Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Toxicol ; 37(11): 2683-2691, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920046

RESUMO

Microcystins (MC) are hepatotoxic for organisms. Liver MC accumulation and structural change are intensely studied, but the functional hepatic enzymes and energy metabolism have received little attention. This study investigated the liver and hepatocyte structures and the activity of key hepatic functional enzymes with emphasis on energetic metabolism changes after subchronic fish exposure to cyanobacterial crude extract (CE) containing MC. The Neotropical erythrinid fish, Hoplias malabaricus, were exposed intraperitoneally to CE containing 100 µg MC-LR eq kg-1 for 30 days and, thereafter, the plasma, liver, and white muscle was sampled for analyses. Liver tissue lost cellular structure organization showing round hepatocytes, hyperemia, and biliary duct obstruction. At the ultrastructural level, the mitochondria and the endoplasmic reticulum exhibited disorganization. Direct and total bilirubin increased in plasma. In the liver, the activity of acid phosphatase (ACP) increased, and the aspartate aminotransferase (AST) decreased; AST increased in plasma. Alkaline phosphatase (ALP) and alanine aminotransferase (ALT) were unchanged in the liver, muscle, and plasma. Glycogen stores and the energetic metabolites as glucose, lactate, and pyruvate decrease in the liver; pyruvate decreased in plasma and lactate decreased in muscle. Ammonia levels increased and protein concentration decreased in plasma. CE alters liver morphology by causing hepatocyte intracellular disorder, obstructive cholestasis, and dysfunction in the activity of key liver enzymes. The increasing energy demand implies glucose mobilization and metabolic adjustments maintaining protein preservation and lipid recruitment to supply the needs for detoxification allowing fish survival.


Assuntos
Caraciformes , Cianobactérias , Hepatopatias , Fosfatase Ácida/metabolismo , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Amônia , Animais , Aspartato Aminotransferases/metabolismo , Bilirrubina/metabolismo , Misturas Complexas/metabolismo , Misturas Complexas/toxicidade , Cianobactérias/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Lactatos , Lipídeos , Fígado/metabolismo , Hepatopatias/metabolismo , Microcistinas/metabolismo , Microcistinas/toxicidade , Piruvatos/metabolismo
2.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670590

RESUMO

Weight control based on dietary restriction (DR) alone can cause lipid metabolic failure and progression to fatty liver. This study aimed to investigate the effect of exercise on preventing DR-induced hepatic fat accumulation in Zucker fatty (ZF) rats by focusing on the relationship between adipose tissue lipolysis and hepatic fat uptake. Six-week-old male ZF rats were randomly assigned to obese, DR, or DR with exercise (DR + Ex) groups. The DR and DR + Ex groups were fed a restricted diet, with the latter also undergoing voluntary exercise. After 6 weeks, hepatic fat accumulation was observed in the DR group, whereas intrahepatic fat was markedly reduced in the DR + Ex group. Compared with the obese (Ob) group, the DR group exhibited 2.09-fold expression of hepatic fatty acid translocase (FAT)/CD36 proteins (p < 0.01) and 0.14-fold expression of hepatic fatty acid-binding protein (FABP)1 (p < 0.01). There were no significant differences between the DR + Ex group and the Ob group. FAT/CD36 and hepatic triglyceride (TG) expression levels were strongly positively correlated (r = 0.81, p < 0.001), whereas there was a strong negative correlation between FABP1 and hepatic TG expression levels (r = -0.65, p < 0.001). Our results suggest that hepatic fat accumulation induced by DR in ZF rats might be prevented through exercise-induced modifications in FAT/CD36 and FABP1 expression.


Assuntos
Tecido Adiposo/metabolismo , Dietoterapia/métodos , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Antígenos CD36/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado Gorduroso/fisiopatologia , Fígado Gorduroso/prevenção & controle , Obesidade/metabolismo , Fatores de Proteção , Ratos Zucker , Triglicerídeos/metabolismo
3.
J Zhejiang Univ Sci B ; 21(8): 657-667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32748581

RESUMO

Camellia oil has become an important plant oil in China in recent years, but its effects on non-alcoholic fatty liver disease (NAFLD) have not been documented. In this study, the effects of camellia oil, soybean oil, and olive oil on NAFLD were evaluated by analyzing the fatty acid profiles of the plant oils, the serum lipids and lipoproteins of rats fed different oils, and by cytological and ultrastructural observation of the rats' hepatocytes. Analysis of fatty acid profiles showed that the polyunsaturated fatty acid (PUFA) n-6/n-3 ratio was 33.33 in camellia oil, 12.50 in olive oil, and 7.69 in soybean oil. Analyses of serum lipids and lipoproteins of rats showed that the levels of total cholesterol and low-density lipoprotein cholesterol in a camellia oil-fed group (COFG) were lower than those in an olive oil-fed group (OOFG) and higher than those in a soybean oil-fed group (SOFG). However, only the difference in total cholesterol between the COFG and SOFG was statistically significant. Cytological observation showed that the degree of lipid droplet (LD) accumulation in the hepatocytes in the COFG was lower than that in the OOFG, but higher than that in the SOFG. Ultrastructural analysis revealed that the size and number of the LDs in the hepatocytes of rats fed each of the three types of oil were related to the degree of damage to organelles, including the positions of nuclei and the integrity of mitochondria and endoplasmic reticulum. The results revealed that the effect of camellia oil on NAFLD in rats was greater than that of soybean oil, but less than that of olive oil. Although the overall trend was that among the three oil diets, those with a lower n-6/n-3 ratio were associated with a lower risk of NAFLD, and the effect of camellia oil on NAFLD was not entirely related to the n-6/n-3 ratio and may have involved other factors. This provides new insights into the effect of oil diets on NAFLD.


Assuntos
Camellia , Hepatopatia Gordurosa não Alcoólica/etiologia , Óleos de Plantas/administração & dosagem , Animais , Camellia/química , Ácidos Graxos/análise , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Gotículas Lipídicas/fisiologia , Lipídeos/sangue , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley
4.
Int. j. morphol ; 38(1): 48-55, Feb. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1056396

RESUMO

This research was designed to investigate the potential protective effect of vitamin C supplementation against hepatocyte ultrastructural alterations induced by artemether (antimalarial drug) administration. Twenty-four adult male albino rats were used in this study and were divided into four groups (n=6). Group I served as a control and rats in group II administrated artemether (4 mg/kg B.W) orally for three consecutive days. Group III administered artemether plus a low dose of vitamin C (2.86 mg/kg/l water) while group IV received artemether plusa high dose of vitamin C (8.56 mg/kg). At the end of the experimental period (14 days), the harvested liver tissues were examined by transmission electron microscopy (TEM), and blood samples were assayed for biomarkers of liver injury and oxidative stress. Artemether significantly (p<0.05) augmented biomarkers of liver injury such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and oxidative stress such as superoxide dismutase (SOD), Glutathione Peroxidase (GPX), and caused degeneration and damage of the rough endoplasmic reticulum and disrupted mitochondria. The blood sinusoids were also damaged with distortion of their canaliculi. Administration of vitamin C showed improvement of liver biomarkers, and liver parenchyma, especially in a high dose of vitamin C.We concludes that vitamin C is a partial protective agent against artemether-induced liver injury.


Esta investigación fue diseñada para investigar el posible efecto protector de la vitamina C contra las alteraciones ultraestructurales de los hepatocitos, inducidas por la administración de arteméter (medicamento antipalúdico). En el estudio se utilizaron 24 ratas albinas macho adultas y se dividieron en cuatro grupos (n = 6). El grupo I fue designado como control y las ratas en el grupo II se adminstró Arteméter (4 mg / kg de peso corporal) por vía oral durante tres días consecutivos. En el grupo III se administró arteméter, además de una dosis baja de vitamina C (2,86 mg / kg / l de agua) mientras que el grupo IV recibió arteméter más una dosis alta de vitamina C (8,56 mg / kg). Al final del período experimental (14 días), los tejidos hepáticos recolectados se examinaron por microscopía electrónica de transmisión (MET), y las muestras de sangre se analizaron en busca de biomarcadores de daño hepático y estrés oxidativo. El arteméter aumentó significativamente (p <0,05) los biomarcadores de daño hepático como alanina aminotransferasa (ALT), aspartato aminotransferasa (AST) y estrés oxidativo como superóxido dismutasa (SOD), glutatión peroxidasa (GPX) y causó degeneración y daño de la retículo endoplásmico rugoso y mitocondrias alteradas. Los sinusoides sanguíneos también fueron dañados con la distorsión de sus canalículos. La administración de vitamina C mostró una mejoría de los biomarcadores hepáticos y el parénquima hepático, especialmente en una dosis alta de vitamina C. Concluimos que la vitamina C es un agente protector parcial contra la lesión hepática inducida por arteméter.


