were suppressed. Our results suggest that NET may impact key social behaviors in G. affinis and interfere with the entire thyroid endocrine system, probably via affecting the transcriptional expression of upstream regulators in the HPT axis.


Assuntos
Ciprinodontiformes , Glândula Tireoide , Feminino , Animais , Noretindrona , Ecossistema , Ciprinodontiformes/genética , Tireotropina
16.
Reprod Toxicol ; 121: 108463, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619763

RESUMO

Thyroid disruption is an increasingly recognized issue in the use and development of chemicals and new drugs, especially to help toxicologist to complement the reproductive and developmental toxicology information of chemicals. Still, adequate assessment methods are scarce and often suffer a trade-off between physiological relevance and labor- and cost-intensive assays. Here, we present a tiered approach for a medium-throughput screening of chemicals to identify their thyroid disrupting potential in zebrafish embryos as a New Approach Methodology (NAM). After identifying the maximum tolerated concentrations, we exposed zebrafish larvae to sub-adverse effect levels of the reference compounds benzophenone-2, bisphenol A, phenylthiourea, potassium perchlorate, propylthiouracil, and phloroglucinol to exclude any systemic toxicity. Applying the transgenic zebrafish line that carries a gene for the red fluorescence protein (Tg(tg:mCherry)) under the thyroglobulin promoter, we could identify the thyroid disrupting effects of the chemicals by a time and cost-effective image analysis measuring the fluorescence levels in the thyroid glands. Our observations could be confirmed by altered expression patterns of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis. Finally, to anchor the observed thyroid disruption, we determined some changes in the Thyroid hormone levels of triiodothyronine (T3) and Thyroxine (T4) using a newly developed liquid chromatography mass spectrometric (LCMS) method. The presented approach carries the potential to extend the toolbox for legislative authorities and chemical producers for the assessment of thyroid-specific endocrine disruption and to overcome current challenges in the evaluation of endocrine disruptors.

17.
Front Endocrinol (Lausanne) ; 14: 1204678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600710

RESUMO

Introduction: In recent years, the potential toxicities of different pharmaceuticals toward the thyroid system have received increasing attention. In this study, we aim to evaluate the toxic effects of pazopanib and axitinib, two anti-tumor drugs with widespread clinical use, on thyroid function in the zebrafish model. Methods: We measured levels of thyroid-related hormones using the commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit. Whole-mount in situ hybridization (WISH) analysis was employed to detect target gene expression changes. Morphology of the thyroid were evaluated by using transgenic Tg (tg: EGFP) fish line under a confocal microscope. The relative mRNA expression of key genes was verified through quantitative real-time polymerase chain reaction (RT‒qPCR). The size and number of the follicles was quantified whereby Hematoxylin-Eosin (H & E) staining under a light microscope. Results: The results revealed that fertilized zebrafish embryos were incubated in pazopanib or axitinib for 96 hours, development and survival were significantly affected, which was accompanied by significant disturbances in thyroid endocrine system (e.g., increased thyroid-stimulating hormone (TSH) content and decreased triiodothyronine (T3) and thyroxine (T4) content, as well as transcription changes of genes associated with the hypothalamus-pituitary-thyroid (HPT) axis. Moreover, based on whole-mount in situ hybridization staining of tg and histopathological examination of zebrafish embryos treated with pazopanib and axitinib, we observed a significantly abnormal development of thyroid follicles in the Tg (tg: EGFP) zebrafish transgenic line. Conclusion: Collectively, these findings indicate that pazopanib and axitinib may have toxic effects on thyroid development and function, at least partially, by influencing the regulation of the HPT axis. Thus, we believe that the potential thyroid toxicities of pazopanib and axitinib in their clinical applications should receive greater attention.


Assuntos
Antineoplásicos , Peixe-Zebra , Animais , Axitinibe , Glândula Tireoide , Larva , Animais Geneticamente Modificados
18.
Brain Sci ; 13(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37508942

RESUMO

Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.

19.
Regul Toxicol Pharmacol ; 142: 105445, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414127

RESUMO

In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.


Assuntos
Hipotireoidismo , Heterotopia Nodular Periventricular , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Ratos , Camundongos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna , Hormônios Tireóideos/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/metabolismo , Propiltiouracila/toxicidade
20.
Bioengineering (Basel) ; 10(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37370655

RESUMO

Hypothyroidism is a condition where the patient's thyroid gland cannot produce sufficient thyroid hormones (mainly triiodothyronine and thyroxine). The primary cause of hypothyroidism is autoimmune-mediated destruction of the thyroid gland, referred to as Hashimoto's thyroiditis. A patient's desired thyroid hormone concentration is achieved by oral administration of thyroid hormone, usually levothyroxine. Establishing individual levothyroxine doses to achieve desired thyroid hormone concentrations requires several patient visits. Additionally, clear guidance for the dosing regimen is lacking, and significant inter-individual differences exist. This study aims to design a digital automatic dosing algorithm for patients suffering from Hashimoto's thyroiditis. The dynamic behaviour of the relevant thyroid function is mathematically modelled. Methods of automatic control are exploited for the design of the proposed robust model-based levothyroxine dosing algorithm. Numerical simulations are performed to evaluate the mathematical model and the dosing algorithm. With the help of the developed controller thyroid hormone concentrations of patients, emulated using Thyrosim, have been regulated under the euthyroid state. The proposed concept demonstrates reliable responses amidst varying patient parameters. Our developed model provides a useful basis for the design of automatic levothyroxine dosing algorithms. The proposed robust feedback loop contributes to the first results for computer-assisted thyroid dosing algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...