Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(13): 12720-12730, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30877547

RESUMO

A regional raw clay was used as the starting material to prepare iron-pillared clays with different iron contents. The catalytic activity of these materials was tested in the heterogeneous photo-Fenton process, applied to the degradation of 2-chlorophenol chosen as the model pollutant. Different catalyst loads between 0.2 and 1.0 g L-1 and pH values between 3.0 and 7.0 were studied. The local volumetric rate of photon absorption (LVRPA) in the reactor was evaluated solving the radiative transfer equation applying the discrete ordinate method and using the optical properties of the catalyst suspensions. The photonic and quantum efficiencies of the 2-chlorophenol degradation depend on both the catalyst load and the iron content of the catalyst. The higher values for these parameters, 0.080 mol Einstein-1 and 0.152 mol Einstein-1, respectively, were obtained with 1.0 g L-1 of the catalyst with the higher iron content (17.6%). For the mineralization process, photonic and quantum efficiencies depend mainly on the catalyst load. Therefore, it was possible to employ a natural and cheap resource from the region to obtain pillared clay-based catalysts to degrade organic pollutants in water.


Assuntos
Argila/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Clorofenóis/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Fótons , Purificação da Água/instrumentação
2.
Environ Sci Pollut Res Int ; 26(7): 6532-6544, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623335

RESUMO

A solar homo/heterogeneous photo-Fenton process using five materials (Fe(II), Fe(III), mining waste, Fe(II)/mining waste, and Fe(III)/mining waste) supported on sodium alginate was used as a strategy to iron dosage for the degradation of eight pharmaceuticals in three different water matrices (distilled water, simulated wastewater, and hospital wastewater). Experiments were carried out in a photoreactor with a capacity of 1 L, using 3 g of iron-alginate spheres and an initial hydrogen peroxide concentration of 25 mg L-1, at pH 5.0. All the materials prepared were characterized by different techniques. The Fe(III)-alginate spheres presented the best pharmaceutical degradation after a treatment time of 116 min. Nineteen transformation products generated during the solar photo-Fenton process were identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, using a purpose-built database developed for detecting these transformation products. Finally, the transformation products identified were classified according to their toxicity and predicted biodegradability.


Assuntos
Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Alginatos , Biodegradação Ambiental , Cromatografia Líquida , Compostos Férricos , Peróxido de Hidrogênio , Ferro , Preparações Farmacêuticas/química , Luz Solar , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Environ Sci Pollut Res Int ; 26(5): 4192-4201, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29860698

RESUMO

SBA-15 and KIT-6 materials have been synthesized and modified with iron salts by the wet impregnation method with different metal loadings. The different mesostructures obtained were characterized by N2 adsorption-desorption at 77 K, X-ray diffraction, temperature-programmed reduction, and ultraviolet-visible spectroscopy. These iron-containing mesostructured materials have been successfully tested for the heterogeneous photo-Fenton degradation of aqueous solutions of dangerous herbicides, such as atrazine, using UV-visible light irradiation, at room temperature and close to neutral pH. The results showed that the Fe/SBA-15 (10%) and Fe/KIT-6 (5%) catalysts exhibited the highest activities. However, the Fe/KIT-6 (5%) catalyst with minor Fe loading than Fe/SBA-15 (10%) presented a higher degradation of atrazine (above 98% in a reaction time of 240 min). Therefore, the interconnectivity of the cage-like mesopores had an important influence on the catalytic activity, favoring probably mass-transfer effects. Thus, the high performance of these materials indicates that the heterogeneous via of photo-Fenton process can also be efficiently employed to treat wastewaters containing pollutants such as herbicides, in order to reduce them to simplest and less toxic molecules.


Assuntos
Atrazina/análise , Peróxido de Hidrogênio/química , Ferro/química , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Catálise , Concentração de Íons de Hidrogênio , Luz , Processos Fotoquímicos , Porosidade , Propriedades de Superfície , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA