Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.297
Filtrar
1.
Notas enferm. (Córdoba) ; 25(43): 62-65, jun.2024.
Artigo em Espanhol | LILACS, BDENF - Enfermagem, UNISALUD, InstitutionalDB, BINACIS | ID: biblio-1561284

RESUMO

El síndrome compartimental agudo requiere de la descompresión quirúrgica, mediante fasciotomía, esta técnica debe ser urgente y será clave para evitar la instauración de graves secuelas. El posterior abordaje de estas heridas de difícil y lenta cicatrización suponen un reto para los profesionales de la salud y un problema para la salud pública debido a los altos costes y elevada morbilidad. La terapia de presión negativa (TPN) o cura por vacío (VAC, "vacuum assisted closure") es un tratamiento no invasivo que consigue la curación de las heridas favoreciendo la vascularización, la aparición del tejido de granulación y eliminación del exceso de exudado[AU]


Acute compartment syndrome requires surgical decompression by fasciotomy, this technique must be urgent and will be key to avoid the establishment of serious sequels. The subsequent approach to these wounds, which are difficult and slow to heal, is a challenge for health professionals and a problem for public health due to high costs and high morbidity. Negative pressure therapy (NPWT) or vacuum assisted closure (VAC) is a non-invasive treatment that achieves wound healing by promoting vascularization, the appearance of granulation tissue and elimination of excess exudate[AU]


A síndrome compartimental aguda requer descompressão cirúrgica, por fasciotomia, esta técnica deve ser urgente e será fundamental para evitar o estabelecimento de sequelas graves. O tratamento subsequente destas feridas difíceis e de cicatrização lenta é um desafio para os profissionais de saúde e um problema desaúde pública devido aos elevados custos e à elevada morbilidade. A terapia por pressão negativa (NPWT) ou o encerramento assistido por vácuo (VAC) é um tratamento não invasivo que permite a cicatrização de feridas através da promoção da vascularização, do aparecimento de tecido de granulação e da remoção do excesso de exsudado[AU]


Assuntos
Humanos , Fasciotomia
2.
Rozhl Chir ; 103(6): 202-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991783

RESUMO

Skin substitutes and covers are crucial across surgical disciplines, promoting interdisciplinary collaboration to meet varied clinical needs. While some medical professionals may encounter these products infrequently in their practice, understanding their properties and applications is paramount to provide optimal patient care. In this overview, we aim to provide healthcare professionals with essential information regarding skin substitutes and covers, equipping them with knowledge to navigate their use effectively across different clinical scenarios and to optimize patient outcomes. The speed of progress in tissue engineering and regenerative medicine is notable, driven by collaborative efforts among scientists, engineers, and clinicians. Technological advancements, increased funding, and a deeper understanding of cellular and molecular processes have accelerated research and development. However, challenges remain, such as achieving vascularization in engineered tissues, addressing immune responses, and ensuring long-term functionality of regenerated organs. Despite these hurdles, the field continues to evolve rapidly, offering hope for transformative medical solutions that may redefine the treatment landscape soon. In this article, we review the current selected commercially available epidermal, dermal, and total skin substitutes for wound healing.


Assuntos
Pele Artificial , Cicatrização , Humanos , Engenharia Tecidual
3.
Int J Biol Macromol ; : 133668, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992537

RESUMO

This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.

4.
Int J Biol Macromol ; : 133802, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992552

RESUMO

Pursuing high-performance conductive hydrogels is still hot topic in development of advanced flexible wearable devices. Herein, a tough, self-healing, adhesive double network (DN) conductive hydrogel (named as OSA-(Gelatin/PAM)-Ca, O-(G/P)-Ca) was prepared by bridging gelatin and polyacrylamide network with functionalized polysaccharide (oxidized sodium alginate, OSA) through Schiff base reaction. Thanks to the presence of multiple interactions (Schiff base bond, hydrogen bond, and metal coordination) within the network, the prepared hydrogel showed outstanding mechanical properties (tensile strain of 2800 % and stress of 630 kPa), high conductivity (0.72 S/m), repeatable adhesion performance and excellent self-healing ability (83.6 %/79.0 % of the original tensile strain/stress after self-healing). Moreover, the hydrogel-based sensor exhibited high strain sensitivity (GF = 3.66) and fast response time (<0.5 s), which can be used to monitor a wide range of human physiological signals. Based on this, excellent compression sensitivity (GF = 0.41 kPa-1 in the range of 90-120 kPa), a three-dimensional (3D) array of flexible sensor was designed to monitor the intensity of pressure and spatial force distribution. In addition, a gel-based wearable sensor was accurately classified and recognized ten types of gestures, achieving an accuracy rate of >96.33 % both before and after self-healing under three machine learning models (the decision tree, SVM, and KNN). This paper provides a simple method to prepare tough and self-healing conductive hydrogel as flexible multifunctional sensor devices for versatile applications in fields such as healthcare monitoring, human-computer interaction, and artificial intelligence.

5.
Exp Biol Med (Maywood) ; 249: 10142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993197

RESUMO

The cornea is an avascular tissue in the eye that has multiple functions in the eye to maintain clear vision which can significantly impair one's vision when subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptor proteins comprising three different peroxisome proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α), PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic targets for treating corneal diseases. In this review, we summarised the current literature on the therapeutic effects of PPAR agents on corneal diseases. We discussed the role of PPARs in the modulation of corneal wound healing, suppression of corneal inflammation, neovascularisation, fibrosis, stimulation of corneal nerve regeneration, and amelioration of dry eye by inhibiting oxidative stress within the cornea. We also discussed the underlying mechanisms of these therapeutic effects. Future clinical trials are warranted to further attest to the clinical therapeutic efficacy.


Assuntos
Doenças da Córnea , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Animais , Cicatrização/efeitos dos fármacos , Córnea/metabolismo , Estresse Oxidativo/efeitos dos fármacos
6.
Adv Mater ; : e2401561, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38949414

RESUMO

Digital light processing (DLP) is a 3D printing technology offering high resolution and speed. Printable materials are commonly based on multifunctional monomers, resulting in the formation of thermosets that usually cannot be reprocessed or recycled. Some efforts are made in DLP 3D printing of thermoplastic materials. However, these materials exhibit limited and poor mechanical properties. Here, a new strategy is presented for DLP 3D printing of thermoplastics based on a sequential construction of two linear polymers with contrasting (stiff and flexible) mechanical properties. The inks consist of two vinyl monomers, which lead to the stiff linear polymer, and α-lipoic acid, which forms the flexible linear polymer via thermal ring-opening polymerization in a second step. By varying the ratio of stiff and flexible linear polymers, the mechanical properties can be tuned with Young's modulus ranging from 1.1 GPa to 0.7 MPa, while the strain at break increased from 4% to 574%. Furthermore, these printed thermoplastics allow for a variety of reprocessability pathways including self-healing, solvent casting, reprinting, and closed-loop recycling of the flexible polymer, contributing to the development of a sustainable materials economy. Last, the potential of the new material in applications ranging from soft robotics to electronics is demonstrated.

7.
Biomed Eng Lett ; 14(4): 833-845, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946815

RESUMO

Prolonged pressure on the skin can result in pressure ulcers, which may lead to serious complications, such as infection and tissue damage. In this study, we evaluated the effect of a carboxymethyl cellulose/gelatin/sodium alginate (CMC/Gel/Alg) hydrogel containing N-acetyl-cysteine (NAC) on the healing of pressure ulcers. Pressure ulcers were induced by applying a magnet to the dorsum of rat skin. The wounds were then treated with sterile gauze, ChitoHeal Gel®, and CMC/Gel/Alg hydrogel dressings with or without NAC for the other groups. We evaluated the morphology, weight loss, swelling, rheology, blood compatibility, cytocompatibility, antioxidant capacity, and wound scratch of the prepared hydrogel. MTT assay revealed that the optimum concentration of NAC was 5 mg/ml, which induced higher cell proliferation and viability. Results of the histopathological evaluation showed increased wound closure, and complete re-epithelialization in the hydrogel-containing NAC group compared to the other groups. The CMC/Gel/Alg/5 mg/ml NAC hydrogel dressing showed 84% wound closure at 14 days after treatment. Immunohistochemical results showed a decrease in the level of TNF-α on day 14 compared day 7. Results of the qPCR assay revealed that NAC hydrogel increased the expression of Collagen type I and TGF-ß1 and decreased MMP2 and MMP9 mRNA on the 14th day. The results suggest that the CMC/Gel/Alg/5 mg/ml NAC hydrogel with antioxidant properties is an appropriate dressing for wound healing.

8.
Int J Nanomedicine ; 19: 6449-6462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946883

RESUMO

Purpose: Functional inorganic nanomaterials (NMs) are widely exploited as bioactive materials and drug depots. The lack of a stable form of application of NMs at the site of skin injury, may impede the removal of the debridement, elevate pH, induce tissue toxicity, and limit their use in skin repair. This necessitates the advent of innovative wound dressings that overcome the above limitations. The overarching objective of this study was to exploit strontium-doped mesoporous silicon particles (PSiSr) to impart multifunctionality to poly(lactic-co-glycolic acid)/gelatin (PG)-based fibrous dressings (PG@PSiSr) for excisional wound management. Methods: Mesoporous silicon particles (PSi) and PSiSr were synthesized using a chemo-synthetic approach. Both PSi and PSiSr were incorporated into PG fibers using electrospinning. A series of structure, morphology, pore size distribution, and cumulative pH studies on the PG@PSi and PG@PSiSr membranes were performed. Cytocompatibility, hemocompatibility, transwell migration, scratch wound healing, and delineated angiogenic properties of these composite dressings were tested in vitro. The biocompatibility of composite dressings in vivo was assessed by a subcutaneous implantation model of rats, while their potential for wound healing was discerned by implantation in a full-thickness excisional defect model of rats. Results: The PG@PSiSr membranes can afford the sustained release of silicon ions (Si4+) and strontium ions (Sr2+) for up to 192 h as well as remarkably promote human umbilical vein endothelial cells (HUVECs) and NIH-3T3 fibroblasts migration. The PG@PSiSr membranes also showed better cytocompatibility, hemocompatibility, and significant formation of tubule-like networks of HUVECs in vitro. Moreover, PG@PSiSr membranes also facilitated the infiltration of host cells and promoted the deposition of collagen while reducing the accumulation of inflammatory cells in a subcutaneous implantation model in rats as assessed for up to day 14. Further evaluation of membranes transplanted in a full-thickness excisional wound model in rats showed rapid wound closure (PG@SiSr vs control, 96.1% vs 71.7%), re-epithelialization, and less inflammatory response alongside skin appendages formation (eg, blood vessels, glands, hair follicles, etc.). Conclusion: To sum up, we successfully fabricated PSiSr particles and prepared PG@PSiSr dressings using electrospinning. The PSiSr-mediated release of therapeutic ions, such as Si4+ and Sr2+, may improve the functionality of PLGA/Gel dressings for an effective wound repair, which may also have implications for the other soft tissue repair disciplines.


Assuntos
Bandagens , Gelatina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Silício , Pele , Estrôncio , Cicatrização , Gelatina/química , Animais , Estrôncio/química , Estrôncio/farmacologia , Cicatrização/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pele/efeitos dos fármacos , Porosidade , Ratos , Humanos , Silício/química , Ratos Sprague-Dawley , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
9.
Cureus ; 16(5): e61366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947623

RESUMO

BACKGROUND: Chronic nonhealing ulcers present significant challenges in diabetic, dermatological, and surgical patients. Platelet-rich plasma (PRP), enriched with bioactive factors, offers promise for wound healing enhancement. This study evaluates PRP's efficacy, prepared via single and double spin methods in nonhealing chronic ulcers. METHODS:  Twenty-two patients aged 18-65 years participated and 100 mL of blood was drawn into citrate phosphate dextrose adenine (CPDA) bags with all aseptic precautions. PRP was prepared by single and double spin methods. Patient serum and 10% calcium gluconate were added to fibrin gel. PRP was injected around the ulcer and then dressed. Dressings were changed on the fifth, 15th, and 20th days with PRP. Evaluation occurred on day 30 using surface area and volume assessments by both methods. RESULTS: The single spin PRP group and double spin PRP group had 11 patients each with hemoglobin range of 10.79±1.88 to 12.63±2.22 g/dL. Initial lesions (16.27 cm²) significantly reduced to 14.76 cm² after double spin PRP sessions (p=0.005) and Initial lesions (9.87 cm²) significantly reduced to 7.65 cm² after single spin PRP sessions (p=0.005). Platelet count differences between whole blood and PRP were significant (p<0.05). CONCLUSIONS: The single spin PRP method exhibited considerable improvements in healing parameters, showcasing its potential for chronic ulcer management.

10.
Clin Cosmet Investig Dent ; 16: 249-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947864

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) can be a debilitating complication that can arise in patients who took or are taking antiresorptive (including bisphosphonates) or antiangiogenic agents, leading to visible bone or a fistula that continues for more than eight weeks, without any history of radiotherapy. This clinical case aimed to describe the treatment of MRONJ with topical active oxygen therapy using blue®m oral gel. A 63-year-old female patient that had been taking weekly sodium alendronate (70 mg) for four years by oral via, presented discomfort and implant movement in the #46 region, by that underwent surgical extraction of the implant. After three months the patient returned and was diagnosed with MRONJ. Initially, conventional therapies were performed, including surgical debridement and antibiotic therapy, but without success. The patient still had clinical signs of osteonecrosis six months after the implant extraction. The entire socket was then filled with blue®m oral gel by topical application. The patient was instructed to continue applying the gel to the region every 8 hours for 15 days. After this period, the patient returned, and it was observed that the wound was in the healing process, with the presence of epithelialized tissue and without bone exposure. The 2-year clinical follow-up showed the lesion had healed entirely, and a new implant was installed. After the osseointegration period, the final prosthesis was placed. The patient remains under clinical follow-up. Therefore, it can be concluded that the application of blue®m oral gel in this clinical case assisted in the recovery of the osteonecrosis lesion.

11.
Regen Biomater ; 11: rbae044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962115

RESUMO

Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.

12.
J Foot Ankle Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964708

RESUMO

The aim of the study was to compare preoperative factors and postoperative outcomes in patients with heel ulcerations that primarily had a transtibial (below the knee) amputation (N=38) versus vertical contour calcanectomy (n=62). The groups had no statistical difference between their Charlson Comorbidity Index Score, a prognostic score of ten-year survival in patients with multiple comorbidities. The odds of primary closure was 21.1 times higher in patients that underwent below knee amputation compared to patients that underwent vertical contour calcanectomy [OR 21.1 (95% CI 3.89-114.21)]. The odds of positive soft tissue culture at time of closure were 17.1 times higher for patients that underwent vertical contour calcanectomy [OR 17.1 (95% CI 5.40-54.16)]. The odds of a patent posterior tibial artery was 3.3 times higher for patients that underwent vertical contour calcanectomy [OR 3.3 (95% 1.09-10.09)]. The secondary aim of the study was to evaluate preoperative factors and postoperative outcomes in patients with failed vertical contour calcanectomy, defined as needing a below knee amputation. The odds of vertical contour calcanectomy failure was 13.7 times higher in male patients [OR 13.7 (95% CI 1.80-107.60)]. Vertical contour calcanectomy failure was 5.7 times higher in patients with renal disease [OR 5.7 (95% CI 1.10-30.30)], and vertical contour calcanectomy failure was 16.1 times higher for patients who needed additional surgery post closure [OR 16.1 (95% CI 1.40-183.20)].

13.
Biochem Pharmacol ; 226: 116413, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971333

RESUMO

Chronic nonhealing diabetic wounds are a critical clinical challenge. Regulatory T cells (Tregs) are immunosuppressive modulators affecting wound healing progression by controlling the inflammatory response. The current study attempted to investigate whether the exosomes derived from cord blood (CB) Tregs can accelerate the healing process. Exosomes were isolated from CB-Treg cultures using ultracentrifugation and validated with different specific markers of exosomes. The purified CB-Treg-derived exosomes were co-cultured with peripheral blood mononuclear cells (PBMCs) and CD14+ monocytes. The migration-promoting effect of CB-Treg-derived exosomes on fibroblasts and endothelial cells was investigated. We used thermosensitive Pluronic F-127 hydrogel (PF-127) loaded with CB-Treg-derived exosomes in a diabetic wound healing mouse model. CB-Treg-derived exosomes with 30-120 nm diameters revealed exosome-specific markers, such as TSG101, Alix, and CD63. CB-Treg-derived exosomes were mainly bound to the monocytes when co-cultured with PBMCs, and promoted monocyte polarization to the anti-inflammatory phenotype (M2) in vitro. CB-Treg-derived exosomes enhanced the migration of endothelial cells and fibroblasts. Furthermore, CB-Treg-derived exosomes treatment accelerated wound healing by downregulating inflammatory factor levels and upregulating the M2 macrophage ratio in vivo. Our findings indicated that CB-Treg-derived exosomes could be a promising cell-free therapeutic strategy for diabetic wound healing, partly by targeting monocytes.

14.
Int J Pharm ; : 124421, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972524

RESUMO

In this paper, a hydrogel material with efficient antibacterial, hemostatic, self-healing, and injectable properties was designed for the treatment of diabetic wounds. Firstly, quaternary ammonium salts were grafted with oxidized sodium alginate, and quaternized oxidized sodium alginate (QOSA) was synthesized. Due to the introduction of quaternary ammonium group it has antibacterial and hemostatic effects, at the same time, due to the presence of aldehyde group it can be reacted with carboxymethyl chitosan (CMCS) to form a hydrogel through the Schiff base reaction. Furthermore, deer antler blood polypeptide (DABP) was loaded into the hydrogel (QOSA&CMCS&DABP), showing good swelling ratio and bacteriostatic effect. In vitro and in vivo experiments demonstrated that the hydrogel not only quickly inhibited hepatic hemorrhage in mice and reduced coagulation index and clotting time in vitro, but also significantly enhanced collagen deposition at the wound site, accelerating wound healing. This demonstrates that the multifunctional hydrogel materials (QOSA&CMCS&DABP) have promising applications in the acceleration of skin wound healing and antibacterial promotion.

15.
Eur J Pharm Sci ; : 106847, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972611

RESUMO

Exogenous insulin-like growth factor-1 (IGF-1) has been reported to promote wound healing through regulation of vascular endothelial cells (VECs). Despite the existing studies of IGF-1 on VEC and its role in angiogenesis, the mechanisms regarding anti-inflammatory and angiogenetic effects of IGF-1 remain unclear. In this study, we investigated the wound-healing process and the related signaling pathway of IGF-1 using an inflammation model induced by IFN-γ. The results demonstrated that IGF-1 can increase cell proliferation, suppress inflammation in VECs, and promote angiogenesis. In vivo studies further confirmed that IGF-1 can reduce inflammation, enhance vascular regeneration, and improve re-epithelialization and collagen deposition in acute wounds. Importantly, the Ras/PI3K/IKK/NF-κB signaling pathways was identified as the mechanisms through which IGF-1 exerts its anti-inflammatory and pro-angiogenic effects. These findings contribute to the understanding of IGF-1's role in wound healing and may have implications for the development of new wound treatment approaches.

16.
Int J Biol Macromol ; : 133691, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972647

RESUMO

The study focused on Syzygium cumini Leaf Extract (SCLE) loaded into Carboxymethylcellulose (CMC) film via Solution casting. Phytochemical screening revealed carbohydrates, and HPLC analysis identified quercetin, known for promoting wound healing. FT-IR spectroscopy confirmed various functional groups. X-Ray diffraction (XRD) determined the crystallite size to be 14.58 nm. Field Emission Scanning Electron Microscopy (FESEM) showed the dispersion of extracts, and Energy Dispersive X-ray (EDX) analysis detailed the weight percentages of components. Antibacterial activity tests revealed zones of inhibition for S. aureus (15 mm) and E. coli (11 mm). The film exhibited 63.11 % antioxidant activity at 517 nm with DPPH at a 750 µL sample concentration. Drug release kinetics were also studied. In-vitro wound healing using the L929 cell line showed 83 % healing at a 100 µL concentration. Over 14 days, the treatment group's wounds healed completely within 7 days, unlike the control groups which showed no recovery after 14 days. These findings indicate that the SCLE-CMC film is highly effective in promoting wound healing.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38972940

RESUMO

Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975-986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.

18.
Adv Healthc Mater ; : e2401345, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973206

RESUMO

The limited and unstable absorption of excess exudate is a major challenge during the healing of infected wounds. In this study, a highly stable, multifunctional Janus dressing with unidirectional exudate transfer capacity is fabricated based on a single poly(lactide caprolactone) (PLCL). The success of this method relies on an acid hydrolysis reaction that transforms PLCL fibers from hydrophobic to hydrophilic in situ. The resulting interfacial affinity between the hydrophilic/phobic PLCL fibers endows the Janus structure with excellent unidirectional liquid transfer and high structural stability against repeated stretching, bending, and twisting. Various other functions, including wound status detection, antibacterial, antioxidant, and anti-inflammatory properties, are also integrated into the dressing by incorporating phenol red and epigallocatechin gallate. An in vivo methicillin-resistant Staphylococcus aureus-infected wound model confirms that the Janus dressing, with the capability to remove exudate from the infected site, not only facilitates epithelialization and collagen deposition, but also ensures low inflammation and high angiogenesis, thus reaching an ideal closure rate up to 98.4% on day 14. The simple structure, multiple functions, and easy fabrication of the dressing may offer a promising strategy for treating chronic wounds, rooted in the challenges of bacterial infection, excessive exudate, and persistent inflammation.

19.
Exp Dermatol ; 33(7): e15102, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973268

RESUMO

This study is aimed to analyse the risk factors associated with chronic non-healing wound infections, establish a clinical prediction model, and validate its performance. Clinical data were retrospectively collected from 260 patients with chronic non-healing wounds treated in the plastic surgery ward of Shanxi Provincial People's Hospital between January 2022 and December 2023 who met the inclusion criteria. Risk factors were analysed, and a clinical prediction model was constructed using both single and multifactor logistic regression analyses to determine the factors associated with chronic non-healing wound infections. The model's discrimination and calibration were assessed via the concordance index (C-index), receiver operating characteristic (ROC) curve and calibration curve. Multivariate logistic regression analysis identified several independent risk factors for chronic non-healing wound infection: long-term smoking (odds ratio [OR]: 4.122, 95% CI: 3.412-5.312, p < 0.05), history of diabetes (OR: 3.213, 95% CI: 2.867-4.521, p < 0.05), elevated C-reactive protein (OR: 2.981, 95% CI: 2.312-3.579, p < 0.05), elevated procalcitonin (OR: 2.253, 95% CI: 1.893-3.412, p < 0.05) and reduced albumin (OR: 1.892, 95% CI: 1.322-3.112, p < 0.05). The clinical prediction model's C-index was 0.762, with the corrected C-index from internal validation using the bootstrap method being 0.747. The ROC curve indicated an area under the curve (AUC) of 0.762 (95% CI: 0.702-0.822). Both the AUC and C-indexes ranged between 0.7 and 0.9, suggesting moderate-to-good predictive accuracy. The calibration chart demonstrated a good fit between the model's calibration curve and the ideal curve. Long-term smoking, diabetes, elevated C-reactive protein, elevated procalcitonin and reduced albumin are confirmed as independent risk factors for bacterial infection in patients with chronic non-healing wounds. The clinical prediction model based on these factors shows robust performance and substantial predictive value.


Assuntos
Proteína C-Reativa , Cicatrização , Humanos , Fatores de Risco , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Idoso , Fumar/efeitos adversos , Doença Crônica , Curva ROC , Modelos Logísticos , Infecção dos Ferimentos/epidemiologia , Pró-Calcitonina/sangue , Diabetes Mellitus/epidemiologia , Albumina Sérica/análise , Albumina Sérica/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-38973633

RESUMO

In situ-forming biocompatible hydrogels have great potential in various medical applications. Here, we introduce a pH-responsive, self-healable, and biocompatible hydrogel for cell scaffolds and the development of a tumor spheroid phantom for magnetic resonance imaging. The hydrogel (pMAD) was synthesized via amino-yne click chemistry between poly(2-methacryloyloxyethyl phosphorylcholine-co-2-aminoethylmethacrylamide) and dialkyne polyethylene glycol. Rheology analysis, compressive mechanical testing, and gravimetric analysis were employed to investigate the gelation time, mechanical properties, equilibrium swelling, and degradability of pMAD hydrogels. The reversible enamine and imine bond mechanisms leading to the sol-to-gel transition in acidic conditions (pH ≤ 5) were observed. The pMAD hydrogel demonstrated potential as a cellular scaffold, exhibiting high viability and NIH-3T3 fibroblast cell encapsulation under mild conditions (37 °C, pH 7.4). Additionally, the pMAD hydrogel also demonstrated the capability for in vitro magnetic resonance imaging of glioblastoma tumor spheroids based on the chemical exchange saturation transfer effect. Given its advantages, the pMAD hydrogel emerges as a promising material for diverse biomedical applications, including cell carriers, bioimaging, and therapeutic agent delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...