RESUMO
Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.
RESUMO
Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.
Assuntos
Artrite Reumatoide , Chaperonina 60 , Humanos , COVID-19 , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , SARS-CoV-2/metabolismo , Chaperonina 60/farmacologia , Chaperonina 60/uso terapêuticoRESUMO
OBJECTIVES: The Enterobacter cloacae complex is considered an important opportunistic pathogen. It comprises many members that remain difficult to delineate by phenotypic approaches. Despite its importance in human infection, there is a lack of information on associated members in other compartments. Here we report the first de novo assembled and annotated whole-genome sequence of a E. chengduensis strain isolated from the environment. DATA DESCRIPTION: ECC445 specimen was isolated in 2018 from a drinking water catchment point in Guadeloupe. It was clearly related to E. chengduensis species according to hsp60 typing and genomic comparison. Its whole-genome sequence is 5,211,280-bp long divided into 68 contigs, and presents a G + C content of 55.78%. This genome and associated datasets provided here will serve as a useful resource for further analyses of this rarely reported Enterobacter species.
Assuntos
Enterobacter cloacae , Genoma Bacteriano , Humanos , Enterobacter cloacae/genética , Índias Ocidentais , Água DoceRESUMO
Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-ß-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.
RESUMO
As a part of innate immunity mechanisms, the Toll-like receptor (TLR) signaling pathway serves as one of the mainstay lines of defense against pathogenic microorganisms and cell dysfunction. Nevertheless, TLR overactivation induces a systemic proinflammatory environment compromising organ function or causing the patient's death. TLRs modulators, specially those focused for TLR4, remain a promising approach for inflammatory diseases treatment, being peptide-based therapy a trendy approach. Heat shock protein 60 (HSP60) not only plays a pivotal role in the development of several maladies with strong inflammatory components but also HSP60 peptides possess anti-inflammatory properties in TLR4-mediated diseases, such as diabetes, arthritis, and atherosclerosis. The experimental treatment using HSP60 peptides has proven to be protective in preclinical models of the heart by hampering inflammation and modulating the activity of immune cells. Nonetheless, the effect that these peptides may exert directly on cells that express TLR and its role to inhibit overactivation remain elusive. The aim of this study is to evaluate by molecular docking, a 15 amino acid long-HSP60 peptide (Peptide-2) in the lipopolysaccharide (LPS) binding site of TLR4/MD2, finding most Peptide-2 resulting conformations posed into the hydrophobic pocket of MD2. This observation is supported by binding energy obtained for the control antagonist Eritoran, close to those of Peptide-2. This last does not undergo drastic structural changes, moving into a delimited space, and maintaining the same orientation during molecular dynamics simulation. Based on the two computational techniques applied, interaction patterns were defined for Peptide-2. With these results, it is plausible to propose a peptidic approach for TLR4 modulation as a new innovative therapy to the treatment of TLR4-related cardiovascular diseases.
RESUMO
RESUMEN Introducción: La infección con el SARS-CoV-2 induce un estado protrombótico en los pacientes, atribuible a la combinación de la respuesta hiperinflamatoria y la hipoxia. En Cuba, se usa el fármaco Jusvinza, basado en un péptido inmunomodulador, para el tratamiento de los pacientes con la COVID-19, que presenten signos y síntomas de hiperinflamación. Objetivos: Describir la evolución clínica y las variaciones de biomarcadores asociados con la inflamación y la coagulación, en un grupo de pacientes críticos con la COVID-19, tratados con Jusvinza, en comparación con un grupo de pacientes que no recibieron tratamiento con este péptido. Métodos: Se incluyeron 40 pacientes críticos con la COVID-19; se dividieron en 2 grupos: 20 pacientes tratados con Jusvinza y 20 no fueron tratados con dicho péptido (grupo control). Las características demográficas, comorbilidades, signos vitales, parámetros respiratorios, biomarcadores de la inflamación y de la coagulación se obtuvieron a partir de las historias clínicas de cada paciente. Resultados: El tratamiento con Jusvinza indujo una mejoría clínica en los pacientes, asociada con la disminución de varios biomarcadores de la inflamación y la coagulación. La sobrevida de los pacientes tratados con Jusvinza fue significativamente superior a la sobrevida de los pacientes no tratados con este péptido. Conclusiones: Jusvinza es capaz de controlar la hiperinflamación y la hipercoagulación en pacientes críticos con la COVID-19.
ABSTRACT Introduction: Infection with SARS-CoV-2 induces a prothrombotic state in patients, by the combination of hyperinflammatory response and hypoxia. In Cuba, the drug called Jusvinza, based on an immunomodulatory peptide, is used for the treatment of patients with COVID-19, who present signs and symptoms of hyperinflammation. Objectives: To describe the clinical course and behavior of various biomarkers associated with the inflammation and coagulation, in a group of critically ill patients with COVID-19 treated with Jusvinza, compared to a group of patients who did not receive treatment with this peptide. Methods: 40 critically ill patients with COVID-19 were included. The patients were divided into 2 groups: 20 patients were treated with Jusvinza and 20 were not treated with this peptide (control group). Demographic characteristics, comorbidities, vital signs, respiratory parameters and inflammation and coagulation biomarkers were obtained from the medical records of each patient. Results: Treatment with Jusvinza induced a clinical improvement in the patients, associated with the decrease of several inflammation and coagulation biomarkers. Patients treated with Jusvinza had a significantly higher survival than patients not treated with this peptide. Conclusions: Jusvinza is able to control hyperinflammation and hypercoagulation in critical ill patients with COVID-19.
RESUMO
Species belonging to Enterobacter cloacae complex have been isolated in numerous environments and samples of various origins. They are also involved in opportunistic infections in plants, animals, and humans. Previous prospection in Guadeloupe (French West Indies) indicated a high frequency of E. cloacae complex strains resistant to third-generation cephalosporins (3GCs) in a local lizard population (Anolis marmoratus), but knowledge of the distribution and resistance of these strains in humans and the environment is limited. The aim of this study was to compare the distribution and antibiotic susceptibility pattern of E. cloacae complex members from different sources in a "one health" approach and to find possible explanations for the high level of resistance in non-human samples. E. cloacae complex strains were collected between January 2017 and the end of 2018 from anoles, farm animals, local fresh produce, water, and clinical human samples. Isolates were characterized by the heat-shock protein 60 gene-fragment typing method, and whole-genome sequencing was conducted on the most frequent clusters (i.e., C-VI and C-VIII). The prevalence of resistance to 3GCs was relatively high (56/346, 16.2%) in non-human samples. The associated resistance mechanism was related to an AmpC overproduction; however, in human samples, most of the resistant strains (40/62) produced an extended-spectrum beta-lactamase. No relation was found between resistance in isolates from wild anoles (35/168) and human activities. Specific core-genome phylogenetic analysis highlighted an important diversity in this bacterial population and no wide circulation among the different compartments. In our setting, the mutations responsible for resistance to 3GCs, especially in ampD, were diverse and not compartment specific. In conclusion, high levels of resistance in non-human E. cloacae complex isolates are probably due to environmental factors that favor the selection of these resistant strains, and this will be explored further.
RESUMO
OBJECTIVES: Ameloblastoma is an odontogenic neoplasm of the mandible and maxilla with various histological types and subtypes. It has been reported that some ameloblastomas could arise from dentigerous cyst walls; thus, the development of ameloblastoma from dentigerous cysts may be due to differential protein expression. Our aim was to identify a membrane protein that is differentially expressed in ameloblastomas with respect to dentigerous cysts. METHODS: We analyzed the SDS-PAGE profiles of membrane proteins from ameloblastomas and dentigerous cysts. The protein in a band present in the ameloblastoma sample, but apparently absent in the dentigerous cyst sample was identified via mass spectrometry as the chaperonin Hsp60. We used western blotting and immunohistochemistry to analyze its overexpression and localization in ameloblastoma. RESULTS: We found a differential band of 95 kDa in the membrane proteins of ameloblastoma. In this band, the chaperonin Hsp60 was identified, and its overexpression was corroborated using western blotting and immunohistochemistry. Hsp60 was localized in the plasma membrane of all ameloblastoma samples studied; in addition, it was found in the cell nucleus of the plexiform subtype of conventional ameloblastoma. CONCLUSIONS: Our results suggest that Hsp60 may be involved in ameloblastoma development, and could therefore be a potential therapeutic target for ameloblastoma treatment.
Assuntos
Ameloblastoma , Chaperonina 60/genética , Cisto Dentígero , Proteínas Mitocondriais/genética , Tumores Odontogênicos , Ameloblastoma/genética , Chaperoninas , Humanos , Imuno-HistoquímicaRESUMO
BACKGROUND: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. RESULTS: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. CONCLUSIONS: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.
Assuntos
Chaperonina 60/imunologia , Citocinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leptospira/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologiaRESUMO
Hyperinflammation distinguishes COVID-19 patients who develop a slight disease or none, from those progressing to severe and critical conditions. CIGB-258 is a therapeutic option for the latter group of patients. This drug is an altered peptide ligand (APL) derived from the cellular stress protein 60 (HSP60). In preclinical models, this peptide developed anti-inflammatory effects and increased regulatory T cell (Treg) activity. Results from a phase I clinical trial with rheumatoid arthritis (RA) patients indicated that CIGB-258 was safe and reduced inflammation. The aim of this study was to examine specific biomarkers associated with hyperinflammation, some cytokines linked to the cytokine storm granzyme B and perforin in a cohort of COVID-19 patients treated with this peptide. All critically ill patients were under invasive mechanical ventilation and received the intravenous administration of 1 or 2 mg of CIGB-258 every 12 h. Seriously ill patients were treated with oxygen therapy receiving 1 mg of CIGB-258 every 12 h and all patients recovered from their severe condition. Biomarker levels associated with hyperinflammation, such as interleukin (IL)-6, IL-10, tumor necrosis factor (TNF-α), granzyme B, and perforin, significantly decreased during treatment. Furthermore, we studied the ability of CIGB-258 to induce Tregs in COVID-19 patients and found that Tregs were induced in all patients studied. Altogether, these results support the therapeutic potential of CIGB-258 for diseases associated with hyperinflammation. Clinical trial registry: RPCEC00000313.
Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Chaperonina 60/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios/química , COVID-19/sangue , COVID-19/complicações , Chaperonina 60/química , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/complicações , Feminino , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-10/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Adulto JovemRESUMO
Background: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. Results: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. Conclusions: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.
RESUMO
Introducción: El CIGB-258 es un péptido inmunomodulador con propiedades antiinflamatorias. Objetivos: Establecer la frecuencia de dosis y el tiempo de tratamiento con el péptido CIGB-258, para pacientes críticos con COVID-19. Además, definir los criterios de uso y el esquema terapéutico del péptido, para pacientes graves con COVID-19. Métodos: Se incluyeron 9 pacientes críticos y 3 pacientes graves. Las evaluaciones clínicas, radiológicas y de laboratorio se registraron de acuerdo al protocolo establecido. Se obtuvieron muestras de suero antes y después del tratamiento con la CIGB-258, para la determinación de los biomarcadores de la inflamación. Resultados: Se estableció el protocolo de actuación con el péptido CIGB-258, el cual consiste en la administración intravenosa de 1 mg del péptido cada 12 horas a los pacientes críticos. La dosis debe aumentarse a 2 mg cada 12 horas, para los pacientes que no muestren mejoría clínica y radiológica en 24 horas. Después de la extubación, los pacientes deben recibir 1 mg de CIGB-258 al día, durante otros tres días. Los pacientes graves deben recibir 1 mg de CIGB-258 cada 12 horas, hasta que resuelvan su condición clínica. Conclusiones: CIGB-258 mostró un buen perfil de seguridad. El protocolo de actuación establecido contribuyó a que todos los pacientes críticos se recuperaran de la dificultad respiratoria y fueran extubados. Los pacientes graves mejoraron considerablemente. Los niveles de los biomarcadores asociados con hiperinflamación y las citocinas disminuyeron significativamente durante el tratamiento(AU)
Introduction: CIGB-258 is an immunomodulatory peptide with anti-inflammatory properties. Objectives: To establish the therapeutic schedule with CIGB-258 peptide for COVID-19 critically ill patients. In addition, to define the criteria for use and schedule of this peptide for COVID-19 seriously ill patients. Methods: 9 critically ill patients and 3 seriously ill patients were included in this study. Clinical, radiological and laboratory evaluations were recorded according to the established protocol. Serum samples were obtained before and after treatment with CIGB-258, for the determination of the inflammation biomarkers. Results: The therapeutic protocol was established with the CIGB-258 peptide, which consists of intravenous administration of 1 mg of peptide every 12 hours for critically ill patients. The dose should be increased to 2 mg every 12 hours, for patients who do not show clinical and radiological improvement in 24 hours. After extubation, patients should receive 1 mg of CIGB-258 daily, for another three days. Seriously ill patients should receive 1 mg of CIGB-258 every 12 hours, until their clinical condition resolves. Conclusions: CIGB-258 showed an excellent safety profile. The established therapeutic protocol contributed to all critically ill patients recovering from respiratory distress and being extubated. Seriously ill patients improved considerably. The levels of the biomarkers associated with hyperinflammation and cytokines decreased significantly during treatment(AU)
Assuntos
Humanos , Masculino , Feminino , Estado Terminal/terapia , Chaperonina 60 , Medicamentos de Referência , Síndrome da Liberação de Citocina/epidemiologia , COVID-19/tratamento farmacológicoRESUMO
Frailty, in elderly people, represents multiple deficiencies in different organs and is characterized by decreased physiological reserves and greater vulnerability to stressors. Bedridden elderly, with cardiovascular disease (CVD), have a worse prognosis than non-bedridden patients. Heat-shock proteins (HSPs) are molecular chaperones that under physiological conditions facilitate the transport, folding and assembly of proteins. Serum HSP 60-kDa concentrations and their antibodies are increased, in response to non-physiological conditions, suggesting the involvement of HSPs and their antibodies in the development of CVD. The aim of this work was to evaluate heat shock protein 60 and anti-HSP60 antibody levels, associated with a risk factor for cardiovascular disease, in bedridden elderly patients. Clinical, analytical and cross-sectional analyses were performed with 57 elderly (>65 years). HSP60 and anti-HSP60 plasma levels were measured by ELISA. Bivariate analysis using a linear regression model adjusted for risk factors used Framingham Score. Among the 57 elderly, with an average age of 69.89 years, 39% are bedridden; 26% with pre-existing cardiovascular disease and 44% are dyslipidemic. The relationship of risk factors in the Framingham Score was positive for the anti-HSP60 antibody (p = 0.042) measurement. Our data show a positive correlation among the elevation of the Framingham score and the profile of anti-HSP60 antibodies. These results suggest a greater immune activation that is associated with cardiovascular risk and bedridden fragility.
RESUMO
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins, acting as essential regulators of diverse constitutive metabolic processes. The Hsp60 of the dimorphic fungal Histoplasma capsulatum is the major surface adhesin to mammalian macrophages and studies of antibody-mediated protection against H. capsulatum have provided insight into the complexity involving Hsp60. However, nothing is known about the role of Hsp60 regarding biofilms, a mechanism of virulence exhibited by H. capsulatum. Considering this, the present study aimed to investigate the influence of the Hsp60 on biofilm features of H. capsulatum. Also, the non-conventional model Galleria mellonella was used to verify the effect of this protein during in vivo interaction. The use of invertebrate models such as G. mellonella is highly proposed for the evaluation of pathogenesis, immune response, virulence mechanisms, and antimicrobial compounds. For that purpose, we used a monoclonal antibody (7B6) against Hsp60 and characterized the biofilm of two H. capsulatum strains by metabolic activity, biomass content, and images from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). We also evaluated the survival rate of G. mellonella infected with both strains under blockage of Hsp60. The results showed that mAb 7B6 was effective to reduce the metabolic activity and biomass of both H. capsulatum strains. Furthermore, the biofilms of cells treated with the antibody were thinner as well as presented a lower amount of cells and extracellular polymeric matrix compared to its non-treated controls. The blockage of Hsp60 before fungal infection of G. mellonella larvae also resulted in a significant increase of the larvae survival compared to controls. Our results highlight for the first time the importance of the Hsp60 protein to the establishment of the H. capsulatum biofilms and the G. mellonella larvae infection. Interestingly, the results with Hsp60 mAb 7B6 in this invertebrate model suggest a pattern of fungus-host interaction different from those previously found in a murine model, which can be due to the different features between insect and mammalian immune cells such as the absence of Fc receptors in hemocytes. However further studies are needed to support this hypothesis.
Assuntos
Chaperonina 60 , Histoplasma , Animais , Anticorpos Monoclonais , Biofilmes , Chaperonina 60/genética , Macrófagos , CamundongosRESUMO
Rheumatoid arthritis (RA) is a chronic T cell-mediated autoimmune disease. Serum autoantibodies against cyclic citrullinated peptides (anti-CCP) are significant markers for diagnosis and prognosis of this disease. Induction of immune tolerance as therapeutic approach for RA constitutes a current research focal point. In this sense, we carried out a phase I clinical trial in RA patients with a new therapeutic candidate (called CIGB-814); which induced mechanisms associated with restoration of peripheral tolerance in preclinical studies. CIGB 814 is an altered peptide ligand (APL), derived from a CD4+ T cell epitope of human heat-shock protein 60 (HSP60), an autoantigen involved in the pathogenesis of RA. Twenty patients with moderate disease activity were included in this open label trial. Sequential dose-escalation of 1, 2.5 and 5 mg of CIGB-814 was studied. Consecutive groups of six, five, and nine patients received a subcutaneous dose weekly of the peptide during the first month and one dose monthly during the next 5 months. The peptide was well tolerated and reduced disease activity. Here, we reported the quantification of anti-CCP antibodies during the treatment with this APL and in the follow-up stage. Anti-CCP antibodies were quantified in the plasma from patients by a commercial enzyme immunoassay at baseline (T0) and at weeks 28 and 48. Results showed that CIGB-814 induced a significant reduction of anti-CCP antibodies. In addition, this decrease correlated with clinical improvement in patients assessed by Disease Activity Score in 28 joints (DAS28) criteria. These findings reinforce the therapeutic potential of CIGB-814.
Assuntos
Artrite Reumatoide/tratamento farmacológico , Chaperonina 60/química , Proteínas Mitocondriais/química , Peptídeos/administração & dosagem , Adulto , Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/uso terapêutico , Peptídeos Cíclicos/imunologia , Resultado do TratamentoRESUMO
The relationships between rectal temperatures and physiological and cellular responses to heat stress can improve the productivity of Saanen goats in tropical environments. In this context, this study evaluated the physiological responses and gene expression of heat shock proteins (HSP60, 70, and 90) and genes related to apoptosis (Bax, Bcl-2, and p53) of Saanen goats subjected to acute heat stress. Ten health Saanen goats were exposed to solar radiation during 3 consecutive days. The expression of HSP60, HSP70, HSP90, Bax, Bcl-2, and p53 genes in blood leukocytes, rectal and superficial temperatures, respiratory frequency, cortisol, triiodothyronine, and thyroxine was measured at 06:00, 13:00, and 18:00 h. In vitro, blood leukocytes were subjected to 38 °C and 40 °C for 3 h to measure the expression of the same target genes. The temperature humidity index, measured from 12:00 to 15:00, was greater than 80 and black globe temperatures were greater at 40 °C, indicating the intensity of the solar radiation. Although the solar radiation caused acute heat stress, increased cortisol release, and the expression of HSP60 and 70 in dry Saanen goats, the increased respiratory frequency and decreased T4 and T3 restored the homeothermy of the experimental goats. In vitro, the 40 °C increased the expression of p53 (pro-apoptotic protein), Bcl-2 (anti-apoptotic protein), HSP60, HSP70, and HSP90, suggesting that these genes have protective functions. However, further studies are necessary to understand the physiological and cellular responses to heat stress.
Assuntos
Doenças das Cabras/fisiopatologia , Cabras/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Transtornos de Estresse por Calor/veterinária , Animais , Temperatura Corporal , Feminino , Doenças das Cabras/sangue , Doenças das Cabras/genética , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/genética , Proteínas de Choque Térmico/genética , Umidade , Hidrocortisona/sangue , Leucócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Temperatura , Tiroxina/sangue , Tri-Iodotironina/sangue , Proteína Supressora de Tumor p53/genéticaRESUMO
The development of stress drives a host of biological responses that include the overproduction of a family of proteins named heat shock proteins (HSPs), because they were initially studied after heat exposure. HSPs are evolutionarily preserved proteins with a high degree of interspecies homology. HSPs are intracellular proteins that also have extracellular expression. The primary role of HSPs is to protect cell function by preventing irreversible protein damage and facilitating molecular traffic through intracellular pathways. However, in addition to their chaperone role, HSPs are immunodominant molecules that stimulate natural as well as disease-related immune reactivity. The latter may be a consequence of molecular mimicry, generating cross-reactivity between human HSPs and the HSPs of infectious agents. Autoimmune reactivity driven by HSPs could also be the result of enhancement of the immune response to peptides generated during cellular injury and of their role in the delivery of peptides to the major histocompatibility complex in antigen-presenting cells. In humans, HSPs have been found to participate in the pathogenesis of a large number of diseases. This review is focused on the role of HSPs in atherosclerosis and essential hypertension.
Assuntos
Aterosclerose/metabolismo , Doenças Autoimunes/metabolismo , Sistema Cardiovascular/metabolismo , Hipertensão Essencial/metabolismo , Proteínas de Choque Térmico/metabolismo , Animais , Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Autoimunidade , Sistema Cardiovascular/imunologia , Sistema Cardiovascular/fisiopatologia , Hipertensão Essencial/imunologia , Hipertensão Essencial/fisiopatologia , Humanos , Transdução de SinaisRESUMO
Progesterone synthesis in human placenta is essential to maintain pregnancy. The limiting step in placental progesterone synthesis is cholesterol transport from the cytoplasm to the inner mitochondrial membrane. Multiple proteins located in mitochondrial contact sites seem to play a key role in this process. Previously, our group identified the heat shock protein 60 (HSP60) as part of mitochondrial contact sites in human placenta, suggesting its participation in progesterone synthesis. Here, we examined the role of HSP60 in progesterone synthesis. Our results show that over-expression of HSP60 in human placental choriocarcinoma cells (JEG-3) and human embryonic kidney 293 cells (HEK293) promotes progesterone synthesis. Furthermore, incubation of the HSP60 recombinant protein with intact isolated mitochondria from JEG-3 cells also promotes progesterone synthesis in a dose-related fashion. We also show that HSP60 interacts with STARD3 and P450scc proteins from mitochondrial membrane contact sites. Finally, we show that the HSP60 recombinant protein binds cholesterol. Ours results demonstrate that HSP60 participates in mitochondrial progesterone synthesis. These findings provide novel insights into progesterone synthesis in the human placenta and its role in maintaining pregnancy.
Assuntos
Chaperonina 60/metabolismo , Regulação da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Progesterona/biossíntese , Linhagem Celular , Chaperonina 60/genética , Colesterol , Feminino , Humanos , Proteínas Mitocondriais/genética , Placenta/citologia , Gravidez , Ligação ProteicaRESUMO
Induction of tolerance to autoantigens in vivo is a complex process that involves several mechanisms such as the induction of regulatory T cells and changes in the cytokine and chemokine profiles. This approach represents an attractive alternative for treatment of autoimmune diseases. APL-1 is an altered peptide ligand derived from a novel CD4 + T cell epitope of human heat-shock protein of 60 kDa (HSP60), an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). We have shown previously that this peptide efficiently inhibited the course of adjuvant-induced arthritis in Lewis rats and induced regulatory T cell (Treg) in ex vivo assay with PBMC isolated from RA patients. This study was undertaken to evaluate the therapeutic effect of APL-1 and its combination with methotrexate (MTX) in collagen-induced arthritis (CIA). CIA was induced in male DBA/1 mice at 8 weeks of age by immunization with chicken collagen. APL, MTX or both were administrated beginning from arthritis onset. Therapeutic effect was evaluated by arthritis and joint pathologic scores. In addition, TNFα and IL-10 in sera were measured by ELISA. Treg induction was assessed by FACS analysis. APL-1 inhibits efficiently the course of arthritis in CIA, similar to MTX. In addition, therapy with APL-1 plus MTX reduced CIA in mice, associated with an increase in Treg. These facts reinforce the therapeutic possibilities of APL-1 as a candidate drug for treatment of RA.
Assuntos
Artrite Experimental/tratamento farmacológico , Proteínas de Choque Térmico/administração & dosagem , Fatores Imunológicos/administração & dosagem , Metotrexato/administração & dosagem , Peptídeos/administração & dosagem , Animais , Artrite Experimental/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interleucina-10/sangue , Masculino , Camundongos Endogâmicos DBA , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangueRESUMO
Piscirickettsia salmonis is one of the major fish pathogens affecting Chilean aquaculture. This Gram-negative bacterium is highly infectious and is the etiological agent of Piscirickettsiosis. Little is currently known about how the virulence factors expressed by P. salmonis are delivered to host cells. However, it is known that several Gram-negative microorganisms constitutively release outer membrane vesicles (OMVs), which have been implicated in the delivery of virulence factors to host cells. In this study, OMVs production by P. salmonis was observed during infection in CHSE-214 cells and during normal growth in liquid media. The OMVs were spherical vesicles ranging in size between 25 and 145 nm. SDS-PAGE analysis demonstrated that the protein profile of the OMVs was similar to the outer membrane protein profile of P. salmonis. Importantly, the bacterial chaperonin Hsp60 was found in the OMVs of P. salmonis by Western-blot and LC-MS/MS analyses. Finally, in vitro infection assays showed that purified OMVs generated a cytopathic effect on CHSE-214 cells, suggesting a role in pathogenesis. Therefore, OMVs might be an important vehicle for delivering effector molecules to host cells during P. salmonis infection.