Assuntos
Animais , Ratos , Ácido Ascórbico/administração & dosagem , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Artemeter/toxicidade , Ácido Ascórbico/farmacologia , Superóxido Dismutase/análise , Biomarcadores , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Animais de Doenças , Medicamentos Hepatoprotetores , Doença Hepática Induzida por Substâncias e Drogas/patologia , Glutationa Peroxidase/análise
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010545

RESUMO

Camellia oil has become an important plant oil in China in recent years, but its effects on non-alcoholic fatty liver disease (NAFLD) have not been documented. In this study, the effects of camellia oil, soybean oil, and olive oil on NAFLD were evaluated by analyzing the fatty acid profiles of the plant oils, the serum lipids and lipoproteins of rats fed different oils, and by cytological and ultrastructural observation of the rats' hepatocytes. Analysis of fatty acid profiles showed that the polyunsaturated fatty acid (PUFA) n-6/n-3 ratio was 33.33 in camellia oil, 12.50 in olive oil, and 7.69 in soybean oil. Analyses of serum lipids and lipoproteins of rats showed that the levels of total cholesterol and low-density lipoprotein cholesterol in a camellia oil-fed group (COFG) were lower than those in an olive oil-fed group (OOFG) and higher than those in a soybean oil-fed group (SOFG). However, only the difference in total cholesterol between the COFG and SOFG was statistically significant. Cytological observation showed that the degree of lipid droplet (LD) accumulation in the hepatocytes in the COFG was lower than that in the OOFG, but higher than that in the SOFG. Ultrastructural analysis revealed that the size and number of the LDs in the hepatocytes of rats fed each of the three types of oil were related to the degree of damage to organelles, including the positions of nuclei and the integrity of mitochondria and endoplasmic reticulum. The results revealed that the effect of camellia oil on NAFLD in rats was greater than that of soybean oil, but less than that of olive oil. Although the overall trend was that among the three oil diets, those with a lower n-6/n-3 ratio were associated with a lower risk of NAFLD, and the effect of camellia oil on NAFLD was not entirely related to the n-6/n-3 ratio and may have involved other factors. This provides new insights into the effect of oil diets on NAFLD.


Assuntos
Animais , Masculino , Ratos , Camellia/química , Ácidos Graxos/análise , Hepatócitos/ultraestrutura , Gotículas Lipídicas/fisiologia , Lipídeos/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Óleos de Plantas/administração & dosagem , Ratos Sprague-Dawley
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-846947

RESUMO

Camellia oil has become an important plant oil in China in recent years, but its effects on non-alcoholic fatty liver disease (NAFLD) have not been documented. In this study, the effects of camellia oil, soybean oil, and olive oil on NAFLD were evaluated by analyzing the fatty acid profiles of the plant oils, the serum lipids and lipoproteins of rats fed different oils, and by cytological and ultrastructural observation of the rats’ hepatocytes. Analysis of fatty acid profiles showed that the polyunsaturated fatty acid (PUFA) n-6/n-3 ratio was 33.33 in camellia oil, 12.50 in olive oil, and 7.69 in soybean oil. Analyses of serum lipids and lipoproteins of rats showed that the levels of total cholesterol and low-density lipoprotein cholesterol in a camellia oil-fed group (COFG) were lower than those in an olive oil-fed group (OOFG) and higher than those in a soybean oil-fed group (SOFG). However, only the difference in total cholesterol between the COFG and SOFG was statistically significant. Cytological observation showed that the degree of lipid droplet (LD) accumulation in the hepatocytes in the COFG was lower than that in the OOFG, but higher than that in the SOFG. Ultrastructural analysis revealed that the size and number of the LDs in the hepatocytes of rats fed each of the three types of oil were related to the degree of damage to organelles, including the positions of nuclei and the integrity of mitochondria and endoplasmic reticulum. The results revealed that the effect of camellia oil on NAFLD in rats was greater than that of soybean oil, but less than that of olive oil. Although the overall trend was that among the three oil diets, those with a lower n-6/n-3 ratio were associated with a lower risk of NAFLD, and the effect of camellia oil on NAFLD was not entirely related to the n-6/n-3 ratio and may have involved other factors. This provides new insights into the effect of oil diets on NAFLD.

7.
Ultrastruct Pathol ; 43(4-5): 162-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31631752

RESUMO

Ingestion of a toxic dose of the analgesic drug, acetaminophen (also called paracetamol or APAP), is among the most common causes of acute liver injury in humans. We tested the hypothesis that the combined polyphenolic compounds, resveratrol (RES) and quercetin (QUR), can substantially protect against hepatocyte ultrastructural damage induced by a toxic dose of APAP in a rat model of APAP-induced acute liver injury. The model group of rats received a single dose of APAP (2 g/kg), whereas the protective group of rats was pretreated for 7 days with combined doses of RES (30 mg/kg) and QUR (50 mg/kg) before being given a single dose of APAP. All rats were then sacrificed 24 hours post APAP ingestion. Harvested liver tissues were prepared for transmission electron microscopy (TEM) staining, and liver homogenates were assayed for biomarkers of inflammation, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and oxidative stress, such as malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx). In addition, blood samples were assayed for the liver injury enzyme alanine aminotransferase (ALT) as an indicator of liver damage. TEM images showed that APAP overdose induced acute liver injury as demonstrated by profound hepatocyte ultrastructural alterations, which were substantially protected by RES+QUR. In addition, APAP significantly (p < 0.05) modulated TNF-α, IL-6, MDA, SOD, GPx, and ALT biomarkers, which were completely protected by RES+QUR. Thus, RES+QUR effectively protects against APAP-induced acute liver injury in rats, possibly via the inhibition of inflammation and oxidative stress.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Animais , Hepatócitos/patologia , Microscopia Eletrônica de Transmissão , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia
8.
Ultrastruct Pathol ; 43(4-5): 199-208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31599191

RESUMO

Food additives such as nitrates and nitrites, and monosodium glutamate (MSG) used in the food industry increase the risk of certain cancers and inflict damage to vital organs. We sought to determine whether the antioxidant vitamin E can protect against liver injuries induced by a toxic dose of MSG in a rat model of MSG-induced acute liver injury. The model group of rats received a daily dose of MSG (4 gm/kg) for 7 days, whereas the protective groups were either received a 100 mg/kg vitamin E plus MSG or 300 mg/kg vitamin E plus MSG for 7 days. Rats were then sacrificed at day 8. Transmission and light microscopy images revealed substantial liver tissue damage induced by MSG in the model group as demonstrated by apoptotic hepatocytes with Pyknotic nuclei and irregular nuclear membrane, and cytoplasm displayed many vacuoles, swollen mitochondria, dilated endoplasmic reticulum, dilated blood sinusoids and bundles of collagen fibers in extracellular space. Treatment of the model group with vitamin E showed a substantial protection of liver tissue and hepatocellular architecture by 300 mg/kg vitamin E compared to a partial protection by 100 mg/kg vitamin E. In addition, MSG significantly (p < .05) modulated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), and glutathione peroxidase (GPx), which were significantly (p < .05) protected with vitamin E. Thus, vitamin E at 300 mg/kg effectively protects against MSG-induced acute liver injury in rats, possibly via the inhibition of inflammation, and up-regulation of endogenous antioxidants.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/ultraestrutura , Glutamato de Sódio/toxicidade , Vitamina E/farmacologia , Animais , Aromatizantes/toxicidade , Hepatócitos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
Ultrastruct Pathol ; 42(6): 508-515, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30497321

RESUMO

Diabetic complications that affect vital organs such as the heart and liver represent a major public health concern. The potential protective effects of the hormone insulin against hepatocyte ultrastructural alterations induced secondary to type 1 diabetes mellitus (T1DM) in a rat model of the disease have not been investigated before. Therefore, rats were injected once with 65 mg/kg streptozotocin (T1DM group) and the protection group (T1DM+Ins) received a daily injection of insulin 48 h post diabetic induction by streptozotocin and continued until being sacrificed at week 8. The harvested liver tissues were examined using transmission electron microscopy (TEM) and blood samples were assayed for biomarkers of liver injury enzyme, glycemia, lipidemia, inflammation, and oxidative stress. TEM images showed that T1DM induced profound hepatocyte ultrastructural alterations as demonstrated by pyknotic nucleus, condensation of chromatin, irregular nuclear membrane, swollen mitochondria, dilated rough endoplasmic reticulum, damaged intercellular space, and accumulation of few lipid droplets inside the hepatocyte cytoplasm, which were substantially protected with insulin. In addition, the blood chemistry profile complements the TEM data as demonstrated by an increase in serum levels of alanine aminotransferase (ALT), dyslipidemia, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) by T1DM that were significantly (p < 0.05) reduced with insulin injections. Thus, we conclude that insulin effectively protects against T1DM-induced liver injury in rats for a period of 8 weeks, possibly due to the inhibition of inflammation, oxidative stress, and dyslipidemia.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Insulina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Hepatopatias/patologia , Ratos Sprague-Dawley
10.
Int. j. morphol ; 36(4): 1350-1355, Dec. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-975707

RESUMO

SUMMARY: We sought to investigate the potential protective effect of Vitamin E supplementation against hepatocyte ultrastructural alterations induced by high fat diet (HFD) in a rat model of pre-diabetes. Therefore, rats were either fed with HFD (model group) or a standard laboratory chow (control group) for 12 weeks before being sacrificed. The protective group fed on a HFD and started the treatment with vitamin E (100 mg/kg/day, i.p) from day 1 until being sacrificed at week 12. The harvested liver tissues were examined using transmission electron microscopy (TEM) and blood samples were assayed for biomarkers of liver injury and prediabetes. TEM images showed that HFD induced profound pathological changes to the hepatocyte ultrastructure as demonstrated by degenerated hepatocytes with damaged cytoplasm that have mitochondrial swelling, dilation of endoplasmic reticulum, blebbing of plasma membranes, and cytoplasmic accumulations of lipid droplets and vacuoles, which were substantially but not completely protected with vitamin E. In addition, HFD significantly (p<0.05) augmented biomarkers of liver injury and pre-diabetes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), total cholesterol (TC), triglycerides (TG), and low density lipoprotein cholesterol (LDL-C), which were significantly (p<0.05) reduced with vitamin E except TNF-α and TC. Furthermore, none of these biomarkers were reduced to the control level by vitamin E. We conclude that vitamin E is a partial protective agent against HFD-induced liver injury and pre-diabetes.


RESUMEN: El objetivo de este estudio fue investigar el posible efecto protector de la administración de suplementos de vitamina E contra las alteraciones ultraestructurales de los hepatocitos inducidas por una dieta rica en grasas (DRG) en un modelo de prediabetes en ratas. Antes de ser sacrificadas las ratas fueron alimentadas con DRG (grupo modelo) o un alimento estándar de laboratorio (grupo control) durante 12 semanas. El grupo protector se alimentó con una DRG y comenzó el tratamiento con vitamina E (100 mg/kg/día, i.p) desde el día 1 hasta sacrificarlo en la semana 12. Los tejidos hepáticos recolectados se examinaron mediante microscopía electrónica de transmisión (MET) y se tomaron muestras de sangre y se analizaron los biomarcadores de daño hepático y prediabetes. Las imágenes de MET mostraron que el DRG indujo cambios patológicos profundos en la ultraestructura de los hepatocitos, como lo demuestran los hepatocitos degenerados con citoplasma dañado e hinchazón mitocondrial, dilatación del retículo endoplasmático, formación de ampollas en las membranas plasmáticas y acumulaciones citoplásmicas de gotas de lípidos y vacuolas, los que fueron sustancialmente protegidas con vitamina E. Además, DRG aumentó significativamente (p <0,05) los biomarcadores de daño hepático y prediabetes como alanina aminotransferasa (ALT), aspartato aminotransferasa (AST), factor de necrosis tumoral alfa (TNF-α), malondialdehído (MDA), colesterol total (CT), triglicéridos (TG) y lipoproteína de colesterol de baja densidad (LDL-C), la cual se redujo significativamente (p <0,05) con vitamina E, excepto TNF-α y CT. Ninguno de estos biomarcadores se redujo al nivel de control por la vitamina E. Concluimos que la vitamina E es un agente protector parcial contra la lesión hepática inducida por DRG y la prediabetes.


Assuntos
Animais , Ratos , Estado Pré-Diabético/tratamento farmacológico , Vitamina E/administração & dosagem , Hepatócitos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Aspartato Aminotransferases/efeitos dos fármacos , Vitamina E/farmacologia , Colesterol/análise , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hepatócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Alanina Transaminase/efeitos dos fármacos , Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fígado/efeitos dos fármacos , Malondialdeído/análise
11.
Ultrastruct Pathol ; 42(2): 155-161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29419350

RESUMO

Excessive consumption of carbohydrate and fat increases the risk of liver disease. We hypothesized that swim exercise can protect hepatocytes from ultra-structural damage induced by high cholesterol and fructose diets (HCFD). Rats were either fed with HCFD (model group) or a standard laboratory chow (control group) for 15 weeks before being sacrificed. Swim exercise trained rats started the treatment from the 11th week until the sacrifice day, end of week 15. Blood samples were assayed for biomarkers of liver injury and adiponectin. The harvested liver tissues were examined using transmission electron microscopy (TEM). TEM images revealed substantial damage and accumulation of lipid droplets (steatosis) in the hepatocytes of the model group that was inhibited by swim exercise. In addition, HCFD significantly (p < 0.0005) increased insulin resistance index (HOMA-IR), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), which were effectively (p < 0.02) decreased by a swim exercise to levels comparable to control group. Whereas, swim exercise increased adiponectin levels in HCFD group (p < 0.03). These results show that HCFD-induced hepatic injury is ameliorated by swim training exercise possibly via restoration of a normal blood sugar and lipid, induction of adiponectin and inhibition of inflammatory, and liver injury biomarkers.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Frutose/toxicidade , Hepatócitos/ultraestrutura , Hepatopatia Gordurosa não Alcoólica , Condicionamento Físico Animal/fisiologia , Animais , Glicemia , Frutose/administração & dosagem , Hepatócitos/patologia , Resistência à Insulina , Microscopia Eletrônica de Transmissão , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Natação
12.
World J Gastroenterol ; 20(15): 4335-40, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24764670

RESUMO

AIM: To investigate the ultrastructure of abnormal hepatocyte mitochondria, including their cellular and hepatic zonal distribution, in bioptates in pediatric non-alcoholic steatohepatitis (NASH). METHODS: Ultrastructural investigations were conducted on biopsy liver specimens obtained from 10 children (6 boys and 4 girls) aged 2-14 years with previously clinicopathologically diagnosed NASH. The disease was diagnosed if liver biopsy revealed steatosis, inflammation, ballooned hepatocytes, Mallory hyaline, or focal necrosis, varying degrees of fibrosis in the absence of clinical, serological, or histological findings of infectious liver diseases, autoimmune hepatitis, metabolic liver diseases, or celiac disease. For ultrastructural analysis, fresh small liver blocks (1 mm(3) volume) were fixed in a solution containing 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 mol/L cacodylate buffer. The specimens were postfixed in osmium tetroxide, subsequently dehydrated through a graded series of ethanols and propylene oxide, and embedded in Epon 812. The material was sectioned on a Reichert ultramicrotome to obtain semithin sections, which were stained with methylene blue in sodium borate. Ultrathin sections were contrasted with uranyl acetate and lead citrate, and examined using an Opton EM 900 transmission electron microscope. RESULTS: Ultrastructural analysis of bioptates obtained from children with non-alcoholic steatohepatitis revealed characteristic repetitive mitochondrial abnormalities within hepatocytes; mainly mitochondrial polymorphisms such as megamitochondria, loss of mitochondrial cristae, and the presence of linear crystalline inclusions within the mitochondrial matrix of an increased electron density. The crystalline inclusions were particularly evident within megamitochondria (MMC), which seemed to be distributed randomly both within the hepatic parenchymal cell and the zones of hepatic lobule, without special variations in abundance. The inclusions appeared as bundles viewed longitudinally, or as an evenly spaced matrix in cross section, and frequently caused mitochondrial deformation. The average diameter of these linear structures was 10 nm and the average space between them 20 nm. Sometimes enlarged intramitochondrial granules were seen in their vicinity. Foamy cytoplasm of hepatocytes was found, resulting from the proliferation of smooth endoplasmic reticulum and glycogen accumulation. The perivascular space of Disse was frequently dilated, and contained transitional hepatic stellate cells, as well as mature and/or newly forming collagen fiber bundles. CONCLUSION: Marked ultrastructural abnormalities observed in hepatocyte mitochondria, especially their polymorphism in the form of MMC and loss of mitochondrial cristae, accompanied by foamy cytoplasm, clearly indicate a major role of these organelles in the morphogenesis of pediatric NASH. Our findings seem to prove the high effectiveness of electron microscopy in the diagnosis of the disease.


Assuntos
Hepatócitos/ultraestrutura , Mitocôndrias Hepáticas/ultraestrutura , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Adolescente , Biópsia , Doença Celíaca/fisiopatologia , Criança , Pré-Escolar , Cristalização , Citoplasma/metabolismo , Feminino , Hepatite Autoimune/fisiopatologia , Hepatócitos/citologia , Humanos , Inflamação , Chumbo/química , Hepatopatias/fisiopatologia , Masculino , Microscopia Eletrônica de Transmissão , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...