Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Comput Biol Med ; 132: 104299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711557

RESUMO

In this paper, the extracted features using variational mode decomposition (VMD) and approximate entropy (ApEn) privileged information of the input EEG signals are combined with multilayer multikernel random vector functional link network plus (MMRVFLN+) classifier to recognize the epileptic seizure epochs efficaciously. In our experiment Bonn University single-channel intracranial electroencephalogram (iEEG) and Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) multichannel scalp EEG (sEEG) recordings are considered to evaluate the efficacy of the proposed method. The VMD is applied on chaotic, non-stationary, nonlinear, and complex EEG signal to decompose it into three band-limited intrinsic mode functions (BLIMFs). The Hilbert transform (HT) is applied on BLIMFs to extract informative spectral and temporal features. The ApEn is computed from the raw EEG signals as the privileged information and given to the multi-hidden layer structure to obtain the most discriminative compressed form. The scatter plots show the distinct nature of compressed privileged ApEn information among the seizure pattern classes. The linear as well as nonlinear mapping, local and global kernel function, high-learning speed, less computationally complex MMRVFLN+ classifier is proposed to recognize the seizure events accurately by importing the efficacious features with ApEn as the input. The advanced signal processing algorithm i.e., Hilbert Huang transform (HHT) with ApEn and MMRVFLN+ are combined to compare the performance with the proposed VMDHTApEn-MMRVFLN+ method. The proposed method has remarkable recognition ability, superior classification accuracy, and excellent overall performance as compared to other methods. The digital architecture of the multifuse MMRVFLN+ is developed and implemented on a high-speed reconfigurable FPGA hardware platform to validate the effectiveness of the proposed method. The superior classification accuracy, the negligible false positive rate per hour (FPR/h), simplicity, feasibility, robustness, and practicability of the proposed method validate its ability to recognize the epileptic seizure epochs automatically.


Assuntos
Epilepsia , Couro Cabeludo , Algoritmos , Criança , Eletroencefalografia , Entropia , Humanos , Convulsões , Processamento de Sinais Assistido por Computador
2.
J Microsc ; 276(3): 118-127, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696930

RESUMO

White light interferometry (WLI) is an effective and widely-used technique for structured surface measurement. However, it requires multiframe interferograms with vertical scanning to realise large-scale measurement, which is time consuming and computationally intensive. This paper proposes a rapid surface measurement method to realise surface recovery with a single interferogram by white light interferometry. First, the feasibility to solve the wrapped phase of a single white-light interferogram by Hilbert transform is certified. Then, unwrapped phases against zero optical path difference position (OPD) are achieved by a zero optical path difference detection algorithm applied to unwrapping process, which provides efficient surface recovery. To ensure the accuracy of phase solution in the proposed method, the necessary number and width of the interference fringes in the interferogram are analysed and determined based on Hilbert transform and sampling analysis. Finally, measurement results of a standard step sample and a standard reticle template are presented, which prove the accuracy and efficiency of the proposed method. LAY DESCRIPTION: As an effective and widely-used technique for structured surface measurement, white light interferometry (WLI) has the major advantage to measure noncontinuous surfaces using the short coherence length of a wide bandwidth source. However, frequently vertical scanning is required to get series of white light interferograms at different axial positions for surface recovery by recovered algorithms. The vertical scanning process is complicated and time consuming. This paper proposes a fast and efficient method to realise rapid surface measurement using only a single-frame interferogram based on WLI. First, the feasibility of using only one single white light interferogram to solve wrapped phases by Hilbert transform (HT) is discussed. Next, unwrapping process and zero optical path difference(OPD) detection algorithms are combined to unwrap phases against zero OPD position, which makes the structured surface recovery much easier. After that, the feasible number and width of interference fringes are determined based on sampling analysis and HT to guarantee the reliability and accuracy of phase solution in the proposed method. Finally, the accuracy and efficiency of this method is verified by measurement experiments of a standard step sample and a standard reticle template.

3.
ISA Trans ; 80: 439-457, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30093104

RESUMO

This paper presents a new approach to detect the location of multiple broken rotor bars (MBRBs) in induction motor (IM) drive, running under no load and full load conditions using direct in and variable frequency drives. This technique is based on earlier work of location detection of one broken rotor bar. The techniques are tested for various fault severity levels so the detection of the exact location of the fault at early stage helps to reach sufficient time maintenance. In this paper, the authors used Hilbert Transform to extract the fault signature from the stator current envelope which is the low frequency component. Then statistical analysis is applied which produce a formula that is used to get the exact location of the fault in IM rotor.

4.
Rev. mex. ing. bioméd ; 39(1): 65-80, ene.-abr. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-902384

RESUMO

Resumen: La auscultación de señales basada en un estetoscopio estándar y/o electrónico no solo incluye sonidos internos del cuerpo, también incluye frecuentemente ruido externo de interferencia con componentes en el mismo rango. Esta forma de examinar es incluso afectada por los umbrales auditivos variantes de los profesionales de la salud y el grado de experiencia en reconocimiento de indicadores peculiares. Además, los resultados son a menudo caracterizados en términos cualitativos descriptivos sujetos a interpretaciones individuales. Para direccionar esta preocupación, los estudios presentados en este artículo contienen un procesamiento concurrente de las componentes dominantes de sonidos del corazón (HS) y del pulmón (HS), y una etapa de acondicionamiento que incluye la reducción de HS presente en señales LS. Específicamente, la transformada de Hilbert fue una técnica de caracterización para HS. En el caso de señales enfocadas a LS, las técnicas de detección de actividad de voz y el cálculo de umbrales de algunos componentes de los vectores acústicos de Coeficientes Cepstrales en Frecuencia Mel (MFCC), fueron útiles en la caracterización de eventos acústicos asociados. Las fases de inspiración y expiración fueron diferenciadas por medio de la sexta componente de MFCC. Con el fin de evaluar la eficiencia de esta aproximación, proponemos los Modelos Ocultos de Markov con Modelos Mesclados Gaussianos (HMM-GMM). Los resultados utilizando esta forma de detección son superiores cuando se desarrolla la clasificación con modelos HMM-GMM, la cual refleja las ventajas de la forma de detección cuantificable y clasificación sobre la aproximación clínica tradicional.


Abstract: A standard and/or electronic stethoscope based auscultatory signals include not only the internal sounds of the body but also interfering external noise often with similar frequency components. This form of examination is also affected by varying thresholds of clinical practitioner's hearing and degree of experience in recognition of peculiar auscultatory indicators. Further, the results are often characterized in qualitative descriptive terms subject to individual's interpretation. To address these concerns, presented studies include concurrent processing of dominant heart (HS) and lung (LS) sounds components and a conditioning stage involving HS presence reduction within LS focused signals. Specifically as determined, the Hilbert transform was a technique of choice in HS characterization. In the case of LS focused signals, the speech activity detection techniques (VAD) and the thresholds calculation of some components of acoustic vectors of Cepstral Coefficients in Mel Frequency (MFCC), were useful in characterization of associated acoustic events. The phases of inspiration and expiration were differentiated by means of the sixth component of MFCC. In order to evaluate the efficiency of this approach, we propose Hidden Markov Models with Mixed Gaussian Models (HMM-GMM). The results utilizing this form of detection are superior when performing classification with HMM-GMM models, which reflect the advantages of presented form of quantifiable detection and classification over traditional clinical approach.

5.
Rev. bras. eng. biomed ; 25(3): 153-166, dez. 2009. ilus, tab
Artigo em Português | LILACS | ID: lil-576300

RESUMO

O processo de detecção do complexo QRS é o primeiro passo de um processo de extração de parâmetros do sinal eletrocardiograma (ECG) em sistemas de auxílio ao diagnóstico médico. O presente trabalho apresenta resultados detalhados de comparação da aplicação de duas transformadas matemáticas, Wavelet e Hilbert, em um algoritmo de detecção de QRS em termos de taxas de detecções corretas (sensibilidade e preditividade positiva) e de uma medida de frequência de recorrência a processos de filtragem (pré-processamento). Uma abordagem inovadora é implementada, na qual as rotinas de filtragem são inseridas dentro do estágio de decisão, ou seja, é realizada a supressão da etapa de pré-processamento. As transformadas são aplicadas no algoritmo, que é baseado em um limiar adaptativo, com o objetivo de realçar, apenas quando necessário, os picos (pontos fiduciais)do QRS. Em uma primeira abordagem, apenas a transformada Wavelet é utilizada neste realce e, numa segunda abordagem, a transformada de Hilbert é inserida em série à aplicação da Wavelet em dois possíveis arranjos. São realizados experimentos dos algoritmos sobre os exames da base de dados Arrhythmia Database, pertencente ao conjunto de bases de dados do MIT-BIH. É composta por 48 gravações de ECG com duração de trinta minutos, amostrados a uma frequência de 360 Hz com resolução de 4,88 μV sobre uma faixa de variação de 10 mV. Ao todo, contabilizam-se 109.662 complexos QRS. Taxas de 98,85% de sensibilidade e 95,10% de preditividade positiva são obtidas com a aplicação exclusiva da transformada Wavelet, enquanto que 98,89% de sensibilidade e 98,52% de preditividade positiva são obtidas com aaplicação em série das transformadas Wavelet e de Hilbert.


The process of QRS detection is the first stage of a greater process: the feature extraction in the electrocardiogram (ECG). This work presents detailed results on the performance of two mathematical transforms, Hilbert and Wavelet, which are applied in QRS detection. The evaluation parameters are the detection rates and a measure of frequency of recurrence to filtering processes. An innovative approach is implemented: the filtering routines are inserted in the decision stage, i.e. the preprocessing stage is removed. The algorithm is based on adaptive threshold technique and the two transforms are applied in order to emphasize, only when necessary, the QRS fiducial points. In a first approach, only the Wavelet transform is applied, and in a second approach, the Hilbert transform is inserted before the Wavelet transform or after it. We evaluate these approaches on the well-known MIT-BIH Arrhythmia Database. It contains 48 half-hour recordings of annotated ECG with a sampling rate of 360 Hz and 4.88 μV resolution over a 10 mV range, totalizing 109,662 QRS complexes. Sensitivity rates of 98.85% and 98.89% are respectively attained when the Wavelet transform is applied in the filtering processes and both Hilbert and Wavelet transforms are applied. Predictability rates of 95.10% and 98.52% are also attained respectively using Wavelet transform and the simultaneous application of Hilbert and Wavelet transforms in the filtering processes.


Assuntos
Análise Espectral , Ecocardiografia/métodos , Frequência Cardíaca/fisiologia , Processamento de Sinais Assistido por Computador/instrumentação , Técnicas de Diagnóstico Cardiovascular , Testes de Função Cardíaca/métodos , Algoritmos , Arritmias Cardíacas/diagnóstico , Modelos Cardiovasculares , Sensibilidade e Especificidade
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-580810

RESUMO

Objective To extract envelope of heart sounds exactly,for the purpose of the further analysis of its characteristics.Methods The way that envelope extraction of heart sounds based on key-points was given.The points of local peak and valley were calculated firstly,and then heart sound envelope was gotten by the interpolation of these points.Results Compared with the envelope extracted by Hilbert-transform and mathematical morphology,respectively,the outline of heart sounds was extracted more accurately,and its time-domain characters were acquired by this method.Conclusion The envelope of heart sound is extracted correctly by this method,which is useful for the further analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA