Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.043
Filtrar
1.
Poult Sci ; 103(9): 103977, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38970845

RESUMO

Chicken embryos serve as an important model for investigating germ cells due to their ease of accessibility and manipulation within the egg. Understanding the development of germ cells is particularly crucial, as they are the only cell types capable of transmitting genetic information to the next generation. Therefore, gene expression regulation in germ cells is important for genomic function. Epigenetic programming is a crucial biological process for the regulation of gene expression without altering the genome sequence. Although epigenetic programming is evolutionarily conserved, several differences between chickens and mammals have been revealed. In this review, we compared the epigenetic regulation of germ cells in chickens and mammals (mainly mice as a representative species). In mammals, migrating primordial germ cells (precursors for germ cells [PGCs]) undergo global DNA demethylation and persist until sexual differentiation, while in chickens, DNA is demethylated until reaching the gonad but remethylated when sexually differentiated. Prospermatogonia is methylated at the onset of mitotic arrest in mammals, while DNA is demethylated at mitotic arrest in chickens. Furthermore, genomic imprinting and inactivation of sex chromosomes are differentially regulated through DNA methylation in chickens and mammals. Chickens and mammals exhibit different patterns of histone modifications during germ cell development, and non-coding RNA, which is not involved in PGC differentiation in mice, plays an important role in chicken PGC development. Additionally, several chicken-specific non-coding RNAs have been identified. In conclusion, we summarized current knowledge of epigenetic gene regulation of chicken germ cells, comparing that of mammals, and highlighted notable differences between them.

2.
J Biol Chem ; : 107531, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971312

RESUMO

TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.

3.
Plant Commun ; : 101037, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971972

RESUMO

N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Following advancements in transcriptome-wide m6A mapping and sequencing technologies, several conserved motifs, including RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs, have been identified in plants. However, the mechanisms underlying the deposition of the m6A marks at a specific position in the conserved motif in each transcript are primarily known. Evidence has emerged in plant and animal studies to suggest that the m6A writer or eraser components are recruited to the specific genomic loci by interacting with particular transcription factors, 5mC DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at a specific site in a transcript via a base-pairing mechanism. Furthermore, m6A affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although our understanding of a link between m6A modification and epigenetic factors in plants is lower than the increased knowledge in animals, recent progress in identifying the proteins that interact with the m6A writer or eraser components has expanded insights into the crosstalk between m6A modification and epigenetic factors that play a crucial role in transcript-specific methylation and regulation of m6A in plants.

4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960704

RESUMO

The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.


Assuntos
Ácido Glutâmico , Neurogênese , Neurônios , Complexo Repressor Polycomb 2 , Animais , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , Neurogênese/fisiologia , Ácido Glutâmico/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Masculino , Camundongos Endogâmicos C57BL , Feminino , Camundongos Transgênicos
5.
Open Biol ; 14(7): 230355, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981515

RESUMO

Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.


Assuntos
Ritmo Circadiano , Proteínas Correpressoras , Epigênese Genética , Neurônios , Proteínas Circadianas Period , Animais , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Camundongos , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Histonas/metabolismo , Código das Histonas , Mutação , Relógios Circadianos/genética , Regulação da Expressão Gênica
6.
Front Oncol ; 14: 1427725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983924

RESUMO

Head and neck cancer is the main cause of cancer death worldwide, with squamous cell carcinoma (HNSCC) being the second most frequent subtype. HNSCC poses significant health threats due to its high incidence and poor prognosis, underscoring the urgent need for advanced research. Histone modifications play a crucial role in the regulation of gene expression and influencing various biological processes. In the context of HNSCC, aberrant histone modifications are increasingly recognized as critical contributors to its development and pathologic progression. This review demonstrates the molecular mechanisms, by which histone modifications such as acetylation, methylation, phosphorylation, and ubiquitination, impact the pathogenesis of HNSCC. The dysregulation of histone-modifying enzymes, including histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone methyltransferases (HMTs), is discussed for its role in altering chromatin structure and gene expression in HNSCC. Moreover, we will explore the potential of targeting histone modifications as a therapeutic strategy, highlighting current preclinical and clinical studies that investigate histone deacetylase inhibitors (HDIs) and other epigenetic drugs, referring to the completed and ongoing clinical trials on those medications.

7.
Chem Pharm Bull (Tokyo) ; 72(7): 630-637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945939

RESUMO

Alzheimer's disease (AD) is the leading cause of senile dementia, and the rapid increase in the frequency of AD cases has been attributed to population aging. However, current drugs have difficulty adequately suppressing symptoms and there is still a medical need for symptomatic agents. On the other hand, it has recently become clear that epigenetic dysfunctions are deeply involved in the development of cognitive impairments. Therefore, epigenetics-related proteins have attracted much attention as drug targets for AD. Early-developed epigenetic inhibitors were inappropriate for AD treatment because of their limited potential for oral administration, blood-brain barrier penetration, high target selectivity, and sufficient dose-limiting toxicity which are essential properties for small molecule drugs targeting chronic neurodegenerative diseases such as AD. In recent years, drug discovery studies have been actively performed to overcome such problems and several novel inhibitors targeting the epigenetics-related proteins are of interest as promising AD therapeutic agents. Here, we review the small molecule inhibitors of histone deacetylase (HDAC), lysine-specific demethylase 1 (LSD1) or bromodomains and extra-terminal domain (BET) protein, that enable memory function improvement in AD model mice.


Assuntos
Doença de Alzheimer , Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desmetilases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Animais , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desacetilases/metabolismo
8.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842578

RESUMO

An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Animais , Humanos , Acilação , Epigênese Genética , Histonas/metabolismo
9.
J Plant Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914831

RESUMO

Heterochromatin is a nuclear area that contains highly condensed and transcriptionally inactive chromatin. Alterations in the organization of heterochromatin are correlated with changes in gene expression and genome stability, which affect various aspects of plant life. Thus, studies of the molecular mechanisms that regulate heterochromatin organization are important for understanding the regulation of plant physiology. Microscopically, heterochromatin can be characterized as chromocenters that are intensely stained with DNA-binding fluorescent dyes. Arabidopsis thaliana exhibits distinctive chromocenters in interphase nuclei, and genetic studies combined with cytological analyses have identified a number of factors that are involved in heterochromatin assembly and organization. In this review, I will summarize the factors involved in the regulation of heterochromatin organization in plants.

10.
BMC Plant Biol ; 24(1): 610, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926660

RESUMO

BACKGROUND: During male gametogenesis of flowering plants, sperm cell lineage (microspores, generative cells, and sperm cells) differentiated from somatic cells and acquired different cell fates. Trimethylation of histone H3 on lysine 4 (H3K4me3) epigenetically contributes to this process, however, it remained unclear how H3K4me3 influences the gene expression in each cell type. Here, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) to obtain a genome-wide landscape of H3K4me3 during sperm cell lineage development in tomato (Solanum lycopersicum). RESULTS: We show that H3K4me3 peaks were mainly enriched in the promoter regions, and intergenic H3K4me3 peaks expanded as sperm cell lineage differentiated from somatic cells. H3K4me3 was generally positively associated with transcript abundance and served as a better indicator of gene expression in somatic and vegetative cells, compared to sperm cell lineage. H3K4me3 was mutually exclusive with DNA methylation at 3' proximal of the transcription start sites. The microspore maintained the H3K4me3 features of somatic cells, while generative cells and sperm cells shared an almost identical H3K4me3 pattern which differed from that of the vegetative cell. After microspore division, significant loss of H3K4me3 in genes related to brassinosteroid and cytokinin signaling was observed in generative cells and vegetative cells, respectively. CONCLUSIONS: Our results suggest the asymmetric division of the microspore significantly reshapes the genome-wide distribution of H3K4me3. Selective loss of H3K4me3 in genes related to hormone signaling may contribute to functional differentiation of sperm cell lineage. This work provides new resource data for the epigenetic studies of gametogenesis in plants.


Assuntos
Histonas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Histonas/metabolismo , Linhagem da Célula , Genoma de Planta , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Pólen/genética , Pólen/crescimento & desenvolvimento , Epigênese Genética , Sequenciamento de Cromatina por Imunoprecipitação
11.
Eur J Pharmacol ; 977: 176748, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897443

RESUMO

An increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues are the primary pathological alterations linked to organ fibrosis. If fibrosis is not treated, organ structure is destroyed, function can decline, or even fail, posing a serious risk to human life and health. Numerous organs develop fibrosis, and organ fibroproliferative illnesses account for almost 45% of patient deaths from various diseases in the industrialized world, as well as a major cause of disability and mortality in many other diseases. Recently, it has become evident that histone modification is an important way to regulate gene expression in organ fibrosis. Histone modifications alter the structure of chromatin, thereby affecting gene accessibility. Histone acetylation modifications relax chromatin, making it easier for gene transcription factors to access DNA, thereby promoting gene transcription. In addition, histone modifications recruit other proteins to interact with chromatin to form complexes that further regulate gene expression. Histone methylation modifications recruit methylation-reading proteins that recognize methylation marks and alter gene expression status. It not only affects the normal physiological function of cells, but also plays an important role in organ fibrosis. This article reviews the important role played by histone modifications in organ fibrosis and potential therapeutic approaches.


Assuntos
Fibrose , Histonas , Humanos , Histonas/metabolismo , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Metilação
12.
Cancers (Basel) ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927870

RESUMO

Breast cancer, the most frequent malignancy in women worldwide, is a molecularly and clinically very heterogeneous disease. Triple-negative breast cancer is defined by the absence of hormone receptor and growth factor receptor ERBB2/HER2 expression. It is characterized by a more aggressive course of disease and a shortage of effective therapeutic approaches. Hallmarks of cancer cells are not only genetic alterations, but also epigenetic aberrations. The most studied and best understood alterations are methylation of the DNA base cytosine and the covalent modification of histone proteins. The reversibility of these covalent modifications make them attractive targets for therapeutic intervention, as documented in numerous ongoing clinical trials. Epidrugs, targeting DNA methylation and histone modifications, might offer attractive new options in treating triple-negative breast cancer. Currently, the most promising options are combination therapies in which the epidrug increases the efficiency of immuncheckpoint inhibitors. This review focusses exclusively on DNA methylation and histone modifications. In reviewing the knowledge about epigenetic therapies in breast cancer, and especially triple-negative breast cancer, the focus is on explaining concepts and raising awareness of what is not yet known and what has to be clarified in the future.

13.
Cancer Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888105

RESUMO

Multiple epigenetic regulatory mechanisms exert critical roles in tumor development, and understanding the interactions and impact of diverse epigenetic modifications on gene expression in cancer is crucial for the development of precision medicine. We found that methyltransferase-like 14 (METTL14) was significantly downregulated in non-small-cell lung cancer (NSCLC) tissues. Functional experiments demonstrated that overexpression of METTL14 inhibited the proliferation and migration of NSCLC cells both in vivo and in vitro, and the colorimetric m6A quantification assay also showed that knockdown of METTL14 notably reduced global m6A modification levels in NSCLC cells. By using the methylated-RNA immunoprecipitation-qPCR and dual-luciferase reporter assays, we verified that long noncoding RNA LINC02747 was a target of METTL14 and was regulated by METTL14-mediated m6A modification, and silencing LINC02747 inhibited the malignant progression of NSCLC by modulating the PI3K/Akt and CDK4/Cyclin D1 signaling pathway. Further studies revealed that overexpression of METTL14 promoted m6A methylation and accelerated the decay of LINC02747 mRNA via increased recognition of the "GAACU" binding site by YTHDC2. Additionally, histone demethylase lysine-specific histone demethylase 5B (KDM5B) mediated the demethylation of histone H3 lysine 4 tri-methylation (H3K4me3) in the METTL14 promoter region and repressed its transcription. In summary, KDM5B downregulated METTL14 expression at the transcriptional level in a H3K4me3-dependent manner, while METTL14 modulated LINC02747 expression via m6A modification. Our results demonstrate a synergy of multiple mechanisms in regulating the malignant phenotype of NSCLC, revealing the complex regulation involved in the occurrence and development of cancer.

14.
Front Cardiovasc Med ; 11: 1394889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895538

RESUMO

Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.

16.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884720

RESUMO

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Metilação de DNA/genética , Cardiopatias Congênitas/genética , Histonas/metabolismo , Histonas/genética , Processamento de Proteína Pós-Traducional , Camundongos , Cardiopatias/genética , Cardiopatias/metabolismo , Mutação
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167292, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871031

RESUMO

Post-translational modification and fine-tuned protein turnover are of great importance in mammalian early embryo development. Apart from the classic protein degradation promoting ubiquitination, new forms of ubiquitination-like modification are yet to be fully understood. Here, we demonstrate the function and potential mechanisms of one ubiquitination-like modification, neddylation, in mouse preimplantation embryo development. Treated with specific inhibitors, zygotes showed a dramatically decreased cleavage rate and almost all failed to enter the 4-cell stage. Transcriptional profiling showed genes were differentially expressed in pathways involving cell fate determination and cell differentiation, including several down-regulated zygotic genome activation (ZGA) marker genes. A decreased level of phosphorylated RNA polymerase II was detected, indicating impaired gene transcription inside the embryo cell nucleus. Proteomic data showed that differentially expressed proteins were enriched in histone modifications. We confirmed the lowered in methyltransferase (KMT2D) expression and a decrease in histone H3K4me3. At the same time, acetyltransferase (CBP/p300) reduced, while deacetylase (HDAC6) increased, resulting in an attenuation in histone H3K27ac. Additionally, we observed the up-regulation in YAP1 and RPL13 activities, indicating potential abnormalities in the downstream response of Hippo signaling pathway. In summary, we found that inhibition of neddylation induced epigenetic changes in early embryos and led to abnormalities in related downstream signaling pathways. This study sheds light upon new forms of ubiquitination regulating mammalian embryonic development and may contribute to further investigation of female infertility pathology.

18.
Eur J Immunol ; : e2350379, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824666

RESUMO

Innate lymphoid cells (ILCs) lack antigen-specific receptors and are considered the innate arm of the immune system, phenotypically and functionally mirroring CD4+ helper T cells. ILCs are categorized into groups 1, 2, and 3 based on transcription factors and cytokine expression. ILCs predominantly reside in mucosal tissues and play important roles in regional immune responses. The development and function of ILC subsets are controlled by both transcriptional and epigenetic mechanisms, which have been extensively studied in recent years. Epigenetic regulation refers to inheritable changes in gene expression that occur without affecting DNA sequences. This mainly includes chromatin status, histone modifications, and DNA methylation. In this review, we summarize recent discoveries on epigenetic mechanisms regulating ILC development and function, and how these regulations affect disease progression under pathological conditions. Although the ablation of specific epigenetic regulators can cause global changes in corresponding epigenetic modifications to the chromatin, only partial genes with altered epigenetic modifications change their mRNA expression, resulting in specific outcomes in cell differentiation and function. Therefore, elucidating epigenetic mechanisms underlying the regulation of ILCs will provide potential targets for the diagnosis and treatment of inflammatory diseases.

19.
Reprod Biomed Online ; 49(2): 103990, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38824763

RESUMO

RESEARCH QUESTION: What impact does the cryopreservation of endometrial tissue have on cell characteristics and molecular and epigenetic profile changes in endometrial tissue and stromal cells? DESIGN: Cellular properties, such as proliferation efficiency, surface marker expression and the differentiation potency of endometrial stromal cells (ESC) isolated from fresh (Native) and cryopreserved (Cryo) tissue were compared. Moreover, changes in the expression of genes associated with pluripotency, endometrial function and epigenetic regulation and microRNA (miRNA, miR) were assessed, as were levels of DNA methylation and histone modifications. RESULTS: Native and Cryo cells exhibit very similar profiles including cell surface marker expression, differentiation potency and histone modifications, except for a decrease in proliferative potency and cell surface marker SUSD2 expression in Cryo cells. It was demonstrated that endometrial tissue cryopreservation led to an up-regulated expression of genes associated with pluripotency (NANOG, OCT4 [also known as POU5F1]). This confirms that despite being recovered from cryopreserved differentiated tissue, cells retained their stemness properties. In addition, alterations in DNA methyltransferase (DNMT1, DNMT3A, DNMT3B) gene regulation were observed, along with a down-regulation of hsa-miR145-5p in Cryo ESC. CONCLUSIONS: These findings contribute to a deeper understanding of the complex effects of endometrial tissue cryopreservation, providing insights for both medical and basic research applications. Since different tissues possess unique characteristics, it is essential to select the most suitable cryopreservation method for each tissue individually. Furthermore, the study findings indicate the potential utility of slow-cooling cryopreservation for both normal and pathological endometrial tissue samples, with the purpose of isolating stromal cell cultures.

20.
Cureus ; 16(5): e59503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826873

RESUMO

In the modern age, colon cancer has attained a widespread status, affecting a considerable number of people. It develops due to the progressive accumulation of genetic and epigenetic alterations. While genetic mutations have been extensively studied in the context of colon cancer, emerging evidence highlights the pivotal role of epigenetic alterations in its pathogenesis. These alterations ultimately result in the transformation of normal colonic epithelium into colon adenocarcinoma. Key mechanisms of epigenetic modifications include DNA methylation, histone modification, and nucleosome positioning. Research findings have linked these modifications to the development, progression, or metastasis of tumors. Through the assessment of the colon cancer epigenome, it has been discovered that practically all colorectal cancers (CRCs) display gene methylation abnormalities and changes in miRNA expression. Advancements in this area indicate that epigenetic modifications will likely be commonly used in the near future to direct the prevention and treatment of CRC. The maintenance of genome stability is essential for preserving cellular integrity. The development of CRC is primarily influenced by the loss of genomic stability, which allows for the emergence of new mutations contributing to tumor characteristics. Although genetic mutations have been extensively researched in the realm of colon cancer, recent evidence underscores the pivotal role of epigenetic changes in its pathogenesis. The following types of genomic instability will be discussed: chromosomal instability, microsatellite instability, CpG island methylation phenotype, and aberrant DNA methylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...