Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Foods ; 13(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39335887

RESUMO

Solenaia oleivora, a rare freshwater shellfish with high protein quality, is unique to China. However, the poor hydrosolubility and functional properties of Solenaia oleivora proteins hinder their utilization in food products. Herein, the alkaline dissolution-isoelectric precipitation method was used for the extraction of Solenaia oleivora proteins. Furthermore, the impact of high-pressure homogenization (HPH) treatment varying from 0 to 100 MPa on the structure and functional properties of Solenaia oleivora proteins was investigated. The obtained results indicated that HPH treatment decreased the α-helix content and enhanced the ß-sheet and random coil content. Furthermore, the HPH caused the unfolding of protein structure, exposing aromatic amino acids, increasing the free thiol group content, and enhancing surface hydrophobicity. As the homogenization pressure increased from 0 to 100 MPa, the particle size of Solenaia oleivora proteins decreased from 899 to 197 nm with the polymer dispersity index (PDI) value decreased from 0.418 to 0.151, the ζ-potential increased from -22.82 to -43.26 mV, and the solubility increased from 9.54% to 89.96%. Owing to the significant changes in protein structure and solubility, the emulsifying, foaming, and digestive properties of Solenaia oleivora proteins have been significantly improved after treatment with HPH.

2.
Food Chem ; 463(Pt 3): 141402, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39332366

RESUMO

Fruit derivatives are commonly obtained by applying processing operations deemed responsible for the loss of phenol compounds, but very little information is available on the fate of phenols upon digestion of these products. The present study evaluated the effect of thermal and mechanical treatments, commonly applied to turn apple pulp into puree and homogenate, on phenolic bioaccessibility and antioxidant activity. Despite a 20 % decrease in polyphenols due to processing, their bioaccessibility was higher in apple derivatives (>20 %) compared to pulp (∼2 %). Polyphenol oxidase (PPO), inactivated by thermal treatments in apple derivatives but not in the pulp, was hypothesized to be responsible for this difference. Results acquired on an unprocessed PPO-free apple model, only featuring quercetin-3-glucoside and pectin, actually exhibited similar bioaccessibility as processed derivatives. The radical scavenging capacity was unaffected by the structural integrity of apples, indicating independence from the plant tissue's hierarchical arrangement. After digestion, radical scavenging capacity decreased in the real apple matrices, correlating with phenolic content, while it was retained in the apple model, further suggesting the pivotal food matrix role in modulating polyphenols bioaccessibility and subsequent biological activity. Translating these results to an industrial scale, processing conditions can be optimized not only to guarantee that the quality requirements are met, but also to achieve desired nutritional benefits.

3.
Food Res Int ; 194: 114913, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232536

RESUMO

The formation of starch-polyphenol complexes through high-pressure homogenization (HPH) is a promising method to reduce starch digestibility and control postprandial glycemic responses. This study investigated the combined effect of pH (5, 7, 9) and polyphenol structures (gallic acid, ferulic acid, quercetin, and tannic acid) on the formation, muti-scale structure, physicochemical properties, and digestibility of pea starch (PS)-polyphenol complexes prepared by HPH. Results revealed that reducing pH from 9 to 5 significantly strengthened the non-covalent binding between polyphenols and PS, achieving a maximum complex index of 13.89 %. This led to the formation of complexes with higher crystallinity and denser structures, promoting a robust network post-gelatinization with superior viscoelastic and thermal properties. These complexes showed increased resistance to enzymatic digestion, with the content of resistant starch increasing from 28.66 % to 42.00 %, rapidly digestible starch decreasing from 42.82 % to 21.88 %, and slowly digestible starch reducing from 71.34 % to 58.00 %. Gallic acid formed the strongest hydrogen bonds with PS, especially at pH 5, leading to the highest enzymatic resistance in PS-gallic acid complexes, with the content of resistant starch of 42.00 %, rapidly digestible starch of 23.35 % and slowly digestible starch of 58.00 %, and starch digestion rates at two digestive stages of 1.82 × 10-2 min-1 and 0.34 × 10-2 min-1. These insights advance our understanding of starch-polyphenol interactions and support the development of functional food products to improve metabolic health by mitigating rapid glucose release.


Assuntos
Digestão , Ácido Gálico , Pisum sativum , Polifenóis , Amido , Concentração de Íons de Hidrogênio , Polifenóis/química , Amido/química , Amido/metabolismo , Pisum sativum/química , Ácido Gálico/química , Taninos/química , Pressão , Ácidos Cumáricos/química , Manipulação de Alimentos/métodos , Quercetina/química
4.
Food Chem ; 463(Pt 2): 141180, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276541

RESUMO

The effects of chickpea protein (CP) modified by heating and/or high-pressure homogenization (HPH) on the gelling properties of myofibrillar protein under reduced phosphate conditions (5 mM sodium triphosphate, STPP) were investigated. The results showed that heating and HPH dual-modified CP could decrease the cooking loss by 29.57 %, elevate the water holding capacity by 17.08 %, and increase the gel strength by 126.88 %, which conferred myofibrillar protein with gelation performance comparable with, or even surpassing, that of the high-phosphate (10 mM STPP) control. This gelation behavior improvement could be attributed to enhanced myosin tail-tail interactions, decreased myosin thermal stability, elevated trans-gauche-trans disulfide conformation, strengthened hydrophobic interactions and hydrogen bonding, the uncoiling of α-helical structures, the formation of well-networked myofibrillar protein gel, and the disulfide linkages between the myosin heavy chain, actin, and CP subunits. Therefore, the dual-modified CP could be a promising phosphate alternative to develop healthier meat products.

5.
Food Chem ; 460(Pt 3): 140751, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39126948

RESUMO

This study investigated the effect of heat treatments on the pungency and aroma profiles of a spice oleoresin blend, and the emulsion stability with different surfactants, encapsulating agents, and homogenization mechanisms. Total pungency increased with heat until 120 °C and drastically reduced at 150 °C. Thermal processing induced aroma release, and 46 compounds were identified at 90 °C, predominantly comprising sesquiterpenes. Tween 80 dispersed the highest oleoresin mass (6.21 ± 0.31 mg/mL) and reported the maximum emulsion stability index. The oleoresin percentage significantly influenced the emulsion stability, with 1% oleoresin producing the most stable emulsion. High-pressure homogenization applied on gum Arabic resulted in a greater encapsulation efficiency, exceeding 86%, and the lowest creaming index (4.70 ± 0.06%), while Hi-Cap 100 produced the best flow properties. The findings provide insights into incorporating lipophilic spice oleoresin blends in aqueous food systems and understanding the release of flavor compounds during thermal food processing.


Assuntos
Emulsões , Aromatizantes , Temperatura Alta , Extratos Vegetais , Especiarias , Emulsões/química , Aromatizantes/química , Extratos Vegetais/química , Especiarias/análise , Manipulação de Alimentos , Paladar
6.
Int J Biol Macromol ; 278(Pt 2): 134833, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154691

RESUMO

In this study, two types of microgel particles from egg yolk components were prepared by combining enzymatic hydrolysis with high-pressure homogenization (HPH), and their differences in physicochemical properties, foaming properties, and microstructure were compared. Results showed that the particle size of both types of microgel particles had decreased from 2744.07 ± 408.26 nm (egg yolk, EY) to 144.97 ± 3.19 nm (PLA2 hydrolyzed egg yolk microgel particles, PYM) and 535.07 ± 46.07 nm (egg yolk microgel particles hydrolyzed by PLA2, YMP), from 736.24 ± 34.61 nm (EG) to 182.76 ± 4.12 nm (PLA2 hydrolyzed egg yolk granules microgel particles, PGM) and 443.98 ± 27.09 nm (egg yolk granules microgel particles hydrolyzed by PLA2, GMP). Besides, their interfacial adsorption abilities were significantly improved, reflected in the increase values in overrun, from161.90 % ± 9.84 % (EY) to 269.64 % ± 16.73 % (PMY) and 307.20 % ± 16.09 % (YMP), from 189.21 % ± 5.02 % (EG) to 280.38 % ± 36.05 % (PGM) and 261.91 % ± 34.03 % (GMP). Their structural properties showed higher stabilities after treatments. When the microgel particles are applied to cakes, the specific volume was increased from 2.05 ± 0.1 mL/g (EY) to 2.25 ± 0.13 mL/g (PYM) and 2.45 ± 0.03 mL/g (YPM), and from 2.00 ± 0.09 mL/g (EG) to 2.51 ± 0.13 mL/g (PGM) and 2.75 ± 0.21 mL/g (GMP), respectively. The hardness and chewiness were reduced with both types of microgel particles from egg yolk components, which indicated their potential value as edible foam stabilizers in the baking industry.


