Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 893: 164834, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327887

RESUMO

Climate change threatens freshwater fish species due to predicted changes in thermal, sedimentary and hydrological properties of stream ecosystems. Gravel-spawning fish are particularly sensitive to such alterations as warming, higher inputs of fine sediment and low-flow all have potentially negative effects on the functionality of their reproductive habitat, the hyporheic zone. Multiple stressors can interact in synergistic and antagonistic manners, causing surprise-effects that cannot be predicted from the additive consideration of individual stressors. For obtaining reliable, yet realistic data on the climate change stressor effects warming (+3-4 °C), fine sediment (increase in <0.85 mm by 22 %) and low-flow (eightfold discharge-reduction), we constructed a unique large-scale outdoor-mesocosm facility consisting of 24 flumes to study individual and combined stressor responses in a fully-crossed, 3-way-replicated design. To acquire representative results reflecting individual susceptibilities of gravel-spawning fish species due to taxonomic affiliation or spawning seasonality, we studied hatching success and embryonic development in the three fish species brown trout (Salmo trutta L.), common nase (Chondrostoma nasus L.) and Danube salmon (Hucho hucho L.). Fine sediment had the most significant single negative effect on both hatching rates and embryonic development (-80 % in brown trout, -50 % in nase, -60 % in Danube salmon). When fine sediment was combined with one or both of the other stressors, we observed strongly synergistic stressor responses, being distinctly stronger in the two salmonid species than in the cyprinid nase. Danube salmon was most susceptible to synergistic effects due to warmer spring water temperatures exacerbating the fine sediment-induced hypoxia, hence leading to complete mortality of fish eggs. This study highlights that individual and multiple-stressor effects depend strongly on life-history traits of respective species and that climate change stressors have to be assessed in combination to obtain representative results due to the high level of synergisms and antagonisms detected in this study.


Assuntos
Ecossistema , Salmonidae , Animais , Mudança Climática , Água Doce , Truta/fisiologia , Rios , Salmão , Desenvolvimento Embrionário
2.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1950-2, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25319285

RESUMO

Hucho hucho, one of the most endangered members of the family Salmonidae, is endemic to the Danube basin. In this study, the complete mitochondrial genome of H. hucho was sequenced and characterized. The genome is 16,751 bp in length and contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a noncoding control region. The gene arrangement and nucleotide composition of the mitochondrial genome are similar to those of H. bleekeri. An 82 bp tandem repeat was identified in the control region, which is variable in length and copy number of repeat between and within species. The complete mitochondrial DNA of H. hucho should be useful to study population genetics, biogeography and adaptive evolution of this lineage.


Assuntos
Espécies em Perigo de Extinção , Genoma Mitocondrial , Salmonidae/genética , Animais , Composição de Bases/genética , Pareamento de Bases/genética , DNA Mitocondrial/genética , Genes Mitocondriais
3.
J Appl Genet ; 56(4): 469-480, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25743021

RESUMO

Four broodstocks of European huchen (Hucho hucho) from: Poland, Germany, Slovakia, and Ukraine were investigated using ten microsatellite DNA loci. Microsatellite DNA analysis was successfully applied for the first time in the Polish broodstock of this fish species. The genetic variation and genetic distance between these broodstocks were evaluated. In addition, we examined the potential effects of a genetic bottleneck on the genetic variation of the broodstocks. The European huchen broodstocks exhibited moderate genetic diversity (PIC = 0.405-0.496 and I = 0.831-1.047) with the exception of German broodstock which presented higher genetic diversity (PIC = 0.590 and I = 1.254). Observed (Ho) and expected (He) heterozygosity across the investigated loci in all broodstocks ranged from 0.434 to 0.686 and from 0.452 to 0.650, respectively. Overall, the studied broodstocks were in Hardy-Weinberg equilibrium (HWE); however, from 8 to 42% of the loci deviated from HWE in each stock. The Garza-Williamson index (M = 0.146-0.279) and values of the heterozygosity excess revealed a reduction of genetic variation in all studied broodstocks because of the founder or bottleneck effect. The analysis of genetic differentiation (Fst) and Nei's genetic distance between pairs of broodstocks revealed that Polish and Ukrainian broodstocks of European huchen were characterized by the closest genetic distance. In contrast, the highest genetic divergence parameters (Fst and Nei's distance) were observed among German, Slovak, and Ukrainian broodstocks.


Assuntos
Cruzamento , Conservação dos Recursos Naturais , Variação Genética , Salmonidae/genética , Animais , Genética Populacional , Genótipo , Alemanha , Repetições de Microssatélites , Polônia , Análise de Sequência de DNA , Eslováquia , Ucrânia
4.
Ecol Evol ; 4(13): 2749-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077024

RESUMO

Substratum quality and oxygen supply to the interstitial zone are crucial for the reproductive success of salmonid fishes. At present, degradation of spawning grounds due to fine sediment deposition and colmation are recognized as main factors for reproductive failure. In addition, changes in water temperatures due to climate change, damming, and cooling water inlets are predicted to reduce hatching success. We tested the hypothesis that the biological effects of habitat degradation depend strongly on the species-specific spawning seasons and life-history strategies (e.g., fall- vs. spring-spawners, migratory vs. resident species) and assessed temperature as an important species-specific factor for hatching success within river substratum. We studied the species-specific differences in their responses to such disturbances using egg-to-fry survival of Danube Salmon (Hucho hucho), resident brown trout (Salmo trutta fario), and migratory brown trout (Salmo trutta lacustris) as biological endpoint. The egg incubation and hatching success of the salmonids and their dependence on temperature and stream substratum quality were compared. Hatching rates of Danube salmon were lower than of brown trout, probably due to higher oxygen demands and increased interstitial respiration in spring. Increases in maximum water temperature reduced hatching rates of resident and migratory brown trout (both fall-spawners) but were positively correlated with hatching rates of Danube salmon (a spring-spawner). Significantly longer incubation periods of resident and migratory brown trout coincided with relatively low stream substratum quality at the end of the egg incubation. Danube salmon seem to avoid low oxygen concentrations in the hyporheic zone by faster egg development favored by higher water temperatures. Consequently, the prediction of effects of temperature changes and altered stream substratum properties on gravel-spawning fishes and biological communities should consider the observed species-specific variances in life-history strategies to increase conservation success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA