Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemosphere ; 355: 141822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561157

RESUMO

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Compostos Organofosforados/análise , Retardadores de Chama/análise , Exposição Ambiental/análise , Fosfatos/análise , Qualidade da Água , Organofosfatos/análise
2.
J Clin Med ; 11(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36013009

RESUMO

The aim of this work was to obtain insights of the participation of the autonomic nervous system in different stages of calcific aortic valve disease (CAVD) by heart rate variability (HRV) analysis. Studying subjects with no valve impairments and CAVD patients, we also sought to quantify the independent contribution or explanatory capacity of the aortic valve echocardiographic parameters involved in the HRV changes caused by active standing using hierarchical partitioning models to consider other variables or potential confounders. We detected smaller adjustments of the cardiac autonomic response at active standing caused specifically by the aortic valve deterioration. The highest association (i.e., the highest percentage of independent exploratory capacity) was found between the aortic valve area and the active standing changes in the short-term HRV scaling exponent α1 (4.591%). The valve's maximum pressure gradient echocardiographic parameter was present in most models assessed (in six out of eight models of HRV indices that included a valve parameter as an independent variable). Overall, our study provides insights with a wider perspective to explore and consider CAVD as a neurocardiovascular pathology. This pathology involves autonomic-driven compensatory mechanisms that seem generated by the aortic valve deterioration.

3.
Ecol Appl ; 32(7): e2678, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588196

RESUMO

Widespread afforestation is a crucial component of climate mitigation strategies worldwide. This presents a significant opportunity for biodiversity conservation if forests are appropriately managed. Within forests, structural and habitat diversity are known to be critical for biodiversity but pragmatic management recommendations are lacking. We make a comprehensive assessment of the effects of habitat variables on bird populations using data from over 4000 ha of forested landscape. We combine high-resolution remote sensing data with comprehensive management databases to classify habitat attributes and measure the response of six taxonomic and functional diversity metrics: species richness, Shannon diversity, functional richness, functional evenness, functional divergence, and functional dispersion. We use a novel approach that combines hierarchical partitioning analysis with linear models to determine the relative importance of different habitat variables for each bird diversity metric. The age class of forest stands was consistently the most important variable across all bird diversity metrics, outperforming other structural measures such as horizontal and vertical heterogeneity and canopy density. Shrub density and gap fraction were each significantly associated with one bird diversity metric. In contrast, variables describing within-stand structural heterogeneity (vertical and horizontal) were generally less important while tree species identity (e.g., conifer or broadleaved) was not significant for any bird diversity metric. Each of the six bird diversity metrics had different patterns of independent variable importance and significance, emphasizing the need to consider multiple diversity metrics in biodiversity assessments. Similarly, the optimal resolution for remote sensing metrics varied between structural variables and bird diversity metrics, suggesting that the use of remote sensing data in biodiversity studies could be greatly improved by first exploring different resolutions and data aggregations. Based on the results from this comprehensive study, we recommend that managers focus on creating habitat diversity at the between-, rather than exclusively within-stand scale, such as by creating a matrix of different age classes, to maximize bird diversity. This recommendation for forest managers is powerful yet pragmatic in its simplicity.


Assuntos
Florestas , Melhoramento Vegetal , Animais , Biodiversidade , Aves/fisiologia , Ecossistema
4.
Sci Total Environ ; 754: 141892, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920384

RESUMO

This study analyses long-term (1982-2014) estimates of evapotranspiration (ET) over four major river basins of India with the primary objective of understanding the factors controlling its space-time variability. Here we utilize terrestrial water storage change (TWSC) estimates, computed from WaterGAP Global Hydrology Model (WGHM) simulations, in monthly water balance computations to obtain the best available estimates of long-term ET for the study region. Trend analysis shows significant increase in annual ET over Ganga (2.72 mm/year) and Krishna (3.90 mm/year) River Basins, while in Godavari and Mahanadi River Basins the observed trends are insignificant. The relative contribution of potential factors (represented by precipitation, soil moisture, temperature and Normalized Difference Vegetation Index (NDVI)) that affect the variability of monthly ET is assessed using Hierarchical Partitioning Analysis (HPA). Results reveal that ET variance is largely controlled by the availability of water (represented by precipitation and soil moisture) in all the river basins. Precipitation (soil moisture) accounts for 65% (16%), 70% (20%), 77% (15%) and 67% (18%) of the variability in monthly ET over the Ganga, Godavari, Krishna and Mahanadi River Basins, respectively. Similarly, highest contributions from precipitation are also observed in annual scale variations of ET in all the river basins. Multiple regression analysis performed to assess the overall influence of controlling variables demonstrate that precipitation, soil moisture, temperature and NDVI explain 84% (Ganga), 86% (Godavari), 91% (Krishna) and 82% (Mahanadi) of variations observed in monthly ET over the respective basins. Results presented in this study have major implications for the understanding of ET variability, appropriateness and discrepancies in different ET products and compliment the contemporary efforts of extending GRACE-based ET estimates in space and time.

5.
Sci Total Environ ; 763: 143041, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138988

RESUMO

Urban waterlogging is a hydrological cycle problem that seriously affects people's life and property. Characterizing waterlogging variation and explicit its driving factors are conducive to prevent the damage of such disasters. Conventional methods, because of the high spatial heterogeneity and the non-stationary complex mechanism of urban waterlogging, are not able to fully capture the urban waterlogging spatial variation and identify the waterlogging susceptibility areas. A more robust method is recommended to quantify the variation trend of urban waterlogging. Previous studies have simulated the waterlogging variation in relatively small areas. However, the relationship between variables is often ignored, which cannot comprehensively reveal the dominant drivers affecting urban waterlogging. Therefore, a novel approach is proposed that combined stepwise cluster analysis model (SCAM) and hierarchical partitioning analysis (HPA) within a general framework and verifies the applicability through logistic regression, artificial neural network, and support vector machine. According to the dominant driving factors, different simulation scenarios are established to analyze waterlogging density variation. Results found that the SCAM provides accurate and detailed simulated results both in urban centers where waterlogging frequently occurs and urban fringe with few waterlogging events, which shows an excellent performance with a high classification accuracy and generalization capability. HPA detected that the impervious surface abundance (28.07%), vegetation abundance (20.80%), and cumulate precipitation (16.25%) are the dominant drivers of waterlogging. This result suggests that priority should be given to controlling these three factors to mitigate the risk of waterlogging. It is interesting to note that under different urbanization and rainfall scenarios, the urban waterlogging susceptibility has a considerable variation. The watershed spatial location and watershed characteristics are relevant aspects to be considered in identifying and assessing waterlogging susceptibility, which provides original insights that urban waterlogging mitigation strategies should be developed according to different local conditions and future scenarios.

6.
J Mammal ; 101(3): 790-803, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32665742

RESUMO

Climate change can have particularly severe consequences for high-elevation species that are well-adapted to long-lasting snow conditions within their habitats. One such species is the wolverine, Gulo gulo, with several studies showing a strong, year-round association of the species with the area defined by persistent spring snow cover. This bioclimatic niche also predicts successful dispersal paths for wolverines in the contiguous United States, where the species shows low levels of genetic exchange and low effective population size. Here, we assess the influence of additional climatic, vegetative, topographic, and anthropogenic, variables on wolverine genetic structure in this region using a multivariate, multiscale, landscape genetic approach. This approach allows us to detect landscape-genetic relationships both due to typical, small-scale genetic exchange within habitat, as well as exceptional, long-distance dispersal among habitats. Results suggest that a combination of snow depth, terrain ruggedness, and housing density, best predict gene flow in wolverines, and that the relative importance of variables is scale-dependent. Environmental variables (i.e., isolation-by-resistance, IBR) were responsible for 79% of the explained variation at small scales (i.e., up to ~230 km), and 65% at broad scales (i.e., beyond ~420 km). In contrast, a null model based on only space (i.e., isolation-by-distance, IBD) accounted only for 17% and 11% of the variation at small and broad scales, respectively. Snow depth was the most important variable for predicting genetic structures overall, and at small scales, where it contributed 43% to the variance explained. At broad spatial scales, housing density and terrain ruggedness were most important with contributions to explained variation of 55% and 25%, respectively. While the small-scale analysis most likely captures gene flow within typical wolverine habitat complexes, the broad-scale analysis reflects long-distance dispersal across areas not typically inhabited by wolverines. These findings help to refine our understanding of the processes shaping wolverine genetic structure, which is important for maintaining and improving functional connectivity among remaining wolverine populations.

7.
J Plant Res ; 133(5): 639-648, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32623531

RESUMO

Nitrogen (N) resorption from senescing leaves enables plants to reuse N, thereby making them less dependent on current N uptake from the environment. Therefore, N resorption is important for survival and fitness, particularly for plants growing under low N supply. We studied N resorption from senescing leaves of 25 legumes and 25 nonlegumes in a temperate region of Japan to test the hypothesis that high N resorption has not evolved in legumes that fix atmospheric N2. The extent of N resorption was quantified by N resorption proficiency that is measured as the level to which leaf N concentration was reduced during senescence, i.e., the lower the senesced leaf N concentration, the lower the N loss through leaf fall and higher the N resorption proficiency. In support of the hypothesis, senesced leaf N concentration was higher in legumes than in nonlegumes, but there was considerable overlap between the groups. The higher senesced leaf N concentration of legumes was associated with a lower proportion of leaf N resorbed during senescence, particularly in species with higher leaf N concentrations. According to a hierarchical partitioning analysis, there was a large contribution of species to the total variance in the senesced leaf N concentration as opposed to a minor contribution of functional group (legume/nonlegume). This study reveals that legumes are not proficient at resorbing N from senescing leaves but that N2-fixation might not be the single most important determinant of N resorption.


Assuntos
Fabaceae , Nitrogênio , Fabaceae/metabolismo , Japão , Nitrogênio/metabolismo , Fósforo , Folhas de Planta
8.
Ecol Evol ; 9(3): 1289-1305, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805160

RESUMO

Climate warming and habitat transformation are widely recognized as worrying threatening factors. Understanding the individual contribution of these two factors to the change of species distribution could be very important in order to effectively counteract the species range contraction, especially in mountains, where alpine species are strongly limited in finding new areas to be colonized at higher elevations. We proposed a method to disentangle the effects of the two drivers of range change for breeding birds in Italian Alps, in the case of co-occurring climate warming and shrub and forest encroachment. For each species, from 1982 to 2017, we related the estimated yearly elevational distribution of birds to the correspondent overall average of the daily minimum temperatures during the breeding season and the estimated amount of shrubs and forest cover. Using a hierarchical partitioning approach, we assessed the net contribution (i.e., without the shared effect) of each driver. Both temperature and shrub and forest cover showed a positive trend along the time series and resulted the most likely causes of the significant elevational displacement for 21 of the 29 investigated birds. While shrub and forest cover was found to be an important driver of the expansion of forest bird range toward higher elevations, the effect of temperature on favouring the colonization of previously climatically unsuitable forests at higher elevations was not negligible. Shrub and forest expansion resulted the main driver of the range contraction for edge and open habitat species, which suffered a distribution shrinkage at their lower elevational boundary. In light of climate warming, these results highlighted how the net range loss for edge and open habitat species, caused by shrub and forest encroachment consequent to land abandonment, should be counteracted by implementing proper conservation management strategies and promoting sustainable economic activities in rangeland areas.

9.
Braz. j. biol ; 76(4): 864-870, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828083

RESUMO

Abstract We tested the hypothesis of a negative relationship between vegetation characteristics and ant species richness in a Brazilian open vegetation habitat, called candeial. We set up arboreal pitfalls to sample arboreal ants and measured the following environmental variables, which were used as surrogate of environmental heterogeneity: tree richness, tree density, tree height, circumference at the base of the plants, and canopy cover. Only canopy cover had a negative effect on the arboreal ant species richness. Vegetation characteristics and plant species composition are probably homogeneous in candeial, which explains the lack of relationship between other environmental variables and ant richness. Open vegetation habitats harbor a large number of opportunistic and generalist species, besides specialist ants from habitats with high temperatures. An increase in canopy cover decreases sunlight incidence and may cause local microclimatic differences, which negatively affect the species richness of specialist ants from open areas. Canopy cover regulates the richness of arboreal ants in open areas, since only few ant species are able to colonize sites with dense vegetation; most species are present in sites with high temperature and luminosity. Within open vegetation habitats the relationship between vegetation characteristics and species richness seems to be the opposite from closed vegetation areas, like forests.


Resumo Nós testamos a hipótese de que há uma relação negativa entre as características da vegetação e a riqueza de espécies de formigas em habitats abertos como o candeial. Para isto, nós instalamos pitfalls arborícolas para a captura de formigas e mensuramos as seguintes variáveis ambientais: riqueza de árvores, densidade de árvores, altura de árvores, circunferência basal das plantas e cobertura de dossel. Somente a cobertura de dossel apresentou efeito negativo na riqueza de formigas arborícolas. Provavelmente, as características da vegetação e a composição de espécies de plantas são mais homogêneas no candeial, o que explica a ausência de relação entre a riqueza de formigas e as outras variáveis ambientais. Formações abertas abrigam um grande número de espécies oportunistas e generalistas, além de formigas especialistas de climas quentes. O aumento na cobertura de dossel diminui a incidência solar o que pode causar diferenças microclimáticas que afetam negativamente as espécies de formigas especialistas de hábitats abertos. A cobertura de dossel regula a riqueza de espécies de formigas arborícolas em áreas abertas e poucas espécies nestes locais estão aptas a colonizar locais com a vegetação densa. Assim, a maioria das espécies estão presentes em locais com alta temperatura e luminosidade. Em outras palavras, em hábitats de vegetação aberta a relação entre características da vegetação e a riqueza de espécies pode ser oposta em comparação ao que é encontrado em áreas que apresentam a vegetação mais fechada, como florestas.


Assuntos
Animais , Formigas/classificação , Árvores/fisiologia , Ecossistema , Formigas/fisiologia , Plantas , Clima Tropical , Brasil , Florestas , Folhas de Planta , Biodiversidade
10.
Phytopathology ; 106(3): 254-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26623996

RESUMO

Clavibacter michiganensis subsp. michiganensis, the causal agent of bacterial canker and wilt of tomato, is considered to be one of the most important bacterial pathogens worldwide. In the year 2000 there was an increase in the number of infected greenhouses and in the severity of the disease in Israel. As part of the effort to cope with the disease, a comprehensive survey was conducted. Scouts recorded disease severity monthly in 681 production units. At the end of the season the scouts met with the growers and together recorded relevant details about the crop and cultural practices employed. The results suggested an absence of anisotropy pattern in the study region. Global Moran's I analysis showed that disease severity had significant spatial autocorrelation. The strongest spatial autocorrelation occurred within a 1,500 m neighborhood, which is comparable to the distance between production units maintained by one grower (Farm). Next, we tested three groups of variables including or excluding the Farm as a variable. When the Farm was included the explained variation increased in all the studied models. Overall, results of this study demonstrate that the most influential factor on bacterial canker severity was the Farm. This variable probably encompasses variation in experience, differences in agricultural practices between growers, and the quality of implementation of management practices.


Assuntos
Actinobacteria/fisiologia , Ambiente Controlado , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Israel , Fatores de Risco
11.
Conserv Biol ; 27(6): 1439-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23869856

RESUMO

Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas.


Assuntos
Biodiversidade , Borboletas/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Conservação de Recursos Energéticos , Exposição Ambiental , Densidade Demográfica , Dinâmica Populacional , Análise de Regressão , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...