Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci. agric ; 74(3): 242-249, mai./jun. 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497635

RESUMO

In the Amazonian region, P is often a primary factor limiting sustainable agrosystems. We compared the efficiencies of local aluminous phosphate (ALP) and single superphosphate (SSP) under a cover of leguminous residues to determine the fate of P sources in an Amazonian soil with hardsetting characteristics. The experiment followed a randomized block design with four replications and the following treatments: ALPU, i.e. ALP plus urea (U); ALPL, i.e., ALP plus leucaena (L); SSPU, i.e., SSP plus urea; SSPL, i.e., SSP plus leucaena; and BS, i.e., bare soil (without residues). To assess the residual values of the P sources, we used a sequence of crops consisting of maize, cowpea and cassava. Both ALP and SSP exhibited low P efficiency in BS. The greatest amounts of P and N uptake in the plots where P sources and leucaena residues were added, as in those covered with leucaena residue, resulted in higher productivity levels. These differences are important for the adoption of beneficial soil management practices and the use of P sources to enhance efficiency in tropical soils. The use of residues increased the P use efficiency of both P sources, as it enhanced the uptake of both N and soluble P. The replacement of SSP with ALP may be advantageous in the second year of planting with high-demand crops, but the P of the SSP retained in the minus soluble fractions may be available if the SSP is used in P-depleting crops combined with no-tillage underneath a mulch of residues.


Assuntos
Fósforo , Solo , Compostos de Nitrogênio , Fabaceae
2.
Sci. agric. ; 74(3): 242-249, mai./jun. 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-15384

RESUMO

In the Amazonian region, P is often a primary factor limiting sustainable agrosystems. We compared the efficiencies of local aluminous phosphate (ALP) and single superphosphate (SSP) under a cover of leguminous residues to determine the fate of P sources in an Amazonian soil with hardsetting characteristics. The experiment followed a randomized block design with four replications and the following treatments: ALPU, i.e. ALP plus urea (U); ALPL, i.e., ALP plus leucaena (L); SSPU, i.e., SSP plus urea; SSPL, i.e., SSP plus leucaena; and BS, i.e., bare soil (without residues). To assess the residual values of the P sources, we used a sequence of crops consisting of maize, cowpea and cassava. Both ALP and SSP exhibited low P efficiency in BS. The greatest amounts of P and N uptake in the plots where P sources and leucaena residues were added, as in those covered with leucaena residue, resulted in higher productivity levels. These differences are important for the adoption of beneficial soil management practices and the use of P sources to enhance efficiency in tropical soils. The use of residues increased the P use efficiency of both P sources, as it enhanced the uptake of both N and soluble P. The replacement of SSP with ALP may be advantageous in the second year of planting with high-demand crops, but the P of the SSP retained in the minus soluble fractions may be available if the SSP is used in P-depleting crops combined with no-tillage underneath a mulch of residues.(AU)


Assuntos
Fósforo , Solo , Fabaceae , Compostos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA