Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.834
Filtrar
1.
Inflammation ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954261

RESUMO

Peroxiredoxin 6 (PRDX6) has a protective effect on pulmonary epithelial cells against cigarette smoke (CS)-induced ferroptosis. This study investigates the role of PRDX6 in the development of chronic obstructive pulmonary disease (COPD) and its possibility as a target. We observed that PRDX6 was downregulated in lung tissues of COPD patients and in CS-stimulated cells. The degradation of PRDX6 could be through the lysosomal pathway. PRDX6 deficiency exacerbated pulmonary inflammation and mucus hypersecretion in vivo. Overexpression of PRDX6 in Beas-2B cells ameliorated CS-induced cell death and inflammation, suggesting its protective role against CS-induced damage. Furthermore, PRDX6 deficiency promoted ferroptosis by adding the content of iron and reactive oxygen species, while iron chelation with deferoxamine mitigated CS-induced ferroptosis, cell death, and inflammatory infiltration both in vitro and in vivo. The critical role of PRDX6 in regulating ferroptosis suggests that targeting PRDX6 or iron metabolism may represent a promising strategy for COPD treatment.

2.
J Ethnopharmacol ; : 118517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972525

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY: To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS: A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS: AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS: AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.

3.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38910496

RESUMO

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Assuntos
Heme Oxigenase-1 , Osteoartrite , Osteoclastos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoclastos/metabolismo , Humanos , Animais , Estresse Oxidativo , Diferenciação Celular , Osteogênese , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo
4.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867250

RESUMO

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Assuntos
Heme Oxigenase-1 , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético , Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Proteínas de Membrana
5.
ACS Sens ; 9(6): 3394-3402, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38822813

RESUMO

The development of new or improved single fluorescent protein (FP)-based biosensors (SFPBs), particularly those with excitation and emission at near-infrared wavelengths, is important for the continued advancement of biological imaging applications. In an effort to accelerate the development of new SFPBs, we report modified transposons for the transposase-based creation of libraries of FPs randomly inserted into analyte binding domains, or vice versa. These modified transposons feature ends that are optimized to minimize the length of the linkers that connect the FP to the analyte binding domain. We rationalized that shorter linkers between the domains should result in more effective allosteric coupling between the analyte binding-dependent conformational change in the binding domain and the fluorescence modulation of the chromophore of the FP domain. As a proof of concept, we employed end-modified Mu transposons for the discovery of SFPB prototypes based on the insertion of two circularly permuted red FPs (mApple and FusionRed) into binding proteins for l-lactate and spermidine. Using an analogous approach, we discovered calcium ion (Ca2+)-specific SFPBs by random insertion of calmodulin (CaM)-RS20 into miRFP680, a particularly bright near-infrared (NIR) FP based on a biliverdin (BV)-binding fluorescent protein. Starting from an miRFP680-based Ca2+ biosensor prototype, we performed extensive directed evolution, including under BV-deficient conditions, to create highly optimized biosensors designated the NIR-GECO3 series. We have extensively characterized the NIR-GECO3 series and explored their utility for biological Ca2+ imaging. The methods described in this work will serve to accelerate SFPB development and open avenues for further exploration and optimization of SFPBs across a spectrum of biological applications.


Assuntos
Técnicas Biossensoriais , Cálcio , Elementos de DNA Transponíveis , Proteínas Luminescentes , Técnicas Biossensoriais/métodos , Cálcio/química , Elementos de DNA Transponíveis/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Humanos , Calmodulina/química , Calmodulina/genética
6.
Fish Shellfish Immunol ; 151: 109703, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878912

RESUMO

Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-ß), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1ß, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.

7.
Bioact Mater ; 39: 595-611, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38883313

RESUMO

Sepsis, a life-threatening syndrome of organ damage resulting from dysregulated inflammatory response, is distinguished by overexpression of inflammatory cytokines, excessive generation of reactive oxygen/nitrogen species (RONS), heightened activation of pyroptosis, and suppression of autophagy. However, current clinical symptomatic supportive treatment has failed to reduce the high mortality. Herein, we developed self-assembled multifunctional carbon monoxide nanogenerators (Nano CO), as sepsis drug candidates, which can release CO in response to ROS, resulting in clearing bacteria and activating the heme oxygenase-1/CO system. This activation strengthened endogenous protection and scavenged multiple inflammatory mediators to alleviate the cytokine storm, including scavenging RONS and cfDNA, inhibiting macrophage activation, blocking pyroptosis and activating autophagy. Animal experiments show that Nano CO has a good therapeutic effect on mice with LPS-induced sepsis, which is manifested in hypothermia recovery, organ damage repair, and a 50% decrease in mortality rates. Taken together, these results illustrated the efficacy of multifunctional Nano CO to target clearance of multiple mediators in sepsis treatment and act against other refractory inflammation-related diseases.

8.
Front Endocrinol (Lausanne) ; 15: 1380163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846488

RESUMO

Background: Although the importance and benefit of heme oxygenase-1 (HO-1) in diabetes rodent models has been known, the contribution of HO-1 in the pre-diabetic patients with hyperlipidemia risk still remains unclear. This cross-sectional study aims to evaluate whether HO-1 is associated with hyperlipidemia in pre-diabetes. Methods: Serum level of HO-1 was detected using commercially available ELISA kit among 1,425 participants aged 49.3-63.9 with pre-diabetes in a multicenter Risk Evaluation of cAncers in Chinese diabeTic Individuals: A lONgitudinal (REACTION) prospective observational study. Levels of total cholesterol (TC) and triglyceride (TG) were measured and used to defined hyperlipidemia. The association between HO-1 and hyperlipidemia was explored in different subgroups. Result: The level of HO-1 in pre-diabetic patients with hyperlipidemia (181.72 ± 309.57 pg/ml) was obviously lower than that in pre-diabetic patients without hyperlipidemia (322.95 ± 456.37 pg/ml). High level of HO-1 [(210.18,1,746.18) pg/ml] was negatively associated with hyperlipidemia (OR, 0.60; 95% CI, 0.37-0.97; p = 0.0367) after we adjusted potential confounding factors. In subgroup analysis, high level of HO-1 was negatively associated with hyperlipidemia in overweight pre-diabetic patients (OR, 0.50; 95% CI, 0.3-0.9; p = 0.034), especially in overweight women (OR, 0.42; 95% CI, 0.21-0.84; p = 0.014). Conclusions: In conclusion, elevated HO-1 level was negatively associated with risk of hyperlipidemia in overweight pre-diabetic patients, especially in female ones. Our findings provide information on the exploratory study of the mechanism of HO-1 in hyperlipidemia, while also suggesting that its mechanism may be influenced by body weight and gender.


Assuntos
Heme Oxigenase-1 , Hiperlipidemias , Estado Pré-Diabético , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/epidemiologia , Feminino , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Heme Oxigenase-1/sangue , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Estudos Prospectivos , Estudos Longitudinais , Fatores de Risco , China/epidemiologia
9.
J Inflamm Res ; 17: 3825-3838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903877

RESUMO

Background: Intervertebral disc degeneration (IDD) underlies the pathogenesis of degenerative diseases of the spine; however, its exact molecular mechanism is unclear. Purpose: To explore the molecular mechanism of mechanical pressure (MP)-induced IDD and to assess the role and mechanism of Rosuvastatin (RSV) inhibits MP-induced IDD. Methods: SD rat nucleus pulposus cells (NPCs) were cultured in vitro and an apoptosis model of NPCs was constructed using MP. Proliferative activity, reactive oxygen species content, apoptosis, and wound healing were detected in each group of NPCs, respectively. The expression of relevant proteins was detected by qPCR and Western Blot techniques. 18 SD rats were randomly divided into control, pressure and RSV groups. Elisa, qPCR, Western Blot and immunohistochemical staining techniques were used to detect changes in the content of related proteins in the intervertebral discs of each group. HE staining and Modified Saffron-O and Fast Green Stain Kit were used to assess IDD in each group. Results: MP treatment at 1.0 MPa could significantly induce apoptosis of NPCs after 24 h. MP could significantly inhibit the proliferative activity and wound healing ability of NPCs, and increase the intracellular reactive oxygen species content and apoptosis rate; pretreatment with RSV could significantly activate the Nrf2/HO-1 signaling pathway and reverse the cellular damage caused by MP; when inhibit the Nrf2/HO-1 signaling pathway activation, the protective effect of RSV was reversed. In vivo MP could significantly increase the content of inflammatory factors within the IVD and promote the degradation of extracellular matrix, leading to IDD. When the intervention of RSV was employed, it could significantly activate the Nrf2/HO-1 signaling pathway and improve the above results. Conclusion: RSV may inhibit MP-induced NPCs damage and IDD by activating the Nrf2/HO-1 signaling pathway.

10.
Ecotoxicol Environ Saf ; 280: 116562, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850704

RESUMO

Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.


Assuntos
Diquat , Ferroptose , Heme Oxigenase-1 , Herbicidas , Espécies Reativas de Oxigênio , Espermatogônias , Testículo , Animais , Masculino , Ferroptose/efeitos dos fármacos , Camundongos , Espermatogônias/efeitos dos fármacos , Espermatogônias/patologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Testículo/efeitos dos fármacos , Testículo/patologia , Diquat/toxicidade , Herbicidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Proteínas de Membrana
11.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892364

RESUMO

This report describes major pathomechanisms of disease in which the dysregulation of host inflammatory processes is a major factor, with cardiovascular disease (CVD) as a primary model, and reviews strategies for countermeasures based on synergistic interaction between various agents, including drugs and generally regarded as safe (GRAS) natural medical material (NMM), such as Ginkgo biloba, spice phytochemicals, and fruit seed flavonoids. The 15 well-defined CVD classes are explored with particular emphasis on the extent to which oxidative stressors and associated ischemia-reperfusion tissue injury contribute to major symptoms. The four major categories of pharmaceutical agents used for the prevention of and therapy for CVD: statins, beta blockers (ß-blockers), blood thinners (anticoagulants), and aspirin, are presented along with their adverse effects. Analyses of major cellular and molecular features of drug- and NMM-mediated cardioprotective processes are provided in the context of their development for human clinical application. Future directions of the evolving research described here will be particularly focused on the characterization and manipulation of calcium- and calcineurin-mediated cascades of signaling from cell surface receptors on cardiovascular and immune cells to the nucleus, with the emergence of both protective and pathological epigenetic features that may be modulated by synergistically-acting combinations of drugs and phytochemicals in which phytochemicals interact with cells to promote signaling that reduces the effective dosage and thus (often) toxicity of drugs.


Assuntos
Doenças Cardiovasculares , Compostos Fitoquímicos , Humanos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/metabolismo , Animais
12.
Artigo em Inglês | MEDLINE | ID: mdl-38940935

RESUMO

PURPOSE: Heme oxygenase-1 (HO-1) is a crucial enzyme in heme metabolism, facilitating the breakdown of heme into biliverdin, carbon monoxide, and free iron. Renowned for its potent cytoprotective properties, HO-1 showcases notable antioxidant, anti-inflammatory, and anti-apoptotic effects. In this review, the authors aim to explore the profound impact of HO-1 on cardiac senescence and its potential implications in myocardial infarction (MI). RESULTS: Recent research has unveiled the intricate role of HO-1 in cellular senescence, characterized by irreversible growth arrest and functional decline. Notably, cardiac senescence has emerged as a pivotal factor in the development of various cardiovascular conditions, including MI. Notably, cardiac senescence has emerged as an important factor in the development of various cardiovascular conditions, including myocardial infarction (MI). The accumulation of senescent cells, spanning vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, and progenitor cells, poses a significant risk for cardiovascular diseases such as vascular aging, atherosclerosis, myocardial infarction, and ventricular remodeling. Inhibition of cardiomyocyte senescence not only reduces senescence-associated inflammation but also impacts other myocardial lineages, hinting at a broader mechanism of propagation in pathological remodeling. HO-1 has been shown to improve heart function and mitigate cardiomyocyte senescence induced by ischemic injury and aging. Furthermore, HO-1 induction has been found to alleviate H2O2-induced cardiomyocyte senescence. As we grow in our understanding of antiproliferative, antiangiogenic, anti-aging, and vascular effects of HO-1, we see the potential to exploit potential links between individual susceptibility to cardiac senescence and myocardial infarction. CONCLUSIONS: This review investigates strategies for upregulating HO-1, including gene targeting and pharmacological agents, as potential therapeutic approaches. By synthesizing compelling evidence from diverse experimental models and clinical investigations, this study elucidates the therapeutic potential of targeting HO-1 as an innovative strategy to mitigate cardiac senescence and improve outcomes in myocardial infarction, emphasizing the need for further research in this field.

13.
Pharmacol Res Perspect ; 12(4): e1225, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923404

RESUMO

Drug repurposing has gained significant interest in recent years due to the high costs associated with de novo drug development; however, comprehensive pharmacological information is needed for the translation of pre-existing drugs across clinical applications. In the present study, we explore the current pharmacological understanding of the orphan drug, hemin, and identify remaining knowledge gaps with regard to hemin repurposing for the treatment of cardiovascular disease. Originally approved by the United States Food and Drug Administration in 1983 for the treatment of porphyria, hemin has attracted significant interest for therapeutic repurposing across a variety of pathophysiological conditions. Yet, the clinical translation of hemin remains limited to porphyria. Understanding hemin's pharmacological profile in health and disease strengthens our ability to treat patients effectively, identify therapeutic opportunities or limitations, and predict and prevent adverse side effects. However, requirements for the pre-clinical and clinical characterization of biologics approved under the U.S. FDA's Orphan Drug Act in 1983 (such as hemin) differed significantly from current standards, presenting fundamental gaps in our collective understanding of hemin pharmacology as well as knowledge barriers to clinical translation for future applications. Using information extracted from the primary and regulatory literature (including documents submitted to Health Canada in support of hemin's approval for the Canadian market in 2018), we present a comprehensive case study of current knowledge related to hemin's biopharmaceutical properties, pre-clinical/clinical pharmacokinetics, pharmacodynamics, dosing, and safety, focusing specifically on the drug's effects on heme regulation and in the context of acute myocardial infarction.


Assuntos
Doenças Cardiovasculares , Reposicionamento de Medicamentos , Hemina , United States Food and Drug Administration , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Estados Unidos , Animais , Produção de Droga sem Interesse Comercial/legislação & jurisprudência , Aprovação de Drogas
14.
Environ Pollut ; : 124415, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908672

RESUMO

Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential mechanisms that mediate acute responses to air pollution exposures. This analysis showed that 1,247 genes were upregulated and 1,383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe x genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.

15.
J Mol Med (Berl) ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937302

RESUMO

The global incidence and prevalence of arrhythmias are continuously increasing. However, the precise mechanisms of underlying arrhythmogenesis and the optimal measures for effective treatment remain incompletely understood. The inducible form of heme oxygenase, known as heme oxygenase-1 (HO-1), is recognized as a potent antioxidant molecule capable of exerting anti-inflammatory and anti-apoptotic effects. Recent research indicates that HO-1 plays a role in preventing arrhythmias by mitigating cardiac remodeling, including electrical remodeling, ion remodeling, and structural remodeling. This review aimed to consolidate current knowledge regarding the involvement of HO-1 in arrhythmias and elucidate its underlying mechanisms of action.

16.
Exp Ther Med ; 28(2): 317, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939180

RESUMO

Inflammation serves as a multifaceted defense mechanism activated by pathogens, cellular damage and irritants, aiming to eliminate primary causes of injury and promote tissue repair. Peperomia dindygulensis Miq. (P. dindygulensis), prevalent in Vietnam and southern China, has a history of traditional use for treating cough, fever and asthma. Previous studies on its phytochemicals have shown their potential as anti-inflammatory agents, yet underlying mechanisms remain to be elucidated. The present study investigated the regulatory effects of P. dindygulensis on the anti-inflammatory pathways. The methanol extracts of P. dindygulensis (PDME) were found to inhibit nitric oxide (NO) production and induce heme oxygenase-1 (HO-1) expression in murine macrophages. While MAPKs inhibitors, such as SP600125, SB203580 and U0126 did not regulate HO-1 expression, the treatment of cycloheximide, a translation inhibitor, reduced HO-1. Furthermore, PDME inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and TNF-α expression at both the mRNA and protein levels. The activity of NOS and the expression of TNF-α, iNOS and COX-2 decreased in LPS-stimulated Raw 264.7 cells treated with PDME and this effect was regulated by inhibition of HO-1 activity. These findings suggested that PDME functions as an HO-1 inducer and serves as an effective natural anti-inflammatory agent in LPS-induced inflammation.

17.
Cell Stress Chaperones ; 29(3): 497-509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763404

RESUMO

Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since Bag1 knockout mice exhibited fetal lethality, the in vivo function of Bag1 remains unclear. In this study, we established a mouse line expressing Bag1 gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (Bag1Δex5) expressing undetectable levels of Bag1, Bag1Δex5 homozygous mice developed without abnormalities. Bag1Δex5 protein was found to be highly unstable in cells and in vitro. We found that the growth of mouse embryonic fibroblasts derived from Bag1Δex5-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, Bag1Δex5-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.


Assuntos
Proteínas de Ligação a DNA , Fibroblastos , Glutationa , Fatores de Transcrição , Animais , Fibroblastos/metabolismo , Glutationa/metabolismo , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Doxorrubicina/farmacologia , Butionina Sulfoximina/farmacologia , Embrião de Mamíferos/metabolismo , Proliferação de Células , Camundongos Knockout , Peróxido de Hidrogênio/metabolismo
18.
Aging (Albany NY) ; 16(10): 8630-8644, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38775722

RESUMO

BACKGROUND: Atrial fibrillation (AF) is often associated with atrial fibrosis and oxidative stress. Neferine, a bisbenzylisoquinoline alkaloid, has been reported to exert an antiarrhythmic effect. However, its impact on Angiotensin II (Ang II) infusion-induced AF and the underlying mechanism remains unclear. This study aimed to investigate whether neferine alleviates Ang II-induced AF and explore the underlying mechanisms. METHODS: Mice subjected to Ang II infusion to induce AF were concurrently treated with neferine or saline. AF incidence, myocardial cell size, fibrosis, and oxidative stress were then examined. RESULTS: Neferine treatment inhibited Ang II-induced AF, atrial size augmentation, and atrial fibrosis. Additionally, we observed that Ang II increased reactive oxygen species (ROS) generation, induced mitochondrial membrane potential depolarization, and reduced glutathione (GSH) and superoxide dismutase (SOD) levels, which were reversed to some extent by neferine. Mechanistically, neferine activated the Nrf2/HO-1 signaling pathway and inhibited TGF-ß/p-Smad2/3 in Ang II-infused atria. Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, reduced the anti-oxidative effect of neferine to some extent and subsequently abolished the beneficial effect of neferine on Ang II-induced AF. CONCLUSIONS: These findings provide hitherto undocumented evidence that the protective role of neferine in Ang II-induced AF is dependent on HO-1.


Assuntos
Angiotensina II , Fibrilação Atrial , Benzilisoquinolinas , Fibrose , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta , Animais , Angiotensina II/farmacologia , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/metabolismo , Fibrilação Atrial/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Benzilisoquinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Masculino , Fator de Crescimento Transformador beta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Smad2/metabolismo , Regulação para Cima/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Membrana , Heme Oxigenase-1
19.
Environ Pollut ; 352: 124130, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729511

RESUMO

Particulate matter (PM) has been a dominant contributor to air contamination, which will enter the central nervous system (CNS), causing neurotoxicity. However, the biological mechanism is poorly identified. In this study, C57BL/6J mice were applied to evaluate the neurotoxicity of collected fine particulate matter (PM2.5), via oropharyngeal aspiration at two ambient equivalent concentrations. The Y-maze results showed that PM2.5 exposure in mice would lead to the damage in hippocampal-dependent working memory. In addition, cell neuroinflammation, microglial activation were detected in hippocampus of PM2.5-exposure mice. To confirm the underlying mechanism, the microarray assay was conducted to screen the differentially expressed genes (DEGs) in microglia after PM2.5 exposure, and the results indicated the enrichment of DEGs in ferroptosis pathways. Furthermore, Heme oxygenase-1 (Hmox1) was found to be one of the most remarkably upregulated genes after PM2.5 exposure for 24 h. And PM2.5 exposure induced ferroptosis with iron accumulation through heme degradation by Nrf2-mediated Hmox1 upregulation, which could be eliminated by Nrf2-inhibition. Meanwhile, Hmox1 antagonist zinc protoporphyrin IX (ZnPP) could protect BV2 cells from ferroptosis. The results taken together indicated that PM2.5 resulted in the ferroptosis by causing iron overload through Nrf2/Hmox1 signaling pathway, which could account for the inflammation in microglia.


Assuntos
Ferroptose , Heme Oxigenase-1 , Inflamação , Camundongos Endogâmicos C57BL , Microglia , Fator 2 Relacionado a NF-E2 , Material Particulado , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Animais , Material Particulado/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Transdução de Sinais/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/genética , Poluentes Atmosféricos/toxicidade , Masculino , Proteínas de Membrana
20.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38785151

RESUMO

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Assuntos
Ciclo-Oxigenase 2 , Fibroblastos , Flavonoides , Periodontite , Ligante RANK , Animais , Ratos , Flavonoides/farmacologia , Periodontite/metabolismo , Periodontite/tratamento farmacológico , Periodontite/patologia , Ligante RANK/metabolismo , Ligante RANK/genética , Masculino , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Lipopolissacarídeos , Gengiva/metabolismo , Gengiva/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Células Cultivadas , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...