Assuntos
Proteínas do Ovo , Gema de Ovo , Géis , Tamanho da Partícula , Fosfolipases A2 , Pressão , Gema de Ovo/química , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Géis/química , Proteínas do Ovo/química , Hidrólise , Fenômenos Químicos , Animais , Galinhas , Estabilidade Proteica
7.
Food Chem X ; 23: 101695, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39184315

RESUMO

The stability of diabetes formula food for special medical purposes (D-FSMP) was improved by high-pressure homogenization (HPH) at different homogenization pressures (up to 70 MPa) and number of passes (up to 6 times). The process at 60 MPa/4 times was the best. Casein had the highest surface hydrophobicity in this condition. The casein-polysaccharide complexes were endowed with the smallest size (transmission electron microscopy images). The complex particles exhibited nearly neutral wettability (the three-phase contact angle was 90.89°), lower interfacial tension, and the highest emulsifying activity index (EAI) and emulsifying stability index (ESI). The prepared D-FSMP system exhibited the narrowest particle size distribution range, the strongest interfacial deformation resistance and the best storage stability. Therefore, an appropriate intensity of HPH could enhance the stability of D-FSMP by improving the interfacial and emulsifying properties of casein-polysaccharide complexes. This study provides practical guidance on the productions of stable D-FSMP.

8.
J Sci Food Agric ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105678

RESUMO

BACKGROUND: The process of Maillard conjugation occurs with plant proteins and sugars and can be influenced by several factors, such as processing time, pH, and shear force. By utilizing cavitation processes such as high-pressure homogenization (HPH) and pH-shifting, it is possible to regulate the degree of grafting, functional characteristics, and structural changes in the formation of conjugates. The present study aimed to improve the hemp protein concentrate (HPC) through two different conjugation techniques: HPH and pH-shifting-assisted processes. RESULTS: The best conjugation conditions for the conventional method were identified as a 1:2 HPC to xylose ratio, a pH of 10, and 3 h of treatment at 70 °C. The use of HPH and pH 12-shifting methods resulted in a remarkable 2.5-fold increase in grafting degree, requiring less processing time. Fourier transform infrared spectra confirmed the formation of conjugates. Conjugates produced through HPH with pH 12-shifting (MPHX) transformed into soluble glycoproteins with a particle size of 74 nm. MPHX solubility increased by 5.7-fold than HPC, reaching 85.7%, with a more negatively charged surface at -32.4 mV. Microimages showed cracked and sharp forms for conjugated proteins compared to untreated HPC. Additionally, MPHX conjugates demonstrated superior properties in emulsion stability, foaming capacity, and antioxidant activity compared to HPC and classical conjugates. CONCLUSION: The use of HPH and pH-shifting-assisted Maillard conjugation was highly effective in enhancing the functional attributes of hemp protein conjugates. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

9.
Bioresour Technol ; 407: 131099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986878

RESUMO

This study evaluated pulsed electric fields (PEF) and ultrasonication (US) combined with incubation to enhance cell disruption and protein extraction from Auxenochlorella protothecoides, comparing them to conventional high-pressure homogenization (HPH). A 5 h incubation enhanced protein yield by 79.4 % for PEF- and 27.2 % for US-treated samples. Extending the incubation to 24 h resulted in a total yield increase of 122 % for PEF (0.25 ± 0.03 kgEP kgTP-1) and 51.9 % for US (0.20 ± 0.02 kgEP-1 kgTP-1). Autofermentation in untreated cells after 24 h resulted in protein release with lower yields than all other treated and incubated samples. While HPH had the highest protein yield (0.58 ± 0.04 kgEP kgTP-1), PEF-incubation after 5 h (56.6 ± 5.3 MJ kgEP-1) and 24 h (49.5 ± 3.7 MJ kgEP-1) were 1.5 and 1.7-times more energy-efficient than HPH (82.9 ± 7.8 MJ kgEP-1). PEF combined incubation is an energy-efficient and targeted protein extraction method in heterotrophic A. protothecoides biorefinery.


Assuntos
Microalgas , Microalgas/metabolismo , Sonicação/métodos
10.
Pharmaceutics ; 16(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39065607

RESUMO

Apixaban, an anticoagulant, is limited in its efficacy due to poor solubility, low bioavailability, and extensive metabolism. This study investigates the application of nanostructured lipid carriers (NLCs) to enhance the bioavailability of Apixaban. NLCs were prepared using the high-pressure homogenization method. The influence of independent variables, viz., the amount of Tween 80, HPH pressure, and the number of HPH cycles, were studied using a 23 factorial design. The average particle size, PDI, zeta potential, and entrapment efficiency of the optimized NLCs were found to be 232 ± 23 nm, with 0.514 ± 0.13 PDI and zeta potential of about -21.9 ± 2.1 mV, respectively. Additionally, concerning the thermal and crystallographic properties of the drug, the NLCs showed drug entrapment without altering its potency. The in-vitro drug release studies revealed an immediate release pattern, followed by sustained release for up to 48 h. In-vivo pharmacokinetic experiments demonstrated that Apixaban-loaded NLCs exhibited higher values of t1/2 (27.76 ± 1.18 h), AUC0-∞ (19,568.7 ± 1067.6 ng·h/mL), and Cmax (585.3 ± 87.6 ng/mL) compared to free drugs, indicating improved bioavailability. Moreover, a decrease in the elimination rate constant (Kel) reflected the sustained effect of Apixaban with NLCs. NLCs offer improved oral absorption rates and enhanced therapeutic impact compared to free drugs, potentially reducing dose frequency and improving patient outcomes.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38918978

RESUMO

INTRODUCTION: The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the highpressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs. METHOD: The study encompasses a 23 full factorial statistical design approach where mean particle size (Y1) and percent entrapment efficiency (Y2) were screened as dependent variables while, the concentration of lipid (X1), surfactant (X2), and co-surfactant (X3) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MSSLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential (ζ) = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12 %. The In vivo pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability. RESULTS: The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months. CONCLUSION: At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.

12.
J Dairy Sci ; 107(9): 6658-6670, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38825143

RESUMO

The present work aims to evaluate the dissociation of casein micelles in diluted skim milk (SM) systems after undergoing solvent- or emulsifying salt-based dissociation coupled with ultra-high-pressure homogenization (UHPH). Specifically, part I evaluated dilute SM solutions combined with varying ethanol concentrations (0%-60%) at varying temperatures (5-65°C) in combination with UHPH (100-300 MPa), and part II evaluated dilute SM solutions combined with varying concentrations (0-100 mM) of either sodium hexametaphosphate (SHMP) or sodium citrate (SC) in combination with UHPH (100-300 MPa). In part I, high concentrations of ethanol (40%-60% vol/vol) at elevated temperatures (45-65°C) achieved extensive dissociation of casein micelles, especially in combination with UHPH at ≥200 MPa, as shown by a reduction in sample absorbance and in casein particle size compared with the control (dilute SM, 65°C) under optimum conditions (dilute SM, 60% ethanol, 65°C, ≥200 MPa). In part II, the level of casein micelle dissociation using emulsifying salts (ES) was dependent on the ES type and concentration. Considerable casein micelle dissociation in dilute SM systems was achieved with SHMP concentrations ≥1 mM and SC concentrations ≥10 mM, resulting in decreased sample absorbance, bimodal casein size distributions, and increased hydrophobicity (∼2-fold increase in intrinsic fluorescence) compared with the control (dilute SM). This dissociation was further enhanced with UHPH (≥200 MPa). These results indicate that both solvent- and ES-based casein dissociation techniques can be optimized when used in combination with UHPH. Together, these processing techniques can be used to extensively dissociate casein micelles with the potential to use these altered systems for value-added applications such as functional ingredients or encapsulation agents.


Assuntos
Caseínas , Micelas , Leite , Caseínas/química , Leite/química , Animais , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas
13.
Heliyon ; 10(9): e29516, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707316

RESUMO

Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.

14.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730779

RESUMO

Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.

15.
Foods ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731786

RESUMO

This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.

16.
Pharmaceutics ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675153

RESUMO

Coumarins are benzopyrones found in several plant genera, including Pterocaulon (Asteraceae). These compounds represent an important source of new treatments, especially as antimicrobial and antifungal agents. In this study, two coumarin-rich extracts from Pterocaulon balansae using green technologies were obtained through aqueous maceration (AE) and supercritical fluid extraction (SFE). Such extracts were incorporated into nanoemulsions (NAE and NSFE) composed of a medium-chain triglyceride oil core stabilized by phospholipids. The nanoemulsions exhibited droplet sizes between 127 and 162 nm, pH above 5.0, and viscosity of approximately 1.0 cP, properties compatible with the topical route. The coumarins permeation/retention from formulations through ear porcine skin using Franz-type diffusion cells were evaluated. Whatever the extract, coumarins were distributed in skin layers, especially in the dermis in both intact and impaired (tape stripping) skin. In addition, a significant increase in coumarins that reached up to the receptor fluid was observed for impaired skin, with increases of approximately threefold for NAE and fourfold for NSFE. Finally, antifungal activity of nanoemulsions was evaluated according to minimum inhibitory concentrations, and the values were 250 µg/mL for all strains tested. The overall results demonstrated the feasibility of incorporating P. balansae extracts into nanoemulsions and showed a potential alternative for the treatment of sporotrichosis.

17.
Int J Biol Macromol ; 268(Pt 1): 131830, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663698

RESUMO

Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.


Assuntos
Pressão , Amido , Amido/química , Solubilidade , Substâncias Macromoleculares/química , Peso Molecular
18.
J Pharm Sci ; 113(7): 2001-2003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642708

RESUMO

High-pressure homogenization is a widely used and acknowledged method to reduce the particle sizes of active pharmaceutical compounds into nanosized range. Thus, the method is associated with limitations, as the compound's initial particle size, since micronized particles are often prerequired to achieve successful size reduction into nanosized range. In this work, the usage of ultrasound as a potential milling or pre-milling technique to decrease particle sizes of different drug compounds varying in deformation properties into micronized range, was investigated.


Assuntos
Composição de Medicamentos , Tamanho da Partícula , Suspensões , Composição de Medicamentos/métodos , Nanopartículas/química , Água/química , Ultrassom/métodos , Preparações Farmacêuticas/química , Sonicação/métodos , Química Farmacêutica/métodos , Pressão
19.
Ultrason Sonochem ; 105: 106851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520892

RESUMO

This study examined the effects of high-pressure homogenization (HPH) and ultrasonication pre-treatment on the structural and physicochemical properties of proteins extracted from defatted Nannochloropsis Oceania biomass (DNOB). HPH treatment was found to enhance the solubility of protein extracted from DNOB compared to ultrasound, where samples pretreated with three passes (3P) of HPH exhibited lower solubility than two passes (2P). The morphology of extracted samples was visualized by scanning electron microscopy, which HPH pre-treatment, especially with more passes, were able to breakdown DNOB into fragments. Alternatively, more holes were displayed on the surface of the extracts pretreated with ultrasound especially when higher amplitude applied. The particle size of extracts from HPH3P (129.5 µm) significant dropped from HPH2P (314.25 µm), where samples pretreated with ultrasound at 20 % amplitude (US20) also decreased in particle size compared to 40 % amplitude (US40), from 115.25 µm to 78.22 µm. Protein flexibility of DNOB extracts were enhanced by both HPH2P and HPH3P but decreased for ultrasound samples. ß-sheets were found to be the most abundant protein secondary structure for all samples, where samples treated with HPH3P contained the highest percentage of ß-sheets (72 %) than control, HPH2P, ultrasonication at 20 and 40 % amplitude (52-62 %). The high percentage of ß-sheets found in HPH3P sample also contributed to its outstanding emulsifying properties which stood out among all, especially at concentrations over 1 mg/ml. Results obtained from this study helped to direct the application of DNOB extracts as functional food ingredient for future food innovation.


Assuntos
Pressão , Estramenópilas/química , Tamanho da Partícula , Fenômenos Químicos , Sonicação , Ondas Ultrassônicas , Proteínas/química , Solubilidade
20.
Food Chem X ; 22: 101259, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38444556

RESUMO

This research sought to examine how the physicochemical characteristics of soy globulins and different processing techniques influence the gel properties of soy yogurt. The goal was to improve these gel properties and rectify any texture issues in soy yogurt, ultimately aiming to produce premium-quality plant-based soy yogurt. In this research study, the investigation focused on examining the impact of 7S/11S, homogenization pressure, and glycation modified with glucose on the gel properties of soy yogurt. A plant-based soy yogurt with superior gel and texture properties was successfully developed using a 7S/11S globulin-glucose conjugate at a 1:3 ratio and a homogenization pressure of 110 MPa. Compared to soy yogurt supplemented with pectin or gelatin, this yogurt demonstrated enhanced characteristics. These findings provide valuable insights into advancing plant protein gels and serve as a reference for cultivating new soybean varieties by soybean breeding experts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA