Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Plant Cell Environ ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965879

RESUMO

Thrips, Frankliniella intonsa, is a highly polyphagous pest with a worldwide distribution. F. intonsa-infested sunflower seeds show marked visual damage. The study findings revealed that significantly more F. intonsa infested confection sunflower compared to oilseed sunflower, via olfactometer bioassay studies, we found that compared with the flower and pollen of oilseed sunflowers, those of confection sunflowers attract F. intonsa. Considering this discrepancy in the preference of F. intonsa on oilseed and confection sunflowers, the volatiles of the flower and pollens of two sunflowers were analysed by gas chromatography-mass spectroscopy. The behavioural responses of F. intonsa were assessed for these compounds using Y-tube bioassays. Geranyl bromide, a unique volatile component of oilseed sunflowers, induced an assertive approach-avoidance behaviour in F. intonsa, whereas the unique component ethyl isovalerate in confection sunflowers attracted F. intonsa. F. intonsa adults demonstrated significant attraction to the blends of confection sunflowers. Furthermore, field verification revealed that intercropping confection and oilseed sunflowers could effectively control F. intonsa. The study provided insights into the chemical cues used by F. intonsa in locating hosts. Therefore, oilseed sunflowers can be used as repellent plants to prevent F. intonsa invasion.

2.
Int J Biol Macromol ; 272(Pt 1): 132873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838890

RESUMO

The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.


Assuntos
Proliferação de Células , Helianthus , Metástase Neoplásica , Polissacarídeos , Fator de Necrose Tumoral alfa , Helianthus/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
3.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791426

RESUMO

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Assuntos
Apoptose , Helianthus , Tubérculos , Poliaminas , Helianthus/metabolismo , Helianthus/crescimento & desenvolvimento , Poliaminas/metabolismo , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento
4.
Chemosphere ; 359: 142290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723691

RESUMO

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Assuntos
Biotransformação , Retardadores de Chama , Helianthus , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Catalase/metabolismo
5.
Int J Phytoremediation ; : 1-12, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644603

RESUMO

One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.


The current study confirms and provides new insights into the low Cd and Zn concentration responses of two cultivars of Helianthus annuus as potential HM phytoremediators. HMA3 and HMA4 mediated both root sequestration and reduced root-to-shoot translocation rates. Moreover, high CAT and POX activities may reduce oxidative damage and enhance plant tolerance. The V120 showed higher levels of Cd accumulation in its roots and could be a promising cultivar for the phytoremediation of this heavy metal. This work recalls that Cd tolerance is a trait that may vary among cultivars of the same species and should be taken into consideration in the phytomanagement of heavy metals in contaminated soils.

6.
Plant Mol Biol ; 114(2): 34, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568355

RESUMO

Carotenoid cleavage oxygenases (CCOs) enzymes play an important role in plant growth and development by producing a wide array of apocarotenoids and their derivatives. These compounds are vital for colouring flowers and fruits and synthesizing plant hormones such as abscisic acid and strigolactones. Despite their importance, the gene family responsible for CCO enzymes in sunflowers has not been identified. In this study, we identify the CCO genes of the sunflower plant to fill this knowledge gap. Phylogenetic and synteny analysis indicated that the Helianthus annnus CCO (HaCCO) genes were conserved in different plant species and they could be divided into three subgroups based on their conserved domains. Analysis using MEME tool and multiple sequence alignment identified conserved motifs in the HaCCO gene sequence. Cis-regulatory elements (CREs) analysis of the HaCCO genes indicated the presence of various responsive elements related to plant hormones, development, and responses to both biotic and abiotic stresses. This implies that these genes may respond to plant hormones, developmental cues, and drought stress, offering potential applications in the development of more resistant crops. Genes belonging to the 9-cis-epoxy carotenoid dioxygenases (NCED) subgroups predominantly exhibited chloroplast localization, whereas the genes found in other groups are primarily localized in the cytoplasm. These 21 identified HaCCOs were regulated by 60 miRNAs, indicating the crucial role of microRNAs in gene regulation in sunflowers. Gene expression analysis under drought stress revealed significant up-regulation of HaNCED16 and HaNCED19, genes that are pivotal in ABA hormone biosynthesis. During organ-specific gene expression analysis, HaCCD12 and HaCCD20 genes exhibit higher activity in leaves, indicating a potential role in leaf pigmentation. This study provides a foundation for future research on the regulation and functions of the CCO gene family in sunflower and beyond. There is potential for developing molecular markers that could be employed in breeding programs to create new sunflower lines resistant to biotic and abiotic stresses.


Assuntos
Helianthus , Helianthus/genética , Reguladores de Crescimento de Plantas , Filogenia , Melhoramento Vegetal , Ácido Abscísico , Estresse Fisiológico/genética
7.
Plant Direct ; 8(4): e581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585190

RESUMO

Cultivated crops are generally expected to have less abiotic stress tolerance than their wild relatives. However, this assumption is not well supported by empirical literature and may depend on the type of stress and how it is imposed, as well as the measure of tolerance being used. Here, we investigated whether wild and cultivated accessions of Helianthus annuus differed in stress tolerance assessed as proportional decline in biomass due to drought and whether wild and cultivated accessions differed in trait responses to drought and trait associations with tolerance. In a greenhouse study, H. annuus accessions in the two domestication classes (eight cultivated and eight wild accessions) received two treatments: a well-watered control and a moderate drought implemented as a dry down followed by maintenance at a predetermined soil moisture level with automated irrigation. Treatments were imposed at the seedling stage, and plants were harvested after 2 weeks of treatment. The proportional biomass decline in response to drought was 24% for cultivated H. annuus accessions but was not significant for the wild accessions. Thus, using the metric of proportional biomass decline, the cultivated accessions had less drought tolerance. Among accessions, there was no tradeoff between drought tolerance and vigor assessed as biomass in the control treatment. In a multivariate analysis, wild and cultivated accessions did not differ from each other or in response to drought for a subset of morphological, physiological, and allocational traits. Analyzed individually, traits varied in response to drought in wild and/or cultivated accessions, including declines in specific leaf area, leaf theoretical maximum stomatal conductance (gsmax), and stomatal pore length, but there was no treatment response for stomatal density, succulence, or the ability to osmotically adjust. Focusing on traits associations with tolerance, plasticity in gsmax was the most interesting because its association with tolerance differed by domestication class (although the effects were relatively weak) and thus might contribute to lower tolerance of cultivated sunflower. Our H. annuus results support the expectation that stress tolerance is lower in crops than wild relatives under some conditions. However, determining the key traits that underpin differences in moderate drought tolerance between wild and cultivated H. annuus remains elusive.

8.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612905

RESUMO

Sunflower (Helianthus annuus L.) is an important, substantial global oil crop with robust resilience to drought and salt stresses. The TGA (TGACG motif-binding factor) transcription factors, belonging to the basic region leucine zipper (bZIP) family, have been implicated in orchestrating multiple biological processes. Despite their functional significance, a comprehensive investigation of the TGA family's abiotic stress tolerance in sunflowers remains elusive. In the present study, we identified 14 TGA proteins in the sunflower genome, which were unequally distributed across 17 chromosomes. Employing phylogenetic analysis encompassing 149 TGA members among 13 distinct species, we revealed the evolutionary conservation of TGA proteins across the plant kingdom. Collinearity analysis suggested that both HaTGA01 and HaTGA03 were generated due to HaTGA08 gene duplication. Notably, qRT-PCR analysis demonstrated that HaTGA04, HaTGA05, and HaTGA14 genes were remarkably upregulated under ABA, MeJA, and salt treatments, whereas HaTGA03, HaTGA06, and HaTGA07 were significantly repressed. This study contributes valuable perspectives on the potential roles of the HaTGA gene family under various stress conditions in sunflowers, thereby enhancing our understanding of TGA gene family dynamics and function within this agriculturally significant species.


Assuntos
Asteraceae , Helianthus , Helianthus/genética , Filogenia , Estresse Salino , Evolução Biológica
9.
PeerJ ; 12: e17114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529303

RESUMO

Specialty cut flowers are in demand, especially in the domestic market as they can be grown with low production costs without the need for specially equipped greenhouses and offer diversity in terms of form, texture, and colour. These products, which are widely cultivated in the USA, are not well known in Türkiye. One of the main problems of the Turkish cut flower sector is its dependence on foreign inputs and the lack of product diversity. Therefore, specialty cut flower production can be an alternative crop for Türkiye, which has climatic advantages. The cut flower potential of plants such as Zinnia elegans, Tagates erecta, Helianthus annuus, Gomphrena globosa, Centaurea cyanus, and Cleome spinosa that are commonly grown in gardens has been evaluated. After harvesting these flowers grown in an open field in June-October 2020, the stem length (cm), stem thickness (mm), flower length (cm), flower diameter (cm), flower weight (g), and vase life (days) were measured. As a result of the evaluations, considering the phenological findings such as flowering and harvesting period, Zinnia elegans, Tagates erecta, Helianthus annuus, Gomphrena globosa, and Centaurea cyanus were found to be suitable for Eskisehir climatic conditions due to their long flowering periods. On the other hand, if the stem length value, which is one of the most important parameters for cut flowers, is taken as a reference, the minimum stem length value of 30 cm and above is met by Zinnia elegans, Tagates erecta, Helianthus annuus, and Cleome spinosa while the vase life value of 6 days and above is met by Zinnia elegans, Tagates erecta, Helianthus annuus, Gomphrena globosa, and Cleome spinosa. However, Cleome spinosa was not found to be suitable for the region due to its low yield value and short flowering period, while Zinnia elegans, Helianthus annuus, Tagates erecta, and Gomphrena globosa were found to be plants that could be evaluated for the region. In addition, it is believed that the cultivation of specialty cut flowers, with the selection of suitable species, will be an alternative production in regions without climatic advantages.


Assuntos
Centaurea , Helianthus , Jardins , Turquia , Flores
10.
PeerJ ; 12: e16831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464756

RESUMO

In the context of global climate change, drought and soil salinity are some of the most devastating abiotic stresses affecting agriculture today. PYL proteins are essential components of abscisic acid (ABA) signaling and play critical roles in responding to abiotic stressors, including drought and salt stress. Although PYL genes have been studied in many species, their roles in responding to abiotic stress are still unclear in the sunflower. In this study, 19 HaPYL genes, distributed on 15 of 17 chromosomes, were identified in the sunflower. Fragment duplication is the main cause of the expansion of PYL genes in the sunflower genome. Based on phylogenetic analysis, HaPYL genes were divided into three subfamilies. Members in the same subfamily share similar protein motifs and gene exon-intron structures, except for the second subfamily. Tissue expression patterns suggested that HaPYLs serve different functions when responding to developmental and environmental signals in the sunflower. Exogenous ABA treatment showed that most HaPYLs respond to an increase in the ABA level. Among these HaPYLs, HaPYL2a, HaPYL4d, HaPYL4g, HaPYL8a, HaPYL8b, HaPYL8c, HaPYL9b, and HaPYL9c were up-regulated with PEG6000 treatment and NaCl treatment. This indicates that they may play a role in resisting drought and salt stress in the sunflower by mediating ABA signaling. Our findings provide some clues to further explore the functions of PYL genes in the sunflower, especially with regards to drought and salt stress resistance.


Assuntos
Helianthus , Helianthus/genética , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Secas , Filogenia , Estresse Salino
11.
Plant Dis ; : PDIS04230770RE, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301222

RESUMO

Phoma black stem (PBS), caused by Phoma macdonaldii Boerema (teleomorph Leptosphaeria lindquistii Frezzi), is the most common stem disease of sunflower (Helianthus annuus L.) in the northern Great Plains region of the United States. However, the impact of PBS on sunflower yield in the United States is unclear, and a near complete absence of information on the impact of fungicides on disease management exists. The objectives of this study were to determine the impact of PBS on sunflower yield, the efficacy of available fungicides, the optimal fungicide application timing, and the economic viability of fungicides as a management tool. Fungicide timing efficacy was evaluated by applying single and/or sequential applications of pyraclostrobin fungicide at three sunflower growth stages in 10 field trials between 2017 and 2019. Efficacy of 10 fungicides from the Fungicide Resistance Action Committee (FRAC) groups 3, 7, and 11 were evaluated in four field trials between 2018 and 2019. The impact of treatments on PBS were evaluated by determination of incidence, severity, maximum lesion height, disease severity index (DSI), and harvested yield. Nine of the 10 fungicides evaluated and all fungicide timings that included an early bud application resulted in disease reductions when compared with the nontreated controls. The DSI was negatively correlated to sunflower yield in high-yield environments (P = 0.0004; R2 = 0.3425) but not in low- or moderate-yield environments. Although FRAC 7 fungicides were generally most efficacious, the sufficient efficacy and lower cost of FRAC 11 fungicides make them more economically viable in high-yielding environments at current market conditions.

12.
BMC Genomics ; 25(1): 199, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378469

RESUMO

BACKGROUND: Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS: We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS: This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Estresse Fisiológico/genética , Plantas/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Mol Ecol ; 33(4): e17280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38247305

RESUMO

Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.


Assuntos
Helianthus , Seleção Genética , Humanos , Frequência do Gene , Mapeamento Cromossômico , Ecótipo , Genômica , Helianthus/genética
14.
Chem Pharm Bull (Tokyo) ; 72(1): 93-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233137

RESUMO

Sunflower seed extract, an antioxidant agent registered on the List of Existing Food Additives in Japan, was evaluated using HPLC, and three common constituents were detected. These peaks were identified as monocaffeoylquinic acids (3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and 5-O-caffeoylquinic acid [chlorogenic acid]). Upon scrutinizing other components, dicaffeoylquinic acids (isochlorogenic acids; 3,4-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 4,5-di-O-caffeoylquinic acids) were also identified. Structures of two newly isolated compounds were determined to be 3-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic and 4-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic acids. To identify the components that contribute to the antioxidant activity of sunflower seed extract, we fractionated the food additive sample solution and examined the active fractions for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Monocaffeoylquinic and dicaffeoylquinic acids showed high DPPH activity, including their contribution to the antioxidant activity of this food additive. DPPH radical scavenging activity of the new compounds showed almost the same value as that of the positive control, Trolox. Therefore, the contribution of these compounds was also considered.


Assuntos
Antioxidantes , Ácido Clorogênico/análogos & derivados , Helianthus , Ácido Quínico/análogos & derivados , Antioxidantes/farmacologia , Antioxidantes/química , Aditivos Alimentares/análise , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Indóis
15.
Plant Commun ; 5(3): 100767, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37974403

RESUMO

Jerusalem artichoke (Helianthus tuberosus) is a global multifunctional crop. It has wide applications in the food, health, feed, and biofuel industries and in ecological protection; it also serves as a germplasm pool for breeding of the global oil crop common sunflower (Helianthus annuus). However, biological studies of Jerusalem artichoke have been hindered by a lack of genome sequences, and its high polyploidy and large genome size have posed challenges to genome assembly. Here, we report a 21-Gb chromosome-level assembly of the hexaploid Jerusalem artichoke genome, which comprises 17 homologous groups, each with 6 pseudochromosomes. We found multiple large-scale chromosome rearrangements between Jerusalem artichoke and common sunflower, and our results show that the hexaploid genome of Jerusalem artichoke was formed by a hybridization event between a tetraploid and a diploid Helianthus species, followed by chromosome doubling of the hybrid, which occurred approximately 2 million years ago. Moreover, we identified more copies of actively expressed genes involved in inulin metabolism and showed that these genes may still be undergoing loss of function or sub- or neofunctionalization. These genomic resources will promote further biological studies, breeding improvement, and industrial utilization of Helianthus crops.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Inulina/metabolismo , Haplótipos , Cromossomos/metabolismo
16.
Plant J ; 117(4): 999-1017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009661

RESUMO

Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.


Assuntos
Brassica napus , Multiômica , Humanos , Brassica napus/genética , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismo , Sementes/metabolismo
17.
Mol Ecol ; 33(2): e17218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038696

RESUMO

Host-microbe interactions are increasingly recognized as important drivers of organismal health, growth, longevity and community-scale ecological processes. However, less is known about how genetic variation affects hosts' associated microbiomes and downstream phenotypes. We demonstrate that sunflower (Helianthus annuus) harbours substantial, heritable variation in microbial communities under field conditions. We show that microbial communities co-vary with heritable variation in resistance to root infection caused by the necrotrophic pathogen Sclerotinia sclerotiorum and that plants grown in autoclaved soil showed almost complete elimination of pathogen resistance. Association mapping suggests at least 59 genetic locations with effects on both microbial relative abundance and Sclerotinia resistance. Although the genetic architecture appears quantitative, we have elucidated previously unexplained genetic variation for resistance to this pathogen. We identify new targets for plant breeding and demonstrate the potential for heritable microbial associations to play important roles in defence in natural and human-altered environments.


Assuntos
Melhoramento Vegetal , Rizosfera , Humanos , Fenótipo , Plantas , Microbiologia do Solo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia
18.
Gene ; 893: 147908, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858744

RESUMO

The highly conserved miR396 plays a pivotal role in the growth, development, and responses to abiotic and biotic stresses in plants. However, research on miR396 and its targets in Jerusalem artichoke remains largely unexplored. In this study, we employed bioinformatics and experimental techniques, such as cloning and qRT-PCR, to investigate the regulatory role of miR396 on its targets, leveraging our lab's transcriptomic and degradomic data of Jerusalem artichoke. Specifically, we initially cloned and characterized the precursors (htu-MIR396a/b/c) and mature sequences (htu-miR396a/b/c) of three miR396 isoforms. Subsequently, we identified nine target genes, including seven Growth-Regulating Factors (GRFs) (HtGRF3/4/6/9/10/12/13), one WRKY transcription factor (HtWRKY40), and one Scarecrow-like (SCL) transcription factor (HtSCL33). Finally, we conducted an analysis of their expression patterns across various tissues and their responses to temperature stress. Notably, htu-MIR396s exhibited high expression in seedling stems, while htu-miR396s predominantly expressed in seedling leaves. Moreover, HtWRKY40 and HtSCL33 displayed higher expression levels than HtGRFs in most tissues, except leaves. Remarkably, HtGRF4/6/10/12/13 exhibited higher expression in leaves than in roots and stems during seedling growth. Furthermore, during tuber development, HtGRF4/6/10, HtWRKY40, and HtSCL33 were highly expressed, while HtGRF3/9/12/13 showed relatively lower expression levels. Under heat stress (42℃), htu-MIR396 expression was up-regulated, and htu-miR396 showed dynamic expression patterns in seedlings, resulting in the induction of HtGRF4/6/10/12/13 in leaves and HtSCL33 in roots, while HtWRKY40 in leaves was repressed. Conversely, under cold stress (4℃), htu-MIR396s showed fluctuating expression levels, and htu-miR396s were up-regulated in seedlings. Notably, HtGRF4/13 and HtSCL33 in seedlings were reduced, whereas HtGRF6 in roots and HtWRKY40 in leaves were enhanced. These findings offer valuable insights into the functional roles of miR396-target interactions under abiotic stress in Jerusalem artichoke.


Assuntos
Helianthus , MicroRNAs , Helianthus/genética , Helianthus/metabolismo , Temperatura , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética
20.
Nat Prod Res ; : 1-6, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967018

RESUMO

In this study, biochemical analyses were performed for the first time on 22 different Jerusalem artichokes clones collected from different regions of Türkiye and samples from three different organs of each clone, considering the interaction effects. As a result of the study, the interaction effect of clones and sampled organs was found significant for total flavonoids, ascorbic acid, total chlorophyll, pH, H2O2 removal capacity, total dry matter, water soluble dry matter and antioxidant capacity via FRAP. According to the correlation analysis, the highest coefficient among the parameters in the tuber was between titratable acidity and total phenolic matter (0,576). Principal component analysis was used to assess the degree to which the parameters explained the variation in the gene pool. Factors directly and indirectly affecting the amount of water-soluble dry matter in the tuber were examined by path analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...