Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.253
Filtrar
1.
Pflugers Arch ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963545

RESUMO

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.

2.
J Forensic Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992862

RESUMO

Cannabis is one of the most consumed illicit drugs and the potency of cannabis products is of note due to health-related concerns. Hand-rubbed hashish is the ancient technique of extracting psychoactive resin from cannabis plants and is practiced in the Indian Himalayas. This study establishes the cannabinoid profile and potency of hand-rubbed hashish collected from 20 regions of the northwest Himalayas. Fifty-eight hashish samples were analyzed using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. Ten cannabinoids were quantified including acidic (THCA & CBDA), and neutral compounds (CBDA, THCV, CBD, CBG, CBN, Δ9-THC, Δ8-THC, and CBC). The mean concentration (w/w%) of Δ9-THC is 26%; THCA is 15% and THCTotal is 40% is observed in the studied hashish samples. The majority (70%) of the hashish samples were categorized in chemotype I with the THC:CBD:CBN ratio of 91:3:4, and the remaining 30% were categorized under chemotype II with the ratio of 76:15:8. Diverse qualities of hashish are produced in the studied regions as per the seed, plant selection, and skills of manual rubbing, which results in potency variations. The average difference between the least and highest potent hand-rubbed hashish of a region is 27 w/w% (THCTotal). The other studied non-psychoactive cannabinoids have a mean w/w% of <5%, followed by 6% of CBDA. It is concluded that the cultivated and wild cannabis fields in the northwest Himalayas belong to the drug-type cannabis subspecies. Hand-rubbed hashish holds traditional significance and impacts the current policies of legislation.

3.
Methods Mol Biol ; 2830: 73-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977569

RESUMO

Raffinose family oligosaccharides (RFOs) are synthesized from sucrose and subsequent addition of galactose moieties which was provided by galactinol. Galactinol is synthesized from UDP-galactose and myo-inositol. RFOs accumulate at late stage of seed development and play important roles in seed longevity. RFOs are major components in seeds of many plant species. Here, we document a methodology for extraction and quantitative analysis of raffinose metabolism-related soluble sugars or the derivative alcohols in plant seeds. This protocol, based on high-performance liquid chromatography (HPLC), achieves the efficient separation and accurate quantification of sucrose, myo-inositol, galactinol, and raffinose within 25 min of retention time.


Assuntos
Rafinose , Sementes , Sacarose , Rafinose/metabolismo , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão/métodos , Sacarose/metabolismo , Inositol/metabolismo , Inositol/análogos & derivados
4.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966969

RESUMO

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia Líquida
5.
J Pharm Biomed Anal ; 249: 116337, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38986347

RESUMO

This study aimed to identify and quantify the primary components in lotus leaf and to explore the hypolipidemic components through spectral-effect relationships and chemometric methods. Utilizing a data-dependent acquisition-diagnostic fragment ion/characteristic neutral loss screening strategy (DFI-NLS), a reliable HPLC-Q-TOF-MS analysis was conducted, identifying 77 compounds, including 36 flavonoids, 21 alkaloids, 3 terpenoids, 11 organic acids, 4 phenols, 1 lignin and 1 unsaturated hydrocarbon. A straightforward HPLC-DAD method was developed for the simultaneous determination of seven major components in lotus leaf, and quercetin-3-O-glucuronide (Q3GA) was identified as the most abundant component. The HPLC fingerprints of 36 lotus leaf sample batches were assessed using chemometric approaches such as principal component analysis and hierarchical cluster analysis. The hypolipidemic effect of these samples was analyzed by measuring total cholesterol (TC) and total triglycerides (TG) levels in palmitic acid (PA) and oleic acid (OA)-induced lipid modeling in HepG-2 cells, employing partial least squares regression and grey relation analysis to investigate the spectral-effect relationship of the lotus leaf. The in vivo hypolipidemic effect of these compounds was assessed using an egg yolk powder-induced high-fat zebrafish model. The findings indicated that peak No.11 (Q3GA) in the chemical fingerprint was significantly associated with hypolipidemic activity, suggesting it as a potential hypolipidemic compound in lotus leaf. In summary, this study facilitates the exploration of the phytochemical compounds and their bioactive properties in the lotus leaf.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38964135

RESUMO

Interest is increasing in the use of different liquid chromatography techniques coupled online to mass spectrometry for the quantification of platinum anticancer drugs in human plasma to inform cancer chemotherapy. We developed, validated and studied the application of a method for quantification of intact oxaliplatin in human plasma using ultra high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (UHPLC-ICP-MS). Plasma samples were processed instantly after collection from patients to preserve oxaliplatin speciation by methanol-deproteinization, and storage of diluted supernatants (plasma:methanol 1:2 v/v) at -80 °C. UHPLC separation of intact oxaliplatin and internal standard (carboplatin) was achieved using a C18 column and linear gradient mobile phase (Mobile phase A: water-methanol (97:3 v/v), 0.075 mM sodium dodecyl sulfate, 9.79 nM thallium adjusted to pH 2.5 with trifluoromethanesulfonic acid; Mobile phase B: 100 % methanol (v/v)) with ICP-MS detection to monitor platinum and thallium at m/z 195 and 205, respectively. The limit of quantification was 50 nM in methanol-deproteinized diluted plasma (1:2 v/v). Linearity was established for calibration standards ranging from 50 to 500 nM made in methanol-deproteinized diluted plasma (1:2 v/v), and for dilution of higher concentration samples in blank matrix containing internal standard (final dilution 1:29 v/v). Intra-day and inter-day accuracy ranged from 96.8 to 103 % of nominal concentration and precision from 0.62 to 2.49 % coefficient of variation. Recovery was complete and a matrix effect confirmed the requirement for matrix-matched standards. Intact oxaliplatin was stable during storage for at least 473 days, and during analysis, in methanol-deproteinized diluted plasma (1:2 v/v). The method was applied to determining the plasma concentrations of intact oxaliplatin in patients undergoing cancer chemotherapy, and studies of oxaliplatin degradation in vitro. This improved method based on UHPLC-ICP-MS will allow more specific, efficient and reliable quantification of intact oxaliplatin in human plasma.

7.
J Pharm Biomed Anal ; 248: 116315, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38964166

RESUMO

Citri Reticulatae Pericarpium (CRP) is used as common health-care food and traditional Chinese medicine (TCM), which exerts pharmacological effects, such as anti-cardiovascular, anti-tumor, anti-oxidant, anti-inflammatory, anti-virus, hepatoprotective, blood pressure-lowering and neuroprotective. In this study, reliable, and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) methods were developed and validated for the determination of eleven active components in rat plasma after oral administration of the CRP extract. The results of this method exhibited that the specificity, linearity (r > 0.999), precision and accuracy (the coefficient of variation (CV) < 11.5 %), recovery (52.9-107.9 %), matrix effects (63.8-107.5 %), and stability (CV < 10.8 %) met all requirements for the quantitation of plasma samples. The pharmacokinetic results showed that the Tmax of flavone glycosides was less than 0.7 h, and that of polymethoxyflavones and volatile components were within 1-7 h. Meanwhile, the area-under-the-curve (AUC) and concentration maximum (Cmax) of hesperidin, nobiletin, tangeretin, and D-limonene were higher than those of the other components, suggesting that the plasma exposure levels of these constituents were higher in CRP. The present research lays a foundation for elucidating the therapeutic material basis and provides a reference for further scientific research and clinical application of CRP.

8.
Front Pharmacol ; 15: 1326996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989139

RESUMO

Phenytoin is a first-line antiepileptic drug with narrow therapeutic range and follows non-linear pharmacokinetics. Pharmacokinetics of phenytoin have been studied in plasma matrix before, however, there were several disadvantages. This study aimed to obtain partial validation data of the analytical method and the pharmacokinetic profile of phenytoin in Dried Blood Spot (DBS) of six healthy subjects. DBS has the advantage of only requiring small sample volumes and could be transported more efficiently. Phenytoin along with carbamazepine as the chosen internal standard was analyzed with a reversed-phase high performance-liquid chromatography system and a photodiode array detector at 205 nm. The results of partial validation, which evaluated the linearity, within-run accuracy, and precision, were within the criteria acceptance range. The pharmacokinetic profile showed that average AUC0-t was 83.81 ± 37.32 µg.h/mL and AUC0-∞ was 83.65 ± 38.89 µg.h/mL with an average ratio of 93%. Previous study quantifying phenytoin in the plasma matrix found the average AUC0-t was 39.41 ± 8.57 µg.h/mL and AUC0-∞ was 42.94 ± 9.55 µg.h/mL. Despite the difference between parameters of phenytoin analyzed in DBS and plasma matrices, the pharmacokinetic profiles obtained from both matrices were similar indicated by comparable concentration-time curves, thus, proving that DBS matrix can be used interchangeably with the plasma matrix as a more comfortable and effective alternative to phenytoin quantification in blood.

9.
Drug Metab Dispos ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991780

RESUMO

Two unique metabolites (M18 & M19) were detected in feces of human volunteers dosed orally with [14C]inavolisib with a molecular ion of parent plus 304 Da. They were generated in vitro by incubation with fecal homogenates and we have evidence that they are formed chemically and possibly enzymatically. Structural elucidation by high resolution mass spectrometry and NMR spectroscopy showed that the imidazole ring of inavolisib was covalently bound to partial structures derived from stercobilin, an end-product of heme catabolism produced by the gut microbiome. The structural difference between the two metabolites was the position of methyl and ethyl groups on the pyrrolidin-2-one moieties. We propose a mechanism of M18 and M19 generation from inavolisib and stercobilin whereby nucleophilic attack from the imidazole ring of inavolisib occurs to the bridging carbon of a stercobilin molecule. The proposed mechanism was supported by computational calculations of molecular orbitals and transition geometry. Significance Statement We report the characterization of two previously undescribed conjugates of the PI3K inhibitor inavolisib, generated by reaction with stercobilin, an end-product of heme catabolism produced by gut microbiome. These conjugates were confirmed by generating them using in vitro fecal homogenate incubation via non-enzymatic and possibly enzymatic reactions. Given the unique nature of the conjugate, it is plausible that it may have been overlooked with other small molecule drugs in prior studies.

10.
J Pharm Biomed Anal ; 248: 116331, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968868

RESUMO

Antibody-drug conjugates (ADCs) represent the forefront of the next generation of biopharmaceuticals. An ADC typically comprises an antibody covalently linked to a cytotoxic drug via a linker, resulting in a highly heterogeneous product. This study focuses on the analysis of a custom-made cysteine-linked ADC. Initially, we developed a LC-MS-based characterization workflow using brentuximab vedotin (Adcetris®), encompassing native intact MS, analysis of reduced chains and subunits under denaturing condition, peptide mapping and online strong cation exchange chromatography coupled with UV and mass spectrometry detection (SCX-UV-MS) applied for brentuximab vedotin first time reported. Subsequently, we applied this in-depth characterization workflow to a custom-made cysteine-linked ADC. The measured drug-to-antibody ratio(DAR) of this ADC is 6.9, further analysis shown that there is a small amount of unexpected over-conjugation. Over-conjugation sites were successfully identified using multiple UHPLC-MS based characterization techniques. Also, one competitively cysteine-conjugated impurity was observed in native intact MS results, by combing native intact MS, reduced chains, subunit analysis and peptide mapping results, the impurity conjugation sites were also identified. Since this molecule is at early development stage, this provides important information for conjugation process improvement and link-drug material purification. SCX-UV-MS approach can separate the custom-made cysteine-linked ADC carrying different payloads and reduce the complexity of the spectra. The integrated approach underscores the significance of combining the SCX-UV-MS online coupling technique with other characterization methods to elucidate the heterogeneity of cysteine-linked ADCs.

11.
J Chromatogr A ; 1730: 465124, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959657

RESUMO

Polymer monoliths can be polymerised within different molds, but limited options are available for the preparation of free-standing polymer monoliths for analytical sample preparation, and in particular, solid-phase extraction (SPE). Commercial melamine-formaldehyde sponges can be used as supports for the preparation of polymer monoliths, due its flexibility, giving various shapes to monoliths. Herein, the crosslinker/porogen ratio of highly porous sponge-nested divinylbenzene (DVB) polymer monoliths has been evaluated. Monoliths prepared using different crosslinker/porogen ratios were applied to the extraction of bisphenol F, bisphenol A, bisphenol AF, and bisphenol B. Monoliths containing 50 wt % DVB and 50 wt % porogens presented the highest recovery of bisphenols. Under the optimised conditions, the developed method showed a linear range between 2.5 µg L-1 and 150 µg L-1 for BPA and BPAF, and between 5 µg L-1 and 150 µg L-1 for BPB and BPF. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) ranged from 0.36 µg L-1 to 1.09 µg L-1, and from 1.20 µg L-1 to 3.65 µg L-1, respectively. The recoveries for spiked bisphenols (10 µg L-1) in tap water and water contained in a polycarbonate containers were between 82 % and 114 %.

12.
Sci Total Environ ; 946: 174344, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964417

RESUMO

Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.

13.
J Chromatogr A ; 1730: 465078, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38889582

RESUMO

A novel fluorinated triazine-based covalent organic frameworks (F-CTFs) was designed and synthesized by using melamine and 2,3,5,6-tetrafluoroterephthalaldehydeas as organic ligands for selective pipette tip solid-phase extraction (PT-SPE) of amphiphilic fluoroquinolones (FQs). The competitive adsorption experiment and mechanism study were carried out and verified that this F-CTFs possesses favorable adsorption affinity for FQs. The abundant fluorine affinity sites endowed the F-CTFs high selectivity to FQs extraction through F-F interactions. The adsorption capacity of F-CTFs can reach up to 109.1 mg g-1 for enrofloxacin. The detailed characterization of the F-CTFs adsorbent involved the application of various techniques to examine its morphology and structure. Under optimized conditions, a method combining F-CTF-based PT-SPE with high-performance liquid chromatography (PT-SPE-HPLC) was established, which exhibited a broad linear range, excellent precision, and an impressively low limit of detection, and could be used for the determination of six FQs in milk, with LODs as low as 0.0010 µg mL-1. The recovery rates during extraction varied between 92.1% and 111.4%, exhibiting RSDs below 6.8% at different spiked concentrations.

14.
Crit Rev Anal Chem ; : 1-22, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900595

RESUMO

This review paper critically examines the current state of research concerning the analysis and derivatization of aldehyde, aromatic hydrocarbons and carboxylic acids components in foods and drinks samples, with a specific focus on the application of Chromatographic techniques. These diverse components, as vital contributors to the sensory attributes of food, necessitate accurate and sensitive analytical methods for their identification and quantification, which is crucial for ensuring food safety and compliance with regulatory standards. In this paper, High-Performance Liquid Chromatography (HPLC) and Gas Chromatographic (GC) methods for the separation, identification, and quantification of aldehydes in complex food matrices were reviewed. In addition, the review explores derivatization strategies employed to enhance the detectability and stability of aldehydes during chromatographic analysis. Derivatization methods, when applied judiciously, improve separation efficiency and increase detection sensitivity, thereby ensuring a more accurate and reliable quantification of aldehyde aromatic hydrocarbons and carboxylic acids species in food samples. Furthermore, methodological aspects encompassing sample preparation, chromatographic separation, and derivatization techniques are discussed. Validation was carried out in term of limit of detections are highlighted as crucial elements in achieving accurate quantification of compounds content. The discussion presented by emphasizing the significance of the combined HPLC and GC chromatography methods, along with derivatization strategies, in advancing the analytical capabilities within the realm of food science.

15.
Foods ; 13(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38890985

RESUMO

Factors influencing the sour taste of coffee and the properties of chlorogenic acid are not yet fully understood. This study aimed to evaluate the impact of roasting degree on pH-associated changes in coffee bean extract and the thermal stability of chlorogenic acid. Coffee bean extract pH decreased up to a chromaticity value of 75 but increased with higher chromaticity values. Ultraviolet-visible spectrophotometry and structural analysis attributed this effect to chlorogenic and caffeic acids. Moreover, liquid chromatography-mass spectrometry analysis identified four chlorogenic acid types in green coffee bean extract. Chlorogenic acid isomers were eluted broadly on HPLC, and a chlorogenic acid fraction graph with two peaks, fractions 5 and 9, was obtained. Among the various fractions, the isomer in fraction 5 had significantly lower thermal stability, indicating that thermal stability differs between chlorogenic acid isomers.

16.
Anal Bioanal Chem ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877147

RESUMO

Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 µg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 µg/L for males and 0.53 µg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.

17.
BMC Res Notes ; 17(1): 179, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926714

RESUMO

OBJECTIVE: The stability of ascorbic acid (AA) in the human aqueous humor (AqH) remains unclear. This study aimed to investigate the stability of AqH AA under varying conditions (27, 4, - 20, and - 80 °C) without acidification. RESULTS: Rapid AA degradation occurred at 27 °C. At 4 °C, a significant 12.2% degradation was observed after 24 h. Storage at - 20 °C resulted in a notable 37.5% degradation after 28 days, whereas storage at - 80 °C resulted in 10.7% degradation after 28 days. Unacidified AqH samples recorded early decomposition at 27 °C and 4 °C. In conclusion, it is recommended to conduct measurements within 28 days for samples stored at - 80 °C.


Assuntos
Humor Aquoso , Ácido Ascórbico , Ácido Ascórbico/química , Humanos , Humor Aquoso/química , Humor Aquoso/metabolismo , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio
18.
J Endod ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851482

RESUMO

INTRODUCTION: In regenerative endodontics, eradicating antibiotic residues from root canals is imperative, given their detrimental effects on human apical papilla stem cells. Previous antibiotic removal studies lacked precision in identifying types and quantities of residual antibiotics. High-performance liquid chromatography (HPLC) enhances sensitivity and specificity, enabling accurate detection and quantification of residual drugs. Using HPLC analysis, this study explored the influence of vehicles and irrigation solutions and methods on double antibiotic paste (DAP) removal from root canals. METHODS: Two DAP formulations, each containing 5 mg/mL ciprofloxacin and metronidazole, were created using distinct vehicles: macrogol and propylene glycol (MP) or hydroxypropyl methylcellulose (HPMC). Subsequently, 5 µL of DAP was applied to 200 simulated immature teeth with open apices (n = 100 per formulation) and cultured for 28 days at 37°C. Samples were then divided into 11 groups (n = 20 per group), and canals were irrigated with 17% ethylenediaminetetraacetic acid or 10% citric acid, employing a positive pressure syringe or passive ultrasonic irrigation. The irrigation solution and dentin sample from each tooth were evaluated via HPLC for ciprofloxacin and metronidazole quantification. RESULTS: Citric acid exhibited significantly superior efficacy in antibiotic removal from root canals, with no observable effect of irrigation methods on drug removal. The HPMC-based DAP formulation significantly enhanced ciprofloxacin removal compared with MP-based DAP. CONCLUSIONS: For antibiotic paste removal from root canals, citric acid is effective, and HPMC is a preferable vehicle over MP. Overall, HPLC is a valuable method for detecting, removing, and quantifying residual antibiotics in root canals.

19.
BMC Biotechnol ; 24(1): 39, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849803

RESUMO

BACKGROUND: Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology. METHODS: Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min. RESULTS: The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW). CONCLUSIONS: The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.


Assuntos
Melia azedarach , Triterpenos Pentacíclicos , Estigmasterol , Triterpenos Pentacíclicos/metabolismo , Estigmasterol/metabolismo , Estigmasterol/isolamento & purificação , Estigmasterol/química , Melia azedarach/química , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Extratos Vegetais/química , Temperatura , Solventes/química , Lupanos
20.
J Pharm Biomed Anal ; 247: 116243, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843612

RESUMO

Therapeutic drug monitoring of pegylated L-asparaginase (ASNase) ensures the drug effectiveness in childhood acute lymphoblastic leukaemia (ALL) patients. The biological drug property with variable immunogenic host clearance, and the prescription of its generic formulation urge the need for a reliable assay to ensure an optimal treatment and improve outcome. This study aimed to optimise an existing isocratic reversed-phase high performance liquid chromatography (RP-HPLC) method with an automated pre-column sample derivatisation and injection program, and a computational algorithm for measuring serum pegylated ASNase activity in children with ALL. Nath et al.'s method in 2009 was adopted and modified using a pegylated ASNase. A set of Microsoft Excel macros was developed for the serum drug activity computation. An Agilent InfinityLab LC Series 1260 Infinity II Quaternary System with fluorescence detection was employed with an Agilent Poroshell 120 EC-C18 4.6×100 mm, 2.7 µm analytical column. System flow rate was optimised to 2.0 mL/min with 40×10-6/bar pump compressibility. The O-phthaldialdehyde (OPA) solution composition was optimised to 1 % o-phthaldialdehyde, 0.8 % 2-mercaptoethanol, 7.13 % methanol, and 1.81 % sodium tetraborate. The pre-column derivatisation program mixed 0.1 µL sample with 25 µL OPA solution before the automated injection. Method validation was according to the ICH guidelines. Total analysis time was 15 min, with L-aspartic acid eluted at 0.96 min and internal standard at 4.7 min. The calibration curves showed excellent linearity (R ≥0.9999). Interday precision for the drug activity at 0.1 IU/mL, 0.5 IU/mL, and 1 IU/mL were 4.15 %, 3.05 %, and 3.09 % (n = 6). Mean %error for the drug activity at 0.1 IU/mL, 0.5 IU/mL, and 1 IU/mL were 0.90±4.41 %, -1.37±3.04 %, and -3.03±3.02 % (n = 6). Limit of quantitation was 0.03 IU/mL. Majority of the patients' serum drug activity fell within the assay calibration range. Our improved method is automated, having shorter analysis time with a well-maintained separation resolution that enables a high-throughput analysis for application.


Assuntos
Asparaginase , Monitoramento de Medicamentos , Polietilenoglicóis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Asparaginase/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Criança , Polietilenoglicóis/química , Monitoramento de Medicamentos/métodos , Antineoplásicos/sangue , Reprodutibilidade dos Testes , Cromatografia de Fase Reversa/métodos , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...