Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
Foods ; 13(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39335932

RESUMO

Staphylococcus (S.) aureus is a pathogenic bacterium able to cause several diseases in humans and animals as well as foodborne intoxications. S. argenteus, being phenotypically and genotypically related to S. aureus, is part of the so-called S. aureus complex and recently recognized as an emerging pathogen able to cause, like S. aureus, several diseases both in humans and animals, and foodborne poisoning outbreaks. However, it has been reported that the widely used conventional PCR of Brakstad et al. [Journal of Clinical Microbiology, 30(7), 1654-1660, (1992)] targeting the thermostable nuclease gene may provide false-positive S. aureus, as it is able to amplify also S. argenteus. Here, we developed a novel two-step approach that, following the PCR of Brakstad et al. (1992), discriminates S. aureus from S. argenteus by a real-time PCR with high-resolution melting analysis (rt-PCR-HRM). In particular, targeting a polymorphic 137 bp region of the sodA gene, our developed rt-PCR-HRM method clearly discriminated S. aureus from S. argenteus, showing a remarkable difference in their amplification product melting temperatures (approximately 1.3 °C) as well as distinct melting curve shapes. The good sensitivity, reproducibility, user friendliness, and cost effectiveness of the developed method are advantageous attributes that will allow not only its easy employment to correctly identify misidentified isolates present in various collections of S. aureus, but also expand the still lacking knowledge on the prevalence and distribution of S. argenteus.

2.
Plant Dis ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39342961

RESUMO

Fusarium head blight causes significant yield losses in wheat and other cereals and contaminates grain products with trichothecene mycotoxins. F. graminearum isolates are classified into different chemotypes depending on the type of mycotoxin produced, including the type B trichothecenes 3-acetyl deoxynivalenol (3-ADON), 15-acetyl deoxynivalenol (15-ADON), nivalenol (NIV), and the recently identified type A trichothecene NX-2. Molecular tools to differentiate NX-2 producers from other chemotypes have remained relatively laborious and time consuming. In this study, we developed and validated a high-resolution melting (HRM) assay that can identify NX-2 producers quickly and cost-effectively. By analyzing TRI1 coding sequences from 183 geographically diverse isolates representing all four F. graminearum chemotypes, we selected a 75-base pair region containing four non-synonymous single nucleotide polymorphisms (SNPs) that are specific to the NX-2 genotypes. The amplicon generated two HRM profiles, one of which was specific for only NX-2. We confirmed that the assay is robust across qPCR platforms and unambiguously differentiates NX-2 from other chemotypes using a panel of 72 diverse isolates previously collected from North America. The HRM assay was also successful in identifying NX-2 producers directly from DNA extracted from infected wheat spikes with varying levels of disease severity and fungal DNA. The assay can detect as little as 0.01 ng of fungal DNA in a background of 50 ng of plant DNA. This new diagnostic assay can be used for high-throughput molecular detection of the NX-2 chemotype of F. graminearum from infected plant samples and culture collections, thus making it a valuable tool for surveys of contemporary and historical FHB pathogen populations.

3.
Microorganisms ; 12(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39338567

RESUMO

Anaplasmataceae bacteria are emerging infectious agents transmitted by ticks. The aim of this study was to identify the molecular diversity of this bacterial family in ticks and hosts, both domestic and wild, as well as blood meal sources of free-living ticks in northeastern Paraguay. The bacteria were identified using PCR-HRM, a method optimized for this purpose, while the identification of ticks and their blood meal was performed using conventional PCR. All amplified products were subsequently sequenced. The bacteria detected in the blood hosts included Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum, Candidatus Anaplasma boleense, and Wolbachia spp., which had not been previously reported in the country. Free-living and parasitic ticks on dogs (Canis lupus familiaris) and wild armadillos (Dasypus novemcinctus) were collected and identified as Rhipicephalus sanguineus and Amblyomma spp. The species E. canis, A. platys, A. phagocytophilum, and Ca. A. boleense were detected in domestic dog ticks, and E. canis and A. platys were found for the first time in armadillos and free-living ticks. Blood feeding sources detected in free-living ticks were rodents, humans, armadillos and dogs. Results show a high diversity of tick-borne pathogens circulating among domestic and wild animals in the northeastern region of Paraguay.

4.
Pathogens ; 13(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39338950

RESUMO

The accurate diagnosis and identification of Leishmania species are crucial for the therapeutic selection and effective treatment of leishmaniasis. This study aims to develop and evaluate the use of high-resolution melting curve analysis (HRM)-PCR for Leishmania species identification causing visceral leishmaniasis (VL), post-kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL) in the Indian subcontinent. Two multi-copy targets (ITS-1 and 7SL-RNA genes) were selected, and an HRM-PCR assay was established using L. donovani, L. major, and L. tropica standard strain DNA. The assay was applied on 93 clinical samples with confirmed Leishmania infection, including VL (n = 30), PKDL (n = 50), and CL (n = 13) cases. The ITS-1 HRM-PCR assay detected as little as 0.01 pg of template DNA for L. major and up to 0.1 pg for L. donovani and L. tropica. The detection limit for the 7SL-RNA HRM-PCR was 1 pg for L. major and 10 pg for L. donovani and L. tropica. The ITS-1 HRM-PCR identified 68 out of 93 (73.11%) leishmaniasis cases, whereas 7SL-RNA HRM-PCR could only detect 18 out of 93 (19.35%) cases. A significant correlation was observed between the kDNA-based low Ct values and ITS-1 HRM-PCR positivity in the VL (p = 0.007), PKDL (p = 0.0002), and CL (p = 0.03) samples. The ITS-1 HRM-PCR assay could identify Leishmania spp. causing different clinical forms of leishmaniasis in the Indian subcontinent, providing rapid and accurate results that can guide clinical management and treatment decisions.

5.
Iran J Parasitol ; 19(3): 305-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318819

RESUMO

Background: There are ten genotypes of Echinococcus granulosus with different intermediate and final hosts affecting the parasite's life cycle and its transmission to humans. Therefore, this study was conducted to determine the genotype of isolated hydatid cysts using the simple and fast high-resolution melting point analysis (HRM) method. Methods: The paraffin tissue samples of patients who underwent surgery were obtained from the pathology sample bank of Vasei and Emdad Hospitals in Sabzevar, Iran during 2010-2020. The DNA content of the samples was extracted after collecting and determining the characteristics using the DNA extraction kit. PCR was performed on the samples and the presence of the hydatid cyst genome was confirmed using the special Master Kit. Mix PCR of Solis Biodyne Company and Real-Time device (Bio-Rad) were used, and the genetic identity of hydatid cysts were determined. Results: Out of 33 paraffin samples, 21 samples contained hydatid cyst DNA, two of which were from the brain and 19 from the liver tissues; 12 samples did not contain hydatid cyst DNAs. All liver samples were from sheep species (G1), and the brain samples were from buffalo species (G3). Therefore, 9.53% of the Echinococcus species collected were buffalo (G3), and 90.47% were sheep (G1) strain. Conclusion: Based on previous patterns, HRM methods can be used for easy and quick identification of Echinococcus strains. The G1 strain was the dominant strain causing hydatid cyst in different human organs, including the liver and brain.

6.
J Clin Lab Anal ; : e25103, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297751

RESUMO

BACKGROUND: Oral candidiasis (OC) is one of the most common mucosal infections in those afflicted with HIV/AIDS. This study aimed to provide detailed information on the phenotype, genotype, antifungal susceptibility, and biofilm formation ability of oral Candida albicans isolated from HIV-infected patients with OC. METHODS: A total of 25 C. albicans isolates were collected from oral lesions of HIV-infected patients referred to Behavioral Diseases Counseling Center affiliated with Ahvaz Jundishapur University of Medical Sciences, Iran. The antifungal susceptibility testing was done according to CLSI M27 guideline (fourth edition). The crystal violet method was used to evaluate the biofilm formation ability of isolates. Different phenotypes were identified on yeast extract-peptone-dextrose agar medium supplemented with phloxine B. Genotyping analysis of the isolates was performed using high-resolution melting (HRM) assays and ABC genotyping. RESULTS: The highest and lowest susceptibility of the C. albicans isolates was found for fluconazole 24 (96%) and ITC 18 (72%), respectively. Forty-eight percent of the isolates had high biofilm formation ability and exhibited gray cell type. The most common genotype was genotype B (52%). HRM analysis of HIS3, EF3, and CDC3 markers showed three, four, and five different groups, respectively. CONCLUSION: Investigating the phenotype, antifungal susceptibility and biofilm formation ability of the C. albicans isolates obtained from oral lesions of HIV-infected patients revealed that the dominant genotypes in the current research could cause more serious infections from the oral source. We recommend further research with a larger sample size to determine the molecular epidemiology of C. albicans among HIV patients in Iran.

7.
Curr HIV Res ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39279712

RESUMO

INTRODUCTION: The C-C chemokine receptor type 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV). Some individuals carry the CCR5 delta-32 genetic polymorphism. People with homozygous CCR5 delta-32 gene are nearly completely resistant to HIV-1 infection. High-resolution melting curve (HRM) analysis is a post-PCR technique utilized for identifying genetic variations in a quick, affordable, and closed-tube assay. The objective of this study was to develop an HRM assay for easy detection of delta-32 mutations. MATERIALS AND METHODS: DNA was extracted from peripheral blood mononuclear cells. HRM was performed to detect delta-32 mutation. The study investigated the impact of various factors, including annealing temperature, template concentration, touchdown PCR, additives, amplicon size, and program settings, on HRM Tm differentiation. RESULTS: It was expected that there would be a 4°C Tm difference between amplicons with and without delta-32 mutation, but the test showed a difference of only 2.3°C. In attempts to identify heterozygote delta-32 variants, a Tm difference of only 0.4°C could be achieved. Various modifications were applied, such as adjusting the template concentration, using touchdown PCR, and adding DMSO and glycerol. However, none of these changes helped to differentiate the Tm effectively, especially in delta-32 heterozygote samples. CONCLUSION: The HRM test identified four samples with heterozygote mutations in each HIV-infected (8.89%) and control (5.72%) groups. More importantly, this study showed that identifying the delta-32 mutation of the CCR5 gene using HRM assay is not as straightforward as previously suggested in some literature, and it requires special setup conditions.

8.
Diagn Microbiol Infect Dis ; 110(3): 116426, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163789

RESUMO

Blood culture, the gold-standard method for identifying pathogens in bloodstream infections, is time-consuming and demonstrates low sensitivity. These drawbacks are related to high mortality, especially among pediatric oncology patients presenting febrile neutropenia episodes. Here we describe two novel High-Resolution Melting assays designed for pathogen detection in bloodstream infections. The assays were initially evaluated using five sepsis-associated pathogens. Both assays demonstrated 100 % specificity, detected as low as 100 fg of bacterial DNA, and exhibited reproducibility. Clinical isolates from blood cultures were 100 % identified by both assays. Moreover, blind and direct identification of blood samples from pediatric cancer patients demonstrated sensitivities of 61.5 % and 69.2 % for "Primer Set 1" and "Primer Set 2", respectively. Our study highlights the potential of HRM-based assays as a rapid and efficient diagnostic approach for sepsis-related microorganisms. Further advancements could enhance their clinical utility for better management of febrile neutropenia episodes, especially in pediatric oncology patients.


Assuntos
Neoplasias , Sensibilidade e Especificidade , Humanos , Criança , Neoplasias/complicações , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Sepse/microbiologia , Sepse/diagnóstico , Reprodutibilidade dos Testes , Técnicas de Diagnóstico Molecular/métodos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Pré-Escolar , DNA Bacteriano/genética , Lactente
9.
Front Plant Sci ; 15: 1405168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145191

RESUMO

Agarwood is a valuable traditional medicine and fragrance. The production process is a typical injury-induced defense response. Currently, there are approximately 22 known species in the genus Aquilaria Lam., all of which can produce agarwood, whereas there are only two legal species of traditional Chinese medicinal agarwood, Aquilaria sinensis (Lour.) Spreng. and Aquilaria agallocha (Lour.) Roxb. The Taiwan herbal Pharmacopoeia of China stipulates that the medicinal agarwood species are A. sinensis and its relatives in the same genus. Moreover, there are five species of agarwood available for clinical medicinal use in Japan, including A. agallocha and A. sinensis, which are often confused with each other or used in a mixed way in the trade process. Therefore, accurate identification of traditional Chinese medicinal agarwood species is important to ensure the authenticity of traditional medicines and to guide the safety of clinical medication. In this study, 59 specific single-nucleotide polymorphism loci were screened and obtained from the chloroplast genomes of 12 species of the genus Aquilaria Lam. We established an identification method for traditional Chinese medicinal agarwood using mini-barcoding combined with high-resolution melting (HRM) and designed and validated 10 pairs of primers from the psbM-trnD, psbA, rps16, petN, ndhE-psaC, rps4, atpE, ycf1, rps15-trnN, and matK regions. The amplification products were all less than 200 bp, with a high success rate of amplification. The method was applied to successfully identify traditional Chinese medicinal agarwood species from commercial agarwood samples. Overall, the sensitivity of this method was sufficient to detect 1% of adulterants in medicinal agarwood products, proving that mini-barcoding HRM is a powerful and flexible tool. This method can be used as a fast and effective high-throughput method for authenticity testing of traditional Chinese medicinal agarwood and its raw materials containing agarwood-containing proprietary Chinese medicines and is recommended for industrial applications.

10.
Cytokine ; 182: 156730, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133967

RESUMO

Acute myeloid leukemia (AML) is one of the most common and fatal malignancies that affect adults, which can quickly become aggressive if left untreated, and leukemia cells invade the bone marrow. TLR-9 is an innate immune cell receptor sensitive to various PAMPs and encoded by the TLR-9 gene. As is often known, genetic polymorphisms in any gene can help the development of the disease, and these three polymorphisms, rs187084, rs5743836, and rs352140 of TLR-9, have been studied in many different cancer disorders. Therefore, this study aimed to discover the multiple forms of a TLR-9 gene in a sample of Iraqi AML patients. A total of 120 participants in a case-control study were enrolled in the current study. Using CBC, some hematological parameters were evaluated, and the serum level of TLR-9 was assessed using the ELISA technique. DNA was extracted directly from blood, and a high-resolution melting (HRM) analysis was then carried out. The results revealed a significant difference in some blood parameters among patients and healthy control, while WBC and lymphocytes were without an evident difference between the two groups of the current investigation. The serum concentration of TLR-9 showed an elevated level in patients (P value < 0.01). Nonetheless, this increase was not affected by the genotype patterns of polymorphisms. According to the P-value, there was a significant difference in wild genotypes of the three polymorphisms (rs187084, rs5743836, and rs352140). At the same time, the odds ratio revealed the association with the disease as a protective factor. In contrast, there was a significant difference in the heterozygous and mutant genotypes of TLR-9 polymorphisms, though the odds ratio confirmed the association with the AML as a risk factor. The results of rs352140 were compatible with H.W.E since there were no significant differences between the observed and expected values for either patients or healthy controls. In contrast, the result of rs5743836 was not consistent with the HWE. Furthermore, although it corresponds with the healthy one, the finding of rs187084 conflicted with H.W.E. in the patient group. In conclusion, High serum levels of TLR-9 in patients could act as biomarkers for AML. The TLR-9 gene polymorphisms (rs187084, rs5743836, and rs352140) have been linked to an increased risk of AML and may impact the disease progression in the Iraqi population.


Assuntos
Leucemia Mieloide Aguda , Polimorfismo de Nucleotídeo Único , Receptor Toll-Like 9 , Adulto , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Predisposição Genética para Doença , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/sangue , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Toll-Like 9/genética
11.
J Sci Food Agric ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051761

RESUMO

BACKGROUND: Deer-derived materials (antler, venison, fetus, penis, bone, tail, and others) are some of the most valuable traditional animal-based medicinal and food materials in China. In production, processing, and trade, the quality of deer products varies. The market is confusing, and counterfeit and shoddy products are common. There is an urgent need to establish an accurate identification method. RESULTS: Two pairs of primers suitable for identifying deer-derived medicinal materials were obtained by screening the cytochrome oxidase I (COI) sequences of 18 species from nine genera of the deer family. The two primers were used to identify the species and adulteration of 22 batches of commercially available deer-derived products with a mini-barcode combining high-resolution melting (HRM) technology and methodical investigation. Deer-derived materials (sika and red deer) were correctly identified by species using varying DNA amounts (1 to 500 ng). The two pairs of primers COI-1FR and COI-2FR yielded melting temperatures (Tm) of 80.55 to 81.00 °C and 82.00 to 82.50 °C for sika deer, and 81.00 to 82.00 °C and 81.40 to 82.00 °C for red deer. Twenty-two batches of commercially available samples were analyzed by HRM analysis and conventional amplification sequencing, and it was found that the species samples had an error rate of species labeling of 31.8%. Four batches of samples were identified as mixed (adulterated) in the HRM analysis. CONCLUSION: The combination of DNA mini-barcode with HRM analysis facilitated the accurate identification of species of deer-derived materials, especially the identification of samples in an adulterated mixed state. © 2024 Society of Chemical Industry.

12.
Fungal Biol ; 128(5): 1968-1981, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059852

RESUMO

Chestnut production is considered one of the most important economic resources of rural mountainous areas in Greece. Lately, producers report a steep rise in the incidence of brown rot disease caused by the fungus Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales), which results in severe chestnut rot. The pathogen is considered an emerging pathogen in many countries worldwide (Italy, France, Switzerland, Australia, New Zealand). This study aimed at (a) exploring the incidence of the brown rot disease in Vria (Regional Unit of Pieria, Region of Central Makedonia, Greece), (b) isolating and identifying the causal agent of the disease, (c) exploring the fungus presence at different phenological stages of the chestnut trees, and (d) implementing species-specific Bar- High Resolution Melting Analysis (HRM) for the early detection of G. smithogilvyi in chestnuts. G. smithogilvyi occurrence in chestnut tissues was more severe in June (59 %), nearly disappeared in July (19 %) and August (7 %) and increased again during harvesting time in September (57 %). This result could be attributed to a sum of different factors, including climate conditions. Moreover, it was demonstrated that G. smithogilvyi can be identified using a Bar-HRM analysis of chestnut tissues (buds, flowers and nuts). Results of this study clearly demonstrate that Bar-HRM can be used for the accurate, rapid and reliable identification of G. smithogilvyi universally on infected samples from different localities.


Assuntos
Ascomicetos , Fagaceae , Flores , Doenças das Plantas , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Ascomicetos/classificação , Grécia , Flores/microbiologia , Fagaceae/microbiologia , Incidência
13.
BMC Microbiol ; 24(1): 205, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851713

RESUMO

The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level (14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.


Assuntos
Tipagem de Sequências Multilocus , Humanos , Tipagem de Sequências Multilocus/métodos , Temperatura de Transição , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Proteínas de Bactérias/genética , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/isolamento & purificação , DNA Bacteriano/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico
14.
Front Plant Sci ; 15: 1397018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872891

RESUMO

The continuously refined genome assembly of the Chinese cabbage accession Chiifu is widely recognized as the reference for Brassica rapa. However, the high self-incompatibility of Chiifu limits its broader utilization. In this study, we report the development of self-compatible Chiifu lines through a meticulous marker-assisted selection (MAS) strategy, involving the substitution of the Chiifu allele of MLPK (M-locus protein kinase) with that from the self-compatible Yellow Sarson (YS). A YS-based marker (SC-MLPK) was employed to screen 841 B. rapa accessions, confirming that all eight accessions with the mlpk/mlpk (mm) genotype exhibited self-compatibility. Additionally, we designed 131 High-Resolution Melting (HRM) markers evenly distributed across the B. rapa genome as genomic background selection (GBS) markers to facilitate the introgression of self-compatibility from YS into Chiifu along with SC-MLPK. Genome background screening revealed that the BC3S1 population had a proportion of the recurrent parent genome (PR) ranging from 93.9% to 98.5%. From this population, we identified self-compatible individuals exhibiting a high number of pollen tubes penetrating stigmas (NPT) (>25) and a maximum compatibility index (CI) value of 7.5. Furthermore, we selected two individuals demonstrating significant similarity to Chiifu in both genetic background and morphological appearance, alongside self-compatibility. These selected individuals were self-pollinated to generate two novel lines designated as SC-Chiifu Lines. The development of these self-compatible Chiifu lines, together with the SC-MLPK marker and the set of HRM markers, represents valuable tools for B. rapa genetics and breeding.

15.
Genes Genomics ; 46(8): 909-915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849705

RESUMO

BACKGROUND: Digital PCR (dPCR) technology allows absolute quantification and detection of disease-associated rare variants, and thus the use of dPCR technology has been increasing in clinical research and diagnostics. The high-resolution melting curve analysis (HRM) of qPCR is widely used to distinguish true positives from false positives and detect rare variants. In particular, qPCR-HRM is commonly used for methylation assessment in research and diagnostics due to its simplicity and high reproducibility. Most dPCR instruments have limited fluorescence channels available and separate heating and imaging systems. Therefore, it is difficult to perform HRM analysis using dPCR instruments. OBJECTIVE: A new digital real-time PCR instrument (LOAA) has been recently developed to integrate partitioning, thermocycling, and imaging in a single dPCR instrument. In addition, a new technique to perform HRM analysis is utilized in LOAA. The aim of the present study is to evaluate the efficiency and accuracy of LOAA dPCR on HRM analysis for the detection of methylation. METHODS: In this study, comprehensive comparison with Bio-Rad qRT-PCR and droplet-based dPCR equipment was performed to verify the HRM analysis-based methylation detection efficiency of the LOAA digital PCR equipment. Here, sodium bisulfite modification method was applied to detect methylated DNA sequences by each PCR method. RESULTS: Melting curve analysis detected four different Tm values using LOAA and qPCR, and found that LOAA, unlike qPCR, successfully distinguished between different Tm values when the Tm values were very similar. In addition, melting temperatures increased by each methylation were about 0.5℃ for qPCR and about 0.2 ~ 0.6℃ for LOAA. The melting temperature analyses of methylated and unmethylated DNA samples were conducted using LOAA dPCR with TaqMan probes and EvaGreen, and the result found that Tm values of methylated DNA samples are higher than those of unmethylated DNA samples. CONCLUSION: The present study shows that LOAA dPCR could detect different melting temperatures according to methylation status of target sequences, indicating that LOAA dPCR would be useful for diagnostic applications that require the accurate quantification and assessment of DNA methylation.


Assuntos
Metilação de DNA , Reação em Cadeia da Polimerase em Tempo Real , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Desnaturação de Ácido Nucleico , Semicondutores , Temperatura de Transição , Reprodutibilidade dos Testes
16.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791122

RESUMO

High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT.


Assuntos
Metilação de DNA , Desnaturação de Ácido Nucleico , Calibragem , Humanos , Regiões Promotoras Genéticas , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Temperatura , Enzimas Reparadoras do DNA/genética , Ilhas de CpG , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , DNA/genética
17.
Cancer Chemother Pharmacol ; 94(2): 237-250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678150

RESUMO

PURPOSE: The current candidate gene association study aims to investigate tag SNPs from the TACR1 gene as pharmacogenetic predictors of response to the antiemetic guidelines-recommended, NK-1 receptor antagonist-based, triple antiemetic regimens. METHODS: A set of eighteen tag SNPs of TACR1 were genotyped in breast cancer patients receiving anthracycline and cyclophosphamide (with/without docetaxel) applying real-time PCR-HRMA. Data analysis for 121 ultimately enrolled patients was initiated by defining haplotype blocks using PHASE v.2.1. The association of each tag SNP and haplotype alleles with failure to achieve the defined antiemetic regimen efficacy endpoints was tested using PLINK (v.1.9 and v.1.07, respectively) based on the logistic regression, adjusting for the previously known chemotherapy-induced nausea and vomiting (CINV) prognostic factors. All reported p-values were corrected using the permutation test (n = 100,000). RESULTS: Four variants of rs881, rs17010730, rs727156, and rs3755462, as well as haplotypes containing the mentioned variants, were significantly associated with failure to achieve at least one of the defined efficacy endpoints. Variant annotation via in-silico studies revealed that the non-seed sequence variant, rs881, is located in the miRNA (hsa-miR-613) binding site. The other three variants or a variant in complete linkage disequilibrium with them overlap a region of high H3K9ac-promoter-like signature or regions of high enhancer-like signature in the brain or gastrointestinal tissue. CONCLUSION: Playing an essential role in regulating TACR1 expression, gene polymorphisms of TACR1 serve as the potential pharmacogenetic predictors of response to the NK-1 receptor antagonist-based, triple antiemetic regimens. If clinically approved, modifying the NK-1 receptor antagonist dose leads to better management of CINV in risk-allele carriers.


Assuntos
Antieméticos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Ciclofosfamida , Náusea , Polimorfismo de Nucleotídeo Único , Receptores da Neurocinina-1 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Pessoa de Meia-Idade , Antieméticos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Receptores da Neurocinina-1/genética , Náusea/induzido quimicamente , Náusea/genética , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Vômito/induzido quimicamente , Vômito/genética , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Adulto , Estudos de Associação Genética , Haplótipos , Idoso , Docetaxel/uso terapêutico , Docetaxel/efeitos adversos , Farmacogenética , Antraciclinas/efeitos adversos , Antraciclinas/uso terapêutico , Genótipo
18.
World J Virol ; 13(1): 88164, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38616859

RESUMO

BACKGROUND: Hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus 1 (HIV-1) are the most epidemic blood-borne viruses, posing threats to human health and causing economic losses to nations for combating the infection transmission. The diagnostic methodologies that depend on the detection of viral nucleic acids are much more expensive, but they are more accurate than serological testing. AIM: To develop a rapid, cost-effective, and accurate diagnostic multiplex polymerase chain reaction (PCR) assay for simultaneous detection of HCV, HBV, and HIV-1. METHODS: The design of the proposed PCR assay targets the amplification of a short conserved region featured with a distinguishable melting profile and electrophoretic molecular weight inside each viral genome. Therefore, this diagnostic method will be appropriate for application in both conventional (combined with electrophoresis) and real-time PCR facilities. Confirmatory in silico investigations were conducted to prove the capability of the approached PCR assay to detect variants of each virus. Then, Egyptian isolates of each virus were subjected to the wet lab examination using the given diagnostic assay. RESULTS: The in silico investigations confirmed that the PCR primers can match many viral variants in a multiplex PCR assay. The wet lab experiment proved the efficiency of the assay in distinguishing each viral type through high-resolution melting analysis. Compared to related published assays, the proposed assay in the current study is more sensitive and competitive with many expensive PCR assays. CONCLUSION: This study provides a simple, cost-effective, and sensitive diagnostic PCR assay facilitating the detection of the most epidemic blood-borne viruses; this makes the proposed assay promising to be substitutive for the mistakable and cheap serological-based assays.

19.
J Dairy Sci ; 107(8): 5416-5426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38490558

RESUMO

Diarrheagenic Escherichia coli (DEC) is a kind of foodborne pathogen that poses a significant threat to both food safety and human health. To address the current challenges of high prevalence and difficult subtyping of DEC, this study developed a method that combined multiplex PCR with high-resolution melting (HRM) analysis for subtyping 5 kinds of DEC. The target genes are amplified by multiplex PCR in a single well, and HRM curve analysis was applied for distinct amplicons based on different melting temperature (Tm) values. The method enables discrimination of different DEC types based on characteristic peaks and distinct Tm values in the thermal melting curve. The assay exhibited 100% sensitivity and 100% specificity with a detection limit of 0.5 to 1 ng/µL. The results showed that different DNA concentrations did not influence the subtyping results, demonstrating this method owed high reliability and stability. In addition, the method was also used for the detection and subtyping of DEC in milk. This method streamlines operational procedures, shorts the detection time, and offers a novel tool for subtyping DEC.


Assuntos
Escherichia coli , Leite , Reação em Cadeia da Polimerase em Tempo Real , Leite/microbiologia , Animais , Escherichia coli/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
20.
Mol Aspects Med ; 97: 101268, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38489863

RESUMO

Melting is a fundamental property of DNA that can be monitored by absorbance or fluorescence. PCR conveniently produces enough DNA to be directly monitored on real-time instruments with fluorescently labeled probes or dyes. Dyes monitor the entire PCR product, while probes focus on a specific locus within the amplicon. Advances in amplicon melting include high resolution instruments, saturating DNA dyes that better reveal multiple products, prediction programs for domain melting, barcode taxonomic identification, high speed microfluidic melting, and highly parallel digital melting. Most single base variants and small insertions or deletions can be genotyped by high resolution amplicon melting. High resolution melting also enables heterozygote scanning for any variant within a PCR product. A web application (uMelt, http://www.dna-utah.org) predicts amplicon melting curves with multiple domains, a useful tool for verifying intended products. Additional applications include methylation assessment, copy number determination and verification of sequence identity. When amplicon melting does not provide sufficient detail, unlabeled probes or snapback primers can be used instead of covalently labeled probes. DNA melting is a simple, inexpensive, and powerful tool with many research applications that is beginning to make its mark in clinical diagnostics.


Assuntos
DNA , Desnaturação de Ácido Nucleico , Humanos , DNA/genética , DNA/química , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA