Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(7): e10579, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249313

RESUMO

NOTCH pathway proteins, including the transcriptional factor HES1, play crucial roles in the development of the inner ear by means of the lateral inhibition mechanism, in which supporting cells have their phenotype preserved while they are prevented from becoming hair cells. Genetic manipulation of this pathway has been demonstrated to increase hair cell number. The present study aimed to investigate gene expression effects in hair cells and supporting cells after Hes1-shRNA lentivirus transduction in organotypic cultures of the organ of Corti from postnatal-day-3 mice. Forty-eight hours after in vitro knockdown, Hes1 gene expression was reduced at both mRNA and protein levels. Myo7a (hair cell marker) and Sox2 (progenitor cell marker) mRNA levels also significantly increased. The modulation of gene expression in the organ of Corti upon Hes1 knockdown is consistent with cell phenotypes related to lateral inhibition mechanism interference in the inner ear. The lentivirus-based expression of Hes1-shRNA is a valuable strategy for genetic interference in the organ of Corti and for future evaluation of its efficacy in protocols aiming at the regeneration of hair cells in vivo.


Assuntos
Animais , Ratos , Cóclea , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Órgão Espiral , Diferenciação Celular , Receptores Notch , Fatores de Transcrição HES-1/genética , Células Ciliadas Auditivas
2.
Front Immunol ; 11: 368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265900

RESUMO

Introduction: Leprosy is an infectious disease caused by Mycobacterium leprae, a debilitating disease that affects the skin and peripheral nerves. It is possible that tissue changes during infection with leprosy are related to alterations in the activity of the Notch signaling pathway, an innate signaling pathway in the physiology of the skin and peripheral nerves. Methods: This is a descriptive observational study. Thirty skin biopsies from leprosy patients and 15 from individuals with no history of this disease were evaluated. In these samples, gene expressions of cellular components associated with the Notch signaling pathway, Hes-1, Hey-1, Runx-1 Jagged-1, Notch-1, and Numb, were evaluated using q-PCR, and protein expression was evaluated using immunohistochemistry of Runx-1 and Hes-1. Results: Changes were observed in the transcription of Notch signaling pathway components; Hes-1 was downregulated and Runx-1 upregulated in the skin of infected patients. These results were confirmed by immunohistochemistry, where reduction of Hes-1 expression was found in the epidermis, eccrine glands, and hair follicles. Increased expression of Runx-1 was found in inflammatory cells in the dermis of infected patients; however, it is not related to tissue changes. With these results, a multivariate analysis was performed to determine the causes of transcription factor Hes-1 reduction. It was concluded that tissue inflammation was the main cause. Conclusions: The tissue changes found in the skin of infected patients could be associated with a reduction in the expression of Hes-1, a situation that would promote the survival and proliferation of M. leprae in this tissue.


Assuntos
Hanseníase/metabolismo , Fibras Nervosas/patologia , Receptores Notch/fisiologia , Pele/metabolismo , Adulto , Idoso , Subunidade alfa 2 de Fator de Ligação ao Core/análise , Ciclina D1/análise , Feminino , Humanos , Imuno-Histoquímica , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/química , Transdução de Sinais/fisiologia , Pele/patologia , Fatores de Transcrição HES-1/análise
3.
Reprod Sci ; 27(2): 503-512, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32046463

RESUMO

The aim of this study was to investigate whether the Notch pathway is modulated in response to the downregulation of the Wnt/Β-catenin system in corpora lutea (CLs) from superovulated rats. To this end, we analyzed the effect of in vitro CL Wnt/Β-catenin inhibition on the expression of Notch members and on luteal function. Mechanically isolated rat CLs were cultured with ICG-001, a Wnt/B-catenin inhibitor. In this system, Wnt/B-catenin inhibition reduced progesterone production and decreased StAR protein levels. Besides, Wnt/B-catenin inhibition stimulated the Notch system, evidenced by an increase in Hes1 expression, and promoted the expression of selected Notch family members. At long incubation times, StAR levels and progesterone concentration reached the control values, effects probably mediated by the Notch pathway. These results provide the first evidence of a compensatory mechanism between Wnt/B-catenin signaling and the Notch system, which contributes to the homeostasis of luteal cells.


Assuntos
Corpo Lúteo/metabolismo , Receptores Notch/metabolismo , Via de Sinalização Wnt , Animais , Ciclina D1/metabolismo , Regulação para Baixo , Feminino , Fosfoproteínas/metabolismo , Progesterona/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição HES-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA