Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38982697

RESUMO

OBJECTIVE: Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells. METHODS: The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 µg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR. RESULTS: A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 µg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 µg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 µg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 µg/mL of extract (tail moments-19.536 ± 17.8), while 80 µg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 µg/mL of extract, while 80 µg/mL did not show a significant reduction. CONCLUSION: The 160 µg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.

2.
Sci Rep ; 14(1): 13869, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879643

RESUMO

Chitosan (CS) is a biopolymer that offers a wide range in biomedical applications due to its biocompatibility, biodegradability, low toxicity and antimicrobial activity. Syringaldehyde (1) is a naturally occurring organic compound characterized by its use in multiple fields such as pharmaceuticals, food, cosmetics, textiles and biological applications. Herein, development of chitosan derivative with physicochemical and anticancer properties via Schiff base formation from the reaction of chitosan with sustainable eco-friendly syringaldehyde yielded the (CS-1) derivative. Moreover, in the presence of polyethylene glycol diglycidyl ether (PEGDGE) or sodium tripolyphosphate (TPP) as crosslinkers gave chitosan derivatives (CS-2) and (CS-3NPs) respectively. The chemical structures of the new chitosan derivatives were confirmed using different tools. (CS-3NPs) nanoparticle showed improvement in crystallinity, and (CS-2) derivative revealed the highest thermal stability compared to virgin chitosan. The cytotoxicity activity of chitosan and its derivatives were evaluated against HeLa (human cervical carcinoma) and HEp-2 (Human Larynx carcinoma) cell lines. The highest cytotoxicity activity was exhibited by (CS-3NPs) compared to virgin chitosan against HeLa cell growth inhibition and apoptosis of 90.38 ± 1.46% and 30.3% respectively and IC50 of 108.01 ± 3.94 µg/ml. From the above results, it can be concluded that chitosan nanoparticle (CS-3NPs) has good therapeutic value as a potential antitumor agent against the HeLa cancer cell line.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Humanos , Nanopartículas/química , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
3.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823920

RESUMO

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Assuntos
Resinas Acrílicas , Hidrogéis , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efeitos dos fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Células HeLa , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Metacrilatos/química , Técnicas de Cocultura , Neoplasias/patologia
4.
J Cell Sci ; 137(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786982

RESUMO

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.


Assuntos
Cálcio , Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Mitocôndrias , Animais , Humanos , Cálcio/metabolismo , Sinalização do Cálcio , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Lectinas Tipo C , Proteínas de Membrana , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética
5.
Math Biosci ; 374: 109219, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795952

RESUMO

This paper develops a theory for anaphase in cells. After a brief description of microtubules, the mitotic spindle and the centrosome, a mathematical model for anaphase is introduced and developed in the context of the cell cytoplasm and liquid crystalline structures. Prophase, prometaphase and metaphase are then briefly described in order to focus on anaphase, which is the main study of this paper. The entities involved are modelled in terms of liquid crystal defects and microtubules are represented as defect flux lines. The mathematical techniques employed make extensive use of energy considerations based on the work that was developed by Dafermos (1970) from the classical Frank-Oseen nematic liquid crystal energy (Frank, 1958; Oseen, 1933). With regard to liquid crystal theory we introduce the concept of regions of influence for defects which it is believed have important implications beyond the subject of this paper. The results of this paper align with observed biochemical phenomena and are explored in application to HeLa cells and Caenorhabditis elegans. This unified approach offers the possibility of gaining insight into various consequences of mitotic abnormalities which may result in Down syndrome, Hodgkin lymphoma, breast, prostate and various other types of cancer.

6.
Cells ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38606998

RESUMO

Nasopharyngeal carcinoma (NPC) is a type of cancer that originates from the mucosal lining of the nasopharynx and can invade and spread. Although contemporary chemoradiotherapy effectively manages the disease locally, there are still challenges with locoregional recurrence and distant failure. Therefore, it is crucial to have a deeper understanding of the molecular basis of NPC cell movement in order to develop a more effective treatment and to improve patient survival rates. Cancer cell line models are invaluable in studying health and disease and it is not surprising that they play a critical role in NPC research. Consequently, scientists have established around 80 immortalized human NPC lines that are commonly used as in vitro models. However, over the years, it has been observed that many cell lines are misidentified or contaminated by other cells. This cross-contamination leads to the creation of false cell lines that no longer match the original donor. In this commentary, we discuss the impact of misidentified NPC cell lines on the scientific literature. We found 1159 articles from 2000 to 2023 that used NPC cell lines contaminated with HeLa cells. Alarmingly, the number of publications and citations using these contaminated cell lines continued to increase, even after information about the contamination was officially published. These articles were most commonly published in the fields of oncology, pharmacology, and experimental medicine research. These findings highlight the importance of science policy and support the need for journals to require authentication testing before publication.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Células HeLa , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Nasofaringe/metabolismo , Nasofaringe/patologia
7.
Adv Biol (Weinh) ; 8(6): e2300375, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38548666

RESUMO

In anti-cancer metastasis treatment, precise drug delivery to cancer cells remains a challenge. Innovative nanocomposites are developed to tackle these issues effectively. The approach involves the creation of manganese oxide (Mn3O4) nanoparticles (NPs) and their functionalization using trisodium citrate to yield functionalized Mn3O4 NPs (F-Mn3O4 NPs), with enhanced water solubility, stability, and biocompatibility. Subsequently, the chemotherapeutic drug doxorubicin (DOX) is encapsulated with Mn3O4 NPs, resulting in DOX/Mn3O4 NPs. To achieve cell-specific targeting, These NPs are coated with HeLa cell membranes (HCM), forming HCM/DOX/Mn3O4. For further refinement, a transferrin (Tf) receptor is integrated with cracked HCM to create Tf-HCM/DOX/Mn3O4 nanocomposites (NC) with specific cell membrane targeting capabilities. The resulting Tf-HCM/DOX/Mn3O4 NC exhibits excellent drug encapsulation efficiency (97.5%) and displays triggered drug release when exposed to NIR laser irradiation in the tumor's environment (pH 5.0 and 6.5). Furthermore, these nanocomposites show resistance to macrophage uptake and demonstrate homotypic cancer cell targeting specificity, even in the presence of other tumor cells. In vitro toxicity tests show that Tf-HCM/DOX/Mn3O4 NC achieves significant anticancer activity against HeLa and BT20 cancer cells, with percentages of 76.46% and 71.36%, respectively. These results indicate the potential of Tf-HCM/DOX/Mn3O4 NC as an effective nanoplatform for chemo-photothermal therapy.


Assuntos
Membrana Celular , Doxorrubicina , Sistemas de Liberação de Medicamentos , Compostos de Manganês , Nanocompostos , Óxidos , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanocompostos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Células HeLa , Óxidos/química , Óxidos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
8.
Asian Pac J Cancer Prev ; 25(3): 1065-1075, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546089

RESUMO

BACKGROUND: Cervical cancer is a prevalent and deadly malignancy in females, with chemotherapy often proving ineffective due to significant side effects and the development of chemo-resistance. This study investigates the medicinal potential of Clerodendrum infortunatum linn. , a genus with approximately 500 species in the Lamiaceae family. Limited research exists on the species of Clerodendrum infortunatum and its various solvent extracts. OBJECTIVE: The study aims to assess the anti-cancer properties of different solvent extracts from this plant on human cervical cancer cells. METHODS: The study examines the plant's phytochemical components and their potential to inhibit cancer growth. Aerial parts of the plant were extracted using the Soxhlet method, and the presence of Rutin, Quercetin, and Gallic Acid in specific solvent extracts was validated through High-Performance Thin Layer Chromatography (HPTLC). In vitro assays, including MTT, Apoptosis, Cell Cycle analysis, Intracellular Reactive Oxygen Species assessment, and Gene expression PCR, were conducted to investigate the plant's anti-cancer properties further. RESULTS: The outcomes of the phytochemical assessment indicated that Rutin was predominantly present in the water extract, with quercetin being more concentrated in the decoction, and the hydro-alcoholic extract showing elevated levels of gallic acid. Notably, the decoction extract demonstrated the highest cytotoxic activity, primarily through early apoptosis and arrests in the S-phase and G2M phases. Clerodendrum infortunatum exhibited a reduction in Intracellular Reactive Oxygen Species. The gene expression analysis disclosed an impact on the BCL-2 gene. CONCLUSION: Notably, Clerodendrum infortunatum exhibited the ability to initiate early apoptosis, halt the cell cycle at the S and G2M phases, and diminish levels of reactive oxygen species significantly. The gene expression analysis revealed an influence on the BCL-2 gene. To sum up, this research underscores the encouraging cytotoxic and antioxidant attributes of Clerodendrum infortunatum, implying its potential for cervical cancer treatment.


Assuntos
Clerodendrum , Neoplasias do Colo do Útero , Humanos , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Clerodendrum/química , Neoplasias do Colo do Útero/tratamento farmacológico , Solventes , Quercetina/farmacologia , Espécies Reativas de Oxigênio , Compostos Fitoquímicos , Ácido Gálico , Rutina
9.
Chem Biodivers ; 21(3): e202302072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38268315

RESUMO

Traditional medicinal practices often utilize herbal remedies for treating various diseases. This study focuses on exploring the phytochemical constituents, in-silico, in-vitro antioxidant, and anticancer activities of Valerian wallichii root extracts on human cervical epithelial carcinoma (HeLa) cell lines. The molecular docking approach was employed to predict the ligand molecule's orientation within the receptor like Epidermal growth factor receptor tyrosine kinase domain (PDB ID: 1M17) using Schrodinger's GLIDE model. Among the selected phytocompounds, hesperidin exhibited promising inhibitory activity against EGFR (Epidermal Growth Factor Receptor) domain with -8.701 kcal/mol docking score and interactions with MET 769, ASP 831, ASP776, LEU694 and ASN818 residues as compared to standard doxorubicin with -7.6 kcal/mol docking score and interactions with ASP 831, ASN818 and ASP776 residues and further, various antioxidant activity was assessed and In-vitro anticancer activity against HeLa cell lines was evaluated by hydroalcoholic root extracts demonstrated antioxidant capacities, and selective cytotoxicity was observed, with IC50 : 45.759±0.42 µg/mL for the overall extract and IC50 : 30.245±0.58 µg/mL for the EAF fraction as compared to standard doxorubicin with IC50 : 25.9891±0.25 µg/mL, respectively. The present study concluded that Valerian wallichii L possesses potential human cervical epithelial carcinoma cell line inhibition properties based on the computer aided drug design models and in-vitro activity.


Assuntos
Antineoplásicos , Carcinoma , Valeriana , Humanos , Células HeLa , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Extratos Vegetais/química , Doxorrubicina , Carcinoma/tratamento farmacológico , Receptores ErbB
10.
Appl Biochem Biotechnol ; 196(3): 1612-1622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37436547

RESUMO

Cervical cancer is the most common cancer among women of childbearing age. Nandhi Mezhugu is a Siddha herbo-mineral drug widely used to treat cancer. Due to a lack of scientific evidence, the present study was intended to evaluate the anti cancer activity of Nandhi Mezhugu in the HeLa cell line. The cells were cultured in Dulbecco's modified Eagle medium, then treated with different concentrations of the test drug (10 to 200 µg/ml). The anti proliferative activity of the drug was evaluated using an MTT assay. Cell apoptosis and cell cycle were measured by flow cytometry and typical nuclear changes of apoptotic processes were observed under the microscope using the dual acridine orange/ethidium bromide fluorescent staining method. The study result showed that the percentage of cell viability decreased with an increase in the concentration of the test drug. The MTT assay data showed that the test drug Nandhi Mezhugu had the antiproliferative effect on cervical cancer cells with IC50 of 139.7 ± 13.87 µg/ml. Further studies such as flow cytometry and dual staining method also revealed the apoptotic effect of the test drug. Nandhi Mezhugu can be effectively used as an anti cancer formulation to treat cervical cancer. Thus, the current study brings forth scientific evidence for the efficacy of Nandhi Mezhugu against the HeLa cell line. Further studies will be needed to prove the promising efficacy of Nandhi Mezhugu.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose
11.
Mikrochim Acta ; 191(1): 4, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041699

RESUMO

Biotinylated ruthenium complexes exhibit improved photoluminescent (PL) properties when they bind with streptavidin, making them useful labels or probes in bio-related analysis. However, their ECL properties are still unknown to date. Herein, we reported the use of [Ru(bpy)2(biot-bpy)]2+ complexes as a new ECL luminophore, which was functionalized with biotin moiety and exhibited higher ECL efficiency after binding to streptavidin. Moreover, [Ru(bpy)2(biot-bpy)]2+ complexes could be attached to HeLa cells through the biotin-streptavidin binding. A microwell bipolar electrode (MBE) prepared at one end of an optical fiber bundle was applied to produce ECL of the labeled HeLa cells, which was remotely detected at the other end. The [Ru(bpy)2(biot-bpy)]2+-streptavidin binding effect together with the high surface/volume ratio of MBE promoted the ECL generation on HeLa cells, which was applied to sensitively detect HeLa cells with a linear range from 1.56 × 102 to 6.74 × 106 cells/mL and a detection limit of 83 cells/mL. Moreover, ECL images were successfully acquired to resolve the emission on each HeLa cell. Such cytosensor based on [Ru(bpy)2(biot-bpy)]2+ and MBE may extend the applications of ECL for cell detections.


Assuntos
Biotina , Rutênio , Humanos , Estreptavidina/química , Células HeLa , Biotina/química , Rutênio/química , Medições Luminescentes/métodos , Fibras Ópticas , Eletrodos
12.
Front Chem ; 11: 1222067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727833

RESUMO

Designing fast and simple quantitative methods on cheap and disposable electrodes for the early detection of HeLa cells is highly desirable for clinical diagnostics and public health. In this work, we developed a label-free and sensitive electrochemical cytosensor for HeLa cell detection based on the gated molecular transport across vertically ordered mesoporous silica films (VMSFs) on the disposable indium tin oxide (ITO) electrode. As high affinity for a folate receptor existed on the membrane of HeLa cancer cells, folic acid (FA) functionalized VMSF could regulate the transport of electrochemical probe (Fe(CN)6 3-) by the specific recognition and adhesion of HeLa cells toward the VMSF surface. In addition, VMSF, served as a solid skeleton, is able to effectively prevent the direct contact of cells with the underlying electrode, remaining the underlying electrode activity and favoring the diffusion of Fe(CN)6 3-. Once specific adhesion of HeLa cells to the VMSF surface happens, Fe(CN)6 3- redox probe exhibits impeded transport in the silica nanochannels, ultimately resulting in the decreased electrochemical responses and realizing the quantitative determination of HeLa cells with a broad linear range (101-105 cells/mL) and a low limit of detection (4 cells/mL). The proposed electrochemical cytosensor shows a great potential application for the early diagnosis of cervical cancer.

13.
Future Med Chem ; 15(18): 1687-1701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37732414

RESUMO

Background: The aim of the study is to identify a novel furan-based chalcone derivative as potent inhibitor against the H37Rv strain. Materials & methods: The in silico pharmacokinetic characteristics, toxicity tests, molecular modeling, chemical synthesis and minimum inhibitory concentration (MIC; IC50) were carried out to evaluate the antitubercular potential of the synthesized furan-based chalcone analogues against H37Rv. Results & conclusion: Among the ten target compounds synthesized, DF02, DF05 and DF07 had MIC values of 1.6 µg/ml equivalent to isoniazid and DF10 showed MIC values of 3.25 µg/ml which is equipotent to pyrazinamide. All the other compounds had optimal concentrations 6.25-100 µg/ml against the H37Rv strain. Compounds DF02 and DF10 were further evaluated for cytotoxicity assay performed using HeLa cell lines.


Assuntos
Chalcona , Chalconas , Mycobacterium tuberculosis , Humanos , Antituberculosos/química , Chalconas/farmacologia , Células HeLa , Chalcona/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
14.
Foodborne Pathog Dis ; 20(11): 509-513, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738332

RESUMO

Shigella is considered a major public health concern, especially for children younger than 5 years of age in developing countries. The pathogenicity of Shigella is a complex process that involves the interplay of multiple genes located on a large, unstable virulence plasmid as well as chromosomal pathogenicity islands. Since various factors (including virulence and antibiotic resistance genes) are associated with the severity and duration of shigellosis, in this article, we aim to evaluate whether the invasion of HeLa cells is affected by Shigella spp. isolates with different characteristics (including serogroups, virulence gene profiles, and antibiotic resistance patterns) recovered from pediatric patients in Tehran, Iran. Cell invasion ability of 10 Shigella isolates with different serogroups (Shigella flexneri and Shigella sonnei), gene profiling (virA, sen, ipgD, ipaD, ipaC, ipaB, and ipaH), and antibiotic resistance phenotyping (ampicillin, azithromycin, ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, cefixime, cefotaxime, minocycline, and levofloxacin) were measured by plaque-forming assay in HeLa cell lines. The results show that all the selected Shigella spp. isolates recovered from pediatric patients were able to invade HeLa cells, but the total number and average size of plaques were different between the isolates. The higher invasion ability of S. flexneri isolates in HeLa cells compared to S. sonnei isolates was attributed to the presence of particular virulence genes; however, the role of each of these virulence factors remains to be determined.


Assuntos
Disenteria Bacilar , Shigella , Criança , Humanos , Células HeLa , Irã (Geográfico) , Shigella/genética , Antibacterianos/farmacologia , Diarreia , Testes de Sensibilidade Microbiana
15.
Metabolites ; 13(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623853

RESUMO

Matthiola longipetala subsp. livida is an annual herb in Brassicaceae that has received little attention despite the family's high reputation for health benefits, particularly cancer prevention. In this study, UPLC-HRMS-MS analysis was used for mapping the chemical constituents of different plant parts (i.e., flowers, leaves, and roots). Also, spectral similarity networks via the Global Natural Products Social Molecular Networking (GNPS) were employed to visualize their chemical differences and similarities. Additionally, the cytotoxic activity on HCT-116, HeLa, and HepG2 cell lines was evaluated. Throughout the current analysis, 154 compounds were annotated, with the prevalence of phenolic acids, glucosinolates, flavonol glucosides, lipids, peptides, and others. Predictably, secondary metabolites (phenolic acids, flavonoids, and glucosinolates) were predominant in flowers and leaves, while the roots were characterized by primary metabolites (peptides and fatty acids). Four diacetyl derivatives tentatively assigned as O-acetyl O-malonyl glucoside of quercetin (103), kaempferol (108 and 112), and isorhamnetin (114) were detected for the first time in nature. The flowers and leaves extracts showed significant inhibition of HeLa cell line propagation with LC50 values of 18.1 ± 0.42 and 29.6 ± 0.35 µg/mL, respectively, whereas the flowers extract inhibited HCT-116 with LC50 24.8 ± 0.45 µg/mL, compared to those of Doxorubicin (26.1 ± 0.27 and 37.6 ± 0.21 µg/mL), respectively. In conclusion, the flowers of M. longipetala are responsible for the abundance of bioactive compounds with cytotoxic properties.

16.
Nat Prod Res ; : 1-5, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395516

RESUMO

This study screened flavonoids and phenolic acids, antioxidant and cytotoxic effects of Mespilus germanica leaf and fruit samples. The RP-HPLC-DAD analysis allowed the identification of hesperidin, epicatechin, epigallocatechin, benzoic, p-hydroxybenzoic, vanillic, protocatechuic, syringic, caffeic, ferulic, sinapic and p-coumaric acids in various extracts. Fruit alkaline-hydrolysable phenolic acids extract (BHPA), leaf bound phenolic acids from basic hydrolysis-2 extract (BPBH2) and leaf free flavan-3-ol extract exhibited the largest DPPH, OH and NO radicals scavenging activity, respectively. Leaf flavone extract showed strong cytotoxicity on the HepG2 cell line (IC50 = 36.49 ± 1.12 µg/mL) as well as good •OH scavenging and Fe2+ chelation activities. Additionally, leaf bound phenolic acids from acid hydrolysis-1 extract (BPAH1) demonstrated strong cytotoxicity on the HeLa cell line (IC50 = 36.24 ± 1.89 µg/mL). This study suggests Turkish medlar as a natural source of phenolic compounds with potential application in food and pharmaceutical industries as anticancer/antioxidant agents.

17.
Heliyon ; 9(5): e16326, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251837

RESUMO

Background: Today, uterine cancer is one of the most important causes of death in the world and is one of the major problems in human health. There have been numerous reports of the effect of Streptococcus agalactiae peptide and capsular products against cancer cell lines. Objective: This study aimed to research recombinant peptide CPSA-CPSC-L-ACAN and investigate its apoptotic effect against the HeLa cell line by Real-Time-RT PCR. Design: In this study confirmation of the recombinant fusion peptide was performed by Western blotting. The effect of cytotoxicity of different concentrations of recombinant fusion peptide against the HeLa cell line was investigated by the MTT technique. The expression of apoptotic genes including BAX, BCL-2, and Caspase-3 in comparison with the GAPDH reference gene before and after exposure to recombinant fusion peptide was measured by Real-Time RT-PCR. Results: Recombinant fusion peptide at a concentration of 63 µg/ml destroyed 50% of the HeLa cell line in 24 h and cell treatment with this concentration increased gene expression of Caspase-3 genes by 16 times, bax by 6 times and decreased the expression of bcl-2 by 0.176 times. Conclusions: The results showed that treatment of the HeLa cell line with recombinant fusion peptide induced an apoptotic effect. The recombinant fusion peptide could probably help the medical community as a prophylactic or therapeutic treatment for cervical cancer.

18.
Biosensors (Basel) ; 13(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36979568

RESUMO

In this study, a double resonator piezoelectric cytometry (DRPC) technology based on quartz crystal microbalance (QCM) was first employed to identify HeLa cell pyroptosis and apoptosis by monitoring cells' mechanical properties in a real-time and non-invasive manner. AT and BT cut quartz crystals with the same frequency and surface conditions were used concurrently to quantify the cells-exerted surface stress (ΔS). It is the first time that cells-exerted surface stress (ΔS) and cell viscoelasticity have been monitored simultaneously during pyroptosis and apoptosis. The results showed that HeLa pyroptotic cells exerted a tensile stress on quartz crystal along with an increase in the elastic modulus (G'), viscous modulus (G″), and a decrease of the loss tangent (G″/G'), whereas apoptotic cells exerted increasing compressive stress on quartz crystal along with a decrease in G', G″ and an increase in G″/G'. Furthermore, engineered GSDMD-/--DEVD- HeLa cells were used to investigate drug-induced disturbance and testify the mechanical responses during the processes of pyroptosis and non-pyroptosis. These findings demonstrated that the DRPC technology can serve as a precise cytomechanical sensor capable of identifying pyroptosis and apoptosis, providing a novel method in cell death detection and paving the road for pyroptosis and apoptosis related drug evaluation and screening.


Assuntos
Apoptose , Quartzo , Humanos , Células HeLa , Quartzo/química , Módulo de Elasticidade , Técnicas de Microbalança de Cristal de Quartzo
19.
Anticancer Agents Med Chem ; 23(12): 1429-1446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927433

RESUMO

BACKGROUND: 2-Amino thiophene derivatives are important compounds not only for their uses in many heterocyclic reactions but also due to their wide range of pharmaceutical and biological activities. OBJECTIVE: The aim of this work was to explore a number of new heterocyclic derivatives, studying their inhibitions toward cancer cell lines and studying their structure activity relation ship. METHODS: Alkylation of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile was achieved through its reaction with chloroacetone and 2-bromo-1-(4-aryl)ethanone derivatives to give compounds 3 and 11a-c. The produced compoumds were subjected to further heterocylization reactions and cytotoxic evaluation against the three cancer cell lines MCF-7, NCI-H460 and SF-268, together with the normal cell line WI 38. Further evaluations were obtained through studying their inhibitions against cancer cell lines classified according to the disease. Anticancer screening against hepatocellular carcinoma HepG2 and cervical carcinoma HeLa cell lines for all compounds together with the molecular docking of 12c, 12d, 12e and 12f were studied. RESULTS: Anti-proliferative evaluations and inhibitions for all of the synthesized compounds showed that many compounds exhibited high inhibitions. CONCLUSION: Toward the three cancer cell lines, compounds 3, 5a, 7a, 9a, 9b, 11b, 12b, 12d, 12e, 12f, 14c, 14e, 14f, 15e, 15f, 16e, 16f, 17c, 18b, 22a and 22c were the most cytotoxic compounds. The high activities of some compounds were attributed to the presence of the electronegative CN and or Cl groups within the molecule. Most of the tested compounds exhibited inhibitions higher than the reference doxorubicin toward hepatocellular carcinoma HepG2 and cervical carcinoma HeLa cell lines. The score of binding energy of compounds 12c, 12d, 12e and 12f was close to the reference Foretinib which appeared through the molecular docking results of such compounds.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Células HeLa , Simulação de Acoplamento Molecular , Tiofenos/farmacologia , Tiofenos/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral
20.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829876

RESUMO

Cervical cancer is a health problem among women worldwide. Considering the limitations of prevention and antineoplastic chemotherapy against cervical cancer, research is needed to discover new, more effective, and safe antitumor agents. In the present study, we investigated the in vitro cytotoxicity of a new synthetic dibenzylideneacetone derived from 1,5-diaryl-3-oxo-1,4-pentadienyl (A3K2A3) against cervical cancer cells immortalized by HPV 16 (SiHa), and 18 (HeLa) by MTT assay. Furthermore, we performed spectrofluorimetry, flow cytometry, and Western blot analyzes to explore the inhibitory mechanism of A3K2A3 in cervical cancer cells. A3K2A3 showed cytotoxic activity against both cell lines. Mitochondrial depolarization and reduction in intracellular ATP levels were observed, which may be dependent on the redox imbalance between increased ROS and reduced levels of the antioxidant defense. In addition, damage to the cell membrane and DNA, and effective blocking of cell division in the G2/M phase were detected, which possibly led to the induction of apoptosis. This result was further confirmed by the upregulation of apoptosis-related proteins Bax, cytochrome C, and caspases 9 and 3. Our results provided the first evidence that A3K2A3 contributes to the suppression of cervical cancer in vitro, showing promise as a possible alternative for the treatment of this cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...