Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Syst Biol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934241

RESUMO

Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis paving the way for complex life. Studying the evolution and ecological niche of cyanobacteria and their ancestors is crucial for understanding the intricate dynamics of biosphere evolution. These organisms frequently deal with environmental stressors such as salinity and drought, and they employ compatible solutes as a mechanism to cope with these challenges. Compatible solutes are small molecules that help maintain cellular osmotic balance in high salinity environments, such as marine waters. Their production plays a crucial role in salt tolerance, which, in turn, influences habitat preference. Among the five known compatible solutes produced by cyanobacteria (sucrose, trehalose, glucosylglycerol, glucosylglycerate, and glycine betaine), their synthesis varies between individual strains. In this study, we work in a Bayesian stochastic mapping framework, integrating multiple sources of information about compatible solute biosynthesis in order to predict the ancestral habitat preference of Cyanobacteria. Through extensive model selection analyses and statistical tests for correlation, we identify glucosylglycerol and glucosylglycerate as the most significantly correlated with habitat preference, while trehalose exhibits the weakest correlation. Additionally, glucosylglycerol, glucosylglycerate, and glycine betaine show high loss/gain rate ratios, indicating their potential role in adaptability, while sucrose and trehalose are less likely to be lost due to their additional cellular functions. Contrary to previous findings, our analyses predict that the last common ancestor of Cyanobacteria (living at around 3180 Ma) had a 97% probability of a high salinity habitat preference and was likely able to synthesise glucosylglycerol and glucosylglycerate. Nevertheless, cyanobacteria likely colonized low-salinity environments shortly after their origin, with an 89% probability of the first cyanobacterium with low-salinity habitat preference arising prior to the Great Oxygenation Event (2460 Ma). Stochastic mapping analyses provide evidence of cyanobacteria inhabiting early marine habitats, aiding in the interpretation of the geological record. Our age estimate of ~2590 Ma for the divergence of two major cyanobacterial clades (Macro- and Microcyanobacteria) suggests that these were likely significant contributors to primary productivity in marine habitats in the lead-up to the Great Oxygenation Event, and thus played a pivotal role in triggering the sudden increase in atmospheric oxygen.

2.
Animals (Basel) ; 14(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791723

RESUMO

There has been an increased focus on new technologies to monitor habitat use and behaviour of cattle to develop a more sustainable livestock grazing system without compromising animal welfare. One of the currently used methods for monitoring cattle behaviour is tri-axial accelerometer data from systems such as virtual fencing technology or bespoke monitoring technology. Collection and transmission of high-frequency accelerometer and GNSS data is a major energy cost, and quickly drains the battery in contemporary virtual fencing systems, making it unsuitable for long-term monitoring. In this paper, we explore the possibility of determining habitat preference and habitat utilisation patterns in cattle using low-frequency activity and location data. We achieve this by (1) calculating habitat selection ratios, (2) determining daily activity patterns, and (3) based on those, inferring grazing and resting sites in a group of cattle wearing virtual fencing collars in a coastal setting with grey, wooded, and decalcified dunes, humid dune slacks, and salt meadows. We found that GNSS data, and a measure of activity, combined with accurate mapping of habitats can be an effective tool in assessing habitat preference. The animals preferred salt meadows over the other habitats, with wooded dunes and humid dune slacks being the least preferred. We were able to identify daily patterns in activity. By comparing general trends in activity levels to the existing literature, and using a Gaussian mixture model, it was possible to infer resting and grazing behaviour in the different habitats. According to our inference of behaviour the herd predominantly used the salt meadows for resting and ruminating. The approach used in this study allowed us to use GNSS location data and activity data and combine it with accurate habitat mapping to assess habitat preference and habitat utilisation patterns, which can be an important tool for guiding management decisions.

3.
Sci Total Environ ; 933: 173245, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38754512

RESUMO

The present study has investigated per- and poly-fluoroalkyl substances (PFAS) in the gill tissues of various fish species inhabiting different trophic levels within Eleyele Lake, a tropical freshwater lake in Nigeria. The mean concentrations of PFAS congeners were determined, and their trends and patterns were analyzed across different trophic species. The results revealed variations in congener abundance and species-specific patterns that was influenced by habitat and niche preferences. Multivariate associations using canonical-correlation analysis (CCA) revealed distinct trends in the relationships between gill concentrations of specific PFAS congeners and different trophic groups. The strongest congener relationships were observed in the pelagic omnivore (Oreochromic niloticus: ON) with positive associations for 4:2 FTS, 9CL-PF3ONS, PFTDA, MeFOSA and PFHxS. The differences in congener profiles for the two herbivorous fish (Sarotherodon melanotheron (SM) and Coptodon galilaeus (CG)) reflect possible divergence in microhabitat and niche preferences. Furthermore, the congener overlaps between the herbivore (CG), and benthic omnivore (Clarias gariepinus: ClG) indicate a possible niche and microhabitat overlap. Our study provides valuable insights into the congener dynamics of PFAS at Eleyele Lake. However, the dissimilarity and overlapping PFAS congener profile in fish gills reflects the interplay of species niche preference and microhabitat associations. The present study highlights the need for further research to assess ecological risks and develop effective PFAS management strategies.


Assuntos
Ecossistema , Monitoramento Ambiental , Peixes , Brânquias , Lagos , Poluentes Químicos da Água , Animais , Lagos/química , Poluentes Químicos da Água/análise , Peixes/metabolismo , Nigéria , Fluorocarbonos/análise
4.
Sci Rep ; 14(1): 11288, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760438

RESUMO

Juveniles of three cyprinids with various diets and habitat preferences were collected from the Szamos River (Hungary) during a period of pollution in November 2013: the herbivorous, benthic nase (Chondrostoma nasus), the benthivorous, benthic barbel (Barbus barbus), and the omnivorous, pelagic chub (Squalius cephalus). Our study aimed to assess the accumulation of these elements across species with varying diets and habitat preferences, as well as their potential role in biomonitoring efforts. The Ca, K, Mg, Na, Cd, Cr, Cu, Fe, Mn, Pb, Sr, and Zn concentration was analyzed in muscle, gills, and liver using MP-AES. The muscle and gill concentrations of Cr, Cu, Fe, and Zn increased with trophic level. At the same time, several differences were found among the trace element patterns related to habitat preferences. The trace elements, including Cd, Pb, and Zn, which exceeded threshold concentrations in the water, exhibited higher accumulations mainly in the muscle and gills of the pelagic chub. Furthermore, the elevated concentrations of trace elements in sediments (Cr, Cu, Mn) demonstrated higher accumulation in the benthic nase and barbel. Our findings show habitat preference as a key factor in juvenile bioindicator capability, advocating for the simultaneous use of pelagic and benthic juveniles to assess water and sediment pollution status.


Assuntos
Cyprinidae , Ecossistema , Oligoelementos , Poluentes Químicos da Água , Animais , Cyprinidae/metabolismo , Poluentes Químicos da Água/análise , Oligoelementos/análise , Oligoelementos/metabolismo , Monitoramento Ambiental/métodos , Dieta , Brânquias/metabolismo , Rios , Poluição da Água/análise
5.
Ecol Evol ; 14(5): e11339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774132

RESUMO

Differences in local habitat conditions are often implicated as drivers for morphological and genetic divergence in natural populations. However, there are still relatively few studies regarding how divergent habitats influence patterns for morphotypes and genetic lineages in aquatic invertebrates. In this study, we explored the morphological patterns, genetic divergence, and distributions of a bivalve, Corbicula fluminea, in a lotic-lentic system. Sampling locations included lotic, ecotone, and lentic habitats. First, we found two lineages (Lineages A and B) with significant genetic divergence that primarily corresponded to two morphotypes (Morphs D and C) of C. fluminea. Lineage A consisted of 88.68% Morph D (shell sculpture: 8-14 ridges/cmsh) and 11.32% Morph C (shell sculpture: 15 ridges/cmsh) individuals and had genetic similarity to invasive populations. Lineage B consisted of only Morph C (shell sculpture: 15-23 ridges/cmsh). Second, we revealed clear effects of habitat on the spatial distribution patterns for the two lineages of C. fluminea. Lineage A was dominant in lotic habitats, with a significantly higher density than that of Lineage B in these locations. Lineage B was dominant in lentic habitats. However, both lineages had their highest densities in the ecotone habitat, without clear dominance and no significant difference in density between groups. Individuals of Lineages A and B are different in shell morphology, which may be related to a benefit trade-off between shell shapes that allow for rapid burrowing and holding position in different flow conditions. The distribution patterns indicate that Lineages A and B may not prefer uniquely lotic and lentic habitats, but each lineage is more tolerant to one habitat type, respectively. Generally, our study established a correlation among morphotypes, lineages, and different habitats for C. fluminea along a lotic-lentic gradient system, which has important implementations for fisheries management units and for understanding the role of habitat preference for this species in monitoring for pioneer dispersal in invasive species management.

6.
J Anat ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733157

RESUMO

The family Bovidae [Mammalia: Artiodactyla] is speciose and has extant representatives on every continent, forming key components of mammal communities. For these reasons, bovids are ideal candidates for studies of ecomorphology. In particular, the morphology of the bovid humerus has been identified as highly related to functional variables such as body mass and habitat. This study investigates the functional morphology of the bovid distal humerus in isolation due to its increased likelihood of preservation in the fossil record, and the resulting opportunity for a better understanding of the ecomorphology of extinct bovids. A landmark scheme of 30 landmarks was used to capture the 3D distal humerus morphology in 111 extant bovid specimens. We find that the distal humerus has identifiable morphologies associated with body mass, habitat preference and tribe affiliation and that some characteristics are shared between high body mass bovids and those living on hard, flat terrain which is likely due to the high stress on the bone in both cases. We directly apply our findings regarding extant bovids to the extinct alcelaphine bovid, Rusingoryx atopocranion from the mid to late Pleistocene (>33-45 ka) Lake Victoria region of Kenya. This species is known for some peculiar morphologies including a domed cranium with hollow nasal crests, and having small hooves for a bovid of its size. Another interesting aspect of Rusingoryx's skeletal morphology which has not been addressed is an unusual protrusion on the lateral epicondyle of the distal humerus. Despite considerable individual variation in the Rusingoryx specimens, we find evidence to support its historical assignment to the tribe Alcelaphini, and that it likely preferred open grassland habitats, which is consistent with independent reconstructions of the palaeoenvironment. We also provide the most accurate body mass estimate for Rusingoryx to date, based on distal humerus centroid size. Overall, we are able to conclude that the distal humerus in extant bovids is highly informative regarding body mass, habitat preference and tribe, and that this can be applied directly to a fossil taxon with promising results.

7.
Front Microbiol ; 15: 1341303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572242

RESUMO

Understanding the interactions between fish gut microbiota and the aquatic environment is a key issue for understanding aquatic microorganisms. Environmental microorganisms enter fish intestines through feeding, and the amount of invasion varies due to different feeding habits. Traditional fish feeding habitat preferences are determined by fish morphology or behavior. However, little is known about how the feeding behavior of fish relative to the vertical structure in a shallow lake influences gut microbiota. In our study, we used nitrogen isotopes to measure the trophic levels of fish. Then high-throughput sequencing was used to describe the composition of environmental microbiota and fish gut microbiota, and FEAST (fast expectation-maximization for microbial source tracking) method was used to trace the source of fish gut microbiota. We investigated the microbial diversity of fish guts and their habitats in Lake Sanjiao and verified that the sediments indeed played an important role in the assembly of fish gut microbiota. Then, the FEAST analysis indicated that microbiota in water and sediments acted as the primary sources in half of the fish gut microbiota respectively. Furthermore, we classified the vertical habitat preferences using microbial data and significant differences in both composition and function of fish gut microbiota were observed between groups with distinct habitat preferences. The performance of supervised and unsupervised machine learning in classifying fish gut microbiota by habitat preferences actually exceeded classification by fish species taxonomy and fish trophic level. Finally, we described the stability of fish co-occurrence networks with different habitat preferences. Interestingly, the co-occurrence network seemed more stable in pelagic fish than in benthic fish. Our results show that the preferences of fish in the vertical structure of habitat was the main factor affecting their gut microbiota. We advocated the use of microbial interactions between fish gut and their surrounding environment to reflect fish preferences in vertical habitat structure. This approach not only offers a novel perspective for understanding the interactions between fish gut microbiota and environmental factors, but also provides new methods and ideas for studying fish habitat selection in aquatic ecosystems.

8.
Environ Entomol ; 53(2): 305-312, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38340026

RESUMO

Callioratis millari Hampson (Lepidoptera: Geometridae) is a Critically Endangered moth endemic to South Africa. Despite extensive searches, it was previously known only from the Entumeni Nature Reserve in KwaZulu-Natal, where its larvae exclusively feed on the cycad Stangeria eriopus (Kunze) Baill (Cycadales: Stangeriaceae). In July 2022, a new population of C. millari was discovered in the Kabouga section of Addo Elephant National Park in the Eastern Cape. Larvae of C. millari were feeding on the cycad Encephalartos caffer (Thunb.) Lehm (Cycadales: Zamiaceae), which also constitutes a new host record. In June 2023, we determined larval incidence and herbivory at this new locality, offering insights into the ecological requirements of C. millari. Known C. millari localities, although ecologically different, share low altitudes (700-950 m a.s.l.), moderate to high rainfall, and grassy habitats with sparse woody cover. A total of 59 larvae were counted in Kabouga, mostly in the fifth and sixth (final) instars. Herbivory incidence was lower on smaller plants and those covered by other vegetation. The flight period of adult C. millari likely occurs between mid-March and April in Kabouga, but further investigation is needed to clarify this. The peak period of larval occurrence in Kabouga occurs during the driest and coldest months of the year (May-July). Considering limited habitat availability, host plant poaching, and the risk of untimely fires, the species should be considered highly threatened. This study adds to our understanding of the biology of C. millari and provides information on its ecological requirements and may contribute to making informed management decisions.


Assuntos
Mariposas , Animais , África do Sul , Larva , Ecossistema , Plantas
9.
J Fish Biol ; 104(2): 387-398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36600527

RESUMO

Eels have fascinated biologists for centuries due to their amazing long-distance migrations between freshwater habitats and very distant ocean spawning areas. The migratory life histories of the Japanese eel, Anguilla japonica, in the waters of south China are not very clear despite its ecological importance, and the need for fishery regulation and management. In this study, strontium (Sr) and calcium (Ca) microchemical profiles of the otoliths of silver eels were measured by X-ray electron probe microanalysis based on data collected from different habitats (including freshwater and brackish habitats), in the large subtropical Pearl River. The corresponding habitat preference characteristics were further analysed using redundancy analysis (RDA). A total of 195 Japanese eels were collected over 6 years. The collected individuals ranged from 180 to 771 mm in total length and from 8 to 612 g in body weight. Two-dimensional pictures of the Sr:Ca concentrations in otoliths revealed that the A. japonica in the Pearl River are almost entirely river eels, spending the majority of their lives in fresh water without exposure to salt water, while the catadromous migration time has delayed about 1 month in the Pearl River estuary in the past 20 years. RDA analysis further indicated that juveniles and adults preferred water with high salinity and high tide levels. Youth preferred habitats with high river fractals. Our findings contribute to a growing body of evidence showing that the eels are extremely scarce currently and conservation measures against them are imminent, including the protection of brackish and freshwater areas where they live in south China.


Assuntos
Anguilla , Rios , Humanos , Animais , Anguilla/fisiologia , Migração Animal , Cálcio/análise , Ecossistema , Estrôncio/análise , China , Água/análise
10.
Harmful Algae ; 125: 102420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220986

RESUMO

Some members of the dinoflagellate genus Alexandrium produce toxins responsible for paralytic shellfish poisoning, which causes environmental impacts and large economic losses worldwide. The Outlying Mean Index (OMI) and the Within Outlying Mean Index (WitOMI) were used to examine the ecological niches of three Alexandrium species identifying factors affecting their population dynamics in the Korea Strait (KS). Species niches were divided into seasonal subniches based on species' temporal and spatial patterns, with A. catenella being highest in the spring, A. pacificum in the summer, and A. affine in the autumn. These shifts in abundance are likely due to changes in their habitat preferences and resource availability, as well as the effects of biological constraints. A subniche-based approach, which considers the interactions between the environment and the biological characteristics of a species, was useful in understanding the factors shaping the population dynamics of the individual species. Additionally, a species distribution model was used to predict the phenology and biogeography of the three Alexandrium species in the KS and their thermal niches on a larger scale. The model predicted that, in the KS, A. catenella exists on the warm side of the thermal niche, while A. pacificum and A. affine exist on the cold side, indicating that these species may respond differently to increases in water temperature. However, the predicted phenology was incongruent with the abundance of the species as measured by droplet digital PCR. Overall, the WitOMI analysis and species distribution model can provide valuable insights into how population dynamics are influenced by the integrated interplay of biotic and abiotic processes.


Assuntos
Dinoflagellida , Estações do Ano , Ecossistema , Reação em Cadeia da Polimerase , República da Coreia
11.
Parasit Vectors ; 16(1): 158, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147691

RESUMO

BACKGROUND: Urbanization can be a significant contributor to the spread of invasive mosquito vector species, and the diseases they carry, as urbanized habitats provide access to a great density of food resources (humans and domestic animals) and offer abundant breeding sites for these vectors. Although anthropogenic landscapes are often associated with the presence of invasive mosquito species, we still have little understanding about the relationships between some of these and the built environment. METHODS: This study explores the association between urbanization level and the occurrence of invasive Aedes species, specifically Aedes albopictus, Aedes japonicus, and Aedes koreicus, in Hungary, using data from a community (or citizen) science program undertaken between 2019 and 2022. RESULTS: The association between each of these species and urbanized landscapes within an extensive geographic area was found to differ. Using the same standardized approach, Ae. albopictus showed a statistically significant and positive relationship with urbanization, whereas Ae. japonicus and Ae. koreicus did not. CONCLUSIONS: The findings highlight the importance of community science to mosquito research, as the data gathered using this approach can be used to make qualitative comparisons between species to explore their ecological requirements.


Assuntos
Aedes , Animais , Humanos , Hungria , Espécies Introduzidas , Urbanização , Ecossistema , Mosquitos Vetores
12.
Ecol Evol ; 13(2): e9794, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760707

RESUMO

Natal habitat preference induction (NHPI) occurs when animals exhibit a preference for new habitat that is similar to that which they experienced in their natal environment, potentially leading to post-dispersal success. While the study of NHPI is typically focused on post-settlement home ranges, we investigated how this behavior may manifest during extra-home range movements (EHRMs), both to identify exploratory prospecting behavior and assess how natal habitat cues may influence path selection before settlement. We analyzed GPS collar relocation data collected during 79 EHRMs made by 34 juvenile and subadult white-tailed deer (Odocoileus virginianus) across an agricultural landscape with highly fragmented forests in Illinois, USA. We developed a workflow to measure multidimensional natal habitat dissimilarity for each EHRM relocation and fit step-selection functions to evaluate whether natal habitat similarity explained habitat selection along movement paths. Across seasons, selection for natal habitat similarity was generally weak during excursive movements, but strong during dispersals, indicating that NHPI is manifested in dispersal habitat selection in this study system and bolstering the hypothesis that excursive movements differ functionally from dispersal. Our approach for extending the NHPI hypothesis to behavior during EHRMs can be applied to a variety of taxa and can expand our understanding of how individual behavioral variation and early life experience may shape connectivity and resistance across landscapes.

14.
Glob Chang Biol ; 29(3): 648-667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278894

RESUMO

Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071-2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.


Assuntos
Spheniscidae , Humanos , Animais , Melhoramento Vegetal , Ecossistema , Previsões , Mudança Climática , Oceanos e Mares
15.
Front Plant Sci ; 13: 1035089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466265

RESUMO

Successful plant establishment in a particular environment depends on the root architecture of the seedlings and the extent of edaphic resource utilization. However, diverse habitats often pose a predicament on the suitability of the fundamental root structure of a species that evolved over a long period. We hypothesized that the plasticity in the genetically controlled root architecture in variable habitats provides an adaptive advantage to worldwide-distributed wild radish (Raphanus raphanistrum, Rr) over its close relative (R. pugioniformis, Rp) that remained endemic to the East Mediterranean region. To test the hypothesis, we performed a reciprocal comparative analysis between the two species, growing in a common garden experiment on their native soils (Hamra/Sandy for Rr, Terra Rossa for Rp) and complementary controlled experiments mimicking the major soil compositions. Additionally, we analyzed the root growth kinetics via semi-automated digital profiling and compared the architecture between Rr and Rp. In both experiments, the primary roots of Rr were significantly longer, developed fewer lateral roots, and showed slower growth kinetics than Rp. Multivariate analyses of seven significant root architecture variables revealed that Rr could successfully adapt to different surrogate growth conditions by only modulating their main root length and number of lateral roots. In contrast, Rp needs to modify several other root parameters, which are very resource-intensive, to grow on non-native soil. Altogether the findings suggest an evo-devo adaptive advantage for Rr as it can potentially establish in various habitats with the minimal tweak of key root parameters, hence allocating resources for other developmental requirements.

16.
Urban Ecosyst ; 25(6): 1939-1948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159164

RESUMO

How people relate to biodiversity and whether they are supportive of conservation programs and policies has implications on global and local biodiversity conservation efforts. Nature experiences in childhood has been shown to be strongly correlated to positive attitudes towards nature and wildlife in adulthood. In this study, we examined wildlife experience, attitudes and willingness to coexist with 26 vertebrates and invertebrates amongst residents in a highly urbanized tropical city, Singapore. A total of 1004 respondents were surveyed and their childhood nature experience and various socioeconomic variables were obtained. The animals were grouped by their likeability and preferred habitat from the respondents' answers. Three main groups of animals were discerned - unfavorable animals, mammals, and favorable animals. Singapore residents generally had high direct experiences of animals that are common in urban settings, for both favorable and unfavorable animals, such as butterflies, dragonflies, crows and bees, but low direct experiences of forest-dependent wildlife. Animals that were well-liked and acceptable near homes include the common urban ones and some forest-dependent ones, while animals that were disliked included stinging insects (bees and hornets) and reptiles (snakes and water monitors). Structured equation modelling showed that both childhood nature experience and wildlife experience had strong effects on wildlife likeability and habitat preference. The apparent mismatch between greening policies and people's willingness to coexist with wildlife may be problematic as urban development further encroaches on forest habitats, and this study highlights the importance of preserving forest habitats so that young children and adults have opportunities to be exposed to them. Supplementary Information: The online version contains supplementary material available at 10.1007/s11252-022-01280-1.

17.
PeerJ ; 10: e13993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132214

RESUMO

Background: Human activities have resulted in a rapid increase of modified habitats in proximity to wildlife habitats in the Himalaya. However, it is crucial to understand the extent to which human habitat modification affects wildlife. Mesocarnivores generally possess broader niches than large carnivores and adapt quickly to human activities. Here, we use a case study in the western Himalaya to test the hypothesis that human disturbance influenced mesocarnivore habitat use. Methods: We used camera trapping and mitochondrial DNA-based species identification from faecal samples to obtain mesocarnivore detections. We then compared the responses of mesocarnivores between an anthropogenic site and a less disturbed park along a contiguous gradient in habitat quality. The non-linear pattern in species-specific habitat selection and factors responsible for space usage around villages was captured using hierarchical generalized additive modelling (HGAM) and non-metric multidimensional scaling (NMDS) ordination. Results: Wildlife occurrences along the gradient varied by species. Leopard cat and red fox were the only terrestrial mesocarnivores that occurred in both anthropogenic site and park. We found a shift in habitat selection from less disturbed habitat in the park to disturbed habitat in anthropogenic site for the species detected in both the habitat types. For instance, red fox showed habitat selection towards high terrain ruggedness (0.5 to 0.7 TRI) and low NDVI (-0.05 to 0.2) in the park but no such specific selection in anthropogenic site. Further, leopard cat showed habitat selection towards moderate slope (20°) and medium NDVI (0.5) in park but no prominent habitat selections in anthropogenic site. The results revealed their constrained behaviour which was further supported by the intensive site usage close to houses, agricultural fields and human trails in villages. Conclusions: Our results indicate shifts in habitat selection and intensive site usage by mesocarnivores in the human-modified habitat. In future, this suggests the possibility of conflict and disease spread affecting both the people and wildlife. Therefore, this study highlights the requisite to test the wildlife responses to rapidly growing human expansions in modified habitats to understand the extent of impact. The management strategies need to have an integrated focus for further expansions of modified habitat and garbage disposal strategies, especially in the human-wildlife interface area.


Assuntos
Carnívoros , Panthera , Animais , Animais Selvagens , Ecossistema , Raposas
18.
Exp Appl Acarol ; 87(4): 289-307, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35939244

RESUMO

Punctoribates is one of few genera in Poronota (Acari: Oribatida) containing species with porose areas and species with saccules, the two types of the octotaxic system. These porose organs are the main difference between two morphologically similar species, P. punctum with porose areas and P. zachvatkini with saccules. As the octotaxic system can vary within species, species separation solely based on this trait might be insufficient. To assess the species status of P. zachvatkini, we investigated additional differences from P. punctum by comparing habitat preferences of the two species regarding nature reserves and agricultural landscapes during a field study in the German Eifel region, and by examining Punctoribates material from four large German natural history museums. We also performed scanning electron microscopy (SEM) and a genetic analysis using the D3 marker of the nuclear 28S rDNA gene. In the field study, P. zachvatkini had higher densities in the nature reserves and P. punctum in the agricultural landscapes. Evaluation of the museum material revealed P. punctum occurred more regularly in disturbed sites such as urban, agricultural and post-mining areas compared to P. zachvatkini. Pairwise distances of the 28S D3 genetic marker as well as an additional base pair in P. zachvatkini further support the separation of the two species, and SEM investigations revealed new details regarding the punctulation of P. zachvatkini. The review of the museum material showed that P. zachvatkini already occurred in Germany in 1967 and has a wider distribution than previously known.


Assuntos
Ácaros , Animais , DNA Ribossômico , Ecossistema , Marcadores Genéticos , Alemanha
19.
Chemosphere ; 303(Pt 2): 135101, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35659934

RESUMO

Marine litter is an emerging pollution all over the world. In addition to the macro sized plastics, ongoing scientific efforts revealed risks of micro and nano sized plastic particles in marine environment. In the past decades, an increasing number of studies have been carried out to understand the dynamics of this pollution. The aim of the present study was to investigate the microplastic (MPs) ingestion in commercially important fish species and to evaluate biological and environmental factors influencing the ingestion status. Gastrointestinal tract content of a total of 2222 individuals belonging to 17 species were examined for MPs existence. Out of 17 species evaluated, 13 of them was detected to ingest MPs. Our results showed that 18.1% of investigated fishes ingested MPs and the average length of the detected particles was 1.26 ± 1.38 (±SD) mm. The most dominant MP type was fiber (90.1%), while the most common particle colours were black (46.9%) and blue (29.4%). Polypropylene (85%) was the most common polymer type detected. Our evaluations indicated that the exposure of fish distributed in coastal areas to microplastic pollution is corelated to physical (precipitation and distance to nearest shore) and biological (functional trophic group, habitat of the species) factors. In order to design a more effective control mechanism, these impacts should be included in the assessments in future practices to reveal the effects of microplastic pollution on biota.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Monitoramento Ambiental , Peixes , Microplásticos/toxicidade , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
J Exp Zool A Ecol Integr Physiol ; 337(6): 645-665, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451573

RESUMO

The locomotor behaviors of treeshrews are often reported as scurrying "squirrel-like" movements. As such, treeshrews have received little attention beyond passing remarks in regard to primate locomotor evolution. However, scandentians vary considerably in habitat and substrate use, thus categorizing all treeshrew locomotion based on data collected from a single species is inappropriate. This study presents data on gait characteristics, positional, and grasping behavior of the northern treeshrew (Tupaia belangeri) and compares these findings to the fat-tailed dwarf lemur (Cheirogaleus medius) to assess the role of treeshrews as a model for understanding the origins of primate locomotor and grasping evolution. We found that northern treeshrews were primarily arboreal and shared their activities between quadrupedalism, climbing and leaping in rates similar to fat-tailed dwarf lemurs. During quadrupedal locomotion, they exhibited a mixture of gait characteristics consistent with primates and other small-bodied non-primate mammals and demonstrated a hallucal grasping mode consistent with primates. These data reveal that northern treeshrews show a mosaic of primitive mammalian locomotor characteristics paired with derived primate features. Further, this study raises the possibility that many of the locomotor and grasping characteristics considered to be "uniquely" primate may ultimately be features consistent with Euarchonta.


Assuntos
Cheirogaleidae , Escandêntias , Animais , Marcha , Locomoção/fisiologia , Mamíferos , Tupaia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...