Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Toxicol Lett ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906436

RESUMO

Waterpipe smoking is increasingly popular and understanding how chemicals found in hookah smoke may be harmful to human bronchial epithelial cells is of great importance. 4,4'-Oxydianiline (ODA), is an aromatic amine which is present at comparatively high levels in hookah smoke. The metabolism and the subsequent toxicity of ODA to human bronchial epithelial cells remains unknown. Given that ODA is an aromatic amine, we hypothesized that ODA is N-acetylated and induces DNA damage following exposure to immortalized human bronchial epithelial cells (BEP2D cells). We measured the N-acetylation of ODA to mono-acetyl-ODA and the N-acetylation of mono-acetyl-ODA to diacetyl-ODA by BEP2D cells following separation and quantitation by high performance liquid chromatography. For ODA, the apparent KM in cells was 12.4 ± 3.7µM with a Vmax of 0.69 ± 0.03 nmol/min/106 cells, while for mono-acetyl-ODA, the apparent KM was 111.2 ± 48.3µM with a Vmax of 17.8 ± 5.7 nmol/min/106 cells ODA exposure for 24h resulted in DNA damage to BEP2D cells following concentrations as low as 0.1µM as measured by yH2Ax protein expression These results demonstrate that ODA, the most prevalent aromatic amine identified in hookah smoke, is N-acetylated and induces DNA damage in human bronchial epithelial cells.

2.
Gene ; 926: 148559, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38740352

RESUMO

The most prevalent glycoprotein on the influenza virus envelope is called hemagglutinin (HA), yet little is known about its involvement in the pathophysiology and etiology of severe influenza pneumonia. Here, after stimulating human bronchial epithelial cells (16-HBE) and mice with HA of H1N1 for 12 h, we investigated the proliferation, migration, inflammatory cytokines expression, and apoptosis in 16-HBE and the pathological damage in mouse lung tissue. The expression of inflammatory cytokines plasminogen activator inhibitor 1(PAI-1), urokinase-type (uPA) and tissue-type (tPA) plasminogen activators, and apoptosis were all enhanced by HA, which also prevented the proliferation and migration of bronchial epithelial cells. HA enhanced up-regulated PAI-1, uPA, and tPA protein expression within mouse lung tissue and caused lung injury. In conclusion, HA alone, but not the whole H1N1 virus, induces lung tissue injury by inhibiting cell proliferation and migration, while promoting the expression of inflammatory cytokines and apoptosis.


Assuntos
Apoptose , Proliferação de Células , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Animais , Humanos , Camundongos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Movimento Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Linhagem Celular , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Pneumonia/metabolismo , Pneumonia/virologia
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 753-762, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38602002

RESUMO

Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism. We construct a CTNNAL1 ‒/‒ mouse model with CTNNAL1-RNAi recombinant adeno-associated virus (AAV) in the lung and a CTNNAL1-silencing cell line stably transfected with CTNNAL1-siRNA recombinant plasmids. Hematoxylin and eosin (HE) staining reveals that CTNNAL1 ‒/‒ mice have denuded epithelial cells and structural damage to the airway. Silencing of CTNNAL1 in HBECs inhibits cell proliferation and weakens extracellular matrix adhesion and intercellular adhesion, possibly through the action of the cytoskeleton. We also find that the expressions of the structural adhesion-related molecules E-cadherin, integrin ß1, and integrin ß4 are significantly decreased in ozone-treated cells than in vector control cells. In addition, our results show that the expression levels of RhoA/ROCK1 are decreased after CTNNAL1 silencing. Treatment with Y27632, a ROCK inhibitor, abolished the expressions of adhesion molecules induced by ozone in CTNNAL1-overexpressing HBECs. Overall, the findings of the present study suggest that CTNNAL1 plays a critical role in maintaining the structural integrity of the airway epithelium under ozone challenge, and is associated with epithelial cytoskeleton dynamics and the expressions of adhesion-related molecules via the RhoA/ROCK1 pathway.


Assuntos
Brônquios , Células Epiteliais , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , alfa Catenina/metabolismo , alfa Catenina/genética , Brônquios/citologia , Brônquios/metabolismo , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Epiteliais/metabolismo , Ozônio , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Environ Toxicol Pharmacol ; 107: 104424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522766

RESUMO

The role of benzo[a]pyrene (BaP), a prominent genotoxic carcinogen and aryl hydrocarbon receptor (AhR) ligand, in tumor progression remains poorly characterized. We investigated the impact of BaP on the process of epithelial-mesenchymal transition (EMT) in normal human bronchial epithelial HBEC-12KT cells. Early morphological changes after 2-week exposure were accompanied with induction of SERPINB2, IL1, CDKN1A/p21 (linked with cell cycle delay) and chemokine CXCL5. After 8-week exposure, induction of cell migration and EMT-related pattern of markers/regulators led to induction of further pro-inflammatory cytokines or non-canonical Wnt pathway ligand WNT5A. This trend of up-regulation of pro-inflammatory genes and non-canonical Wnt pathway constituents was observed also in the BaP-transformed HBEC-12KT-B1 cells. In general, transcriptional effects of BaP differed from those of TGFß1, a prototypical EMT inducer, or a model non-genotoxic AhR ligand, TCDD. Carcinogenic polycyclic aromatic hydrocarbons could thus induce a unique set of molecular changes linked with EMT and cancer progression.


Assuntos
Benzo(a)pireno , Células Epiteliais , Humanos , Benzo(a)pireno/toxicidade , Ligantes , Células Epiteliais/metabolismo , Dano ao DNA , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Methods Mol Biol ; 2763: 51-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347399

RESUMO

Membrane-bound mucins constitute a large portion of the periciliary layer of lung epithelial surfaces, and thus play an important role in many aspects of innate defense. The biophysical and biochemical properties of the membrane-bound mucins have important implications for mucociliary clearance, viral penetration, and potential therapeutics delivered to the airway surface. Hence, isolating them and determining these properties is important in understanding airways disease and ultimately in developing treatments. Here, we describe a method using isopycnic centrifugation to enrich and isolate shed membrane-bound mucins from the washings of human bronchial epithelial cell cultures.


Assuntos
Células Epiteliais , Mucinas , Humanos , Mucinas/metabolismo , Células Epiteliais/metabolismo , Membranas/metabolismo , Pulmão/metabolismo
6.
Biomed Pharmacother ; 170: 115959, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061134

RESUMO

BACKGROUND: The intensified search for low-threshold herbal anti-viral drugs would be of great advantage in prevention of early stages of infection. Since the SARS-CoV-2 Omicron variant has prevailed in western countries, the course has only been mild, but there are still no widely available drugs that can alleviate or shorten disease progression and counteract the development of Long-COVID. This study aimed to investigate the antiviral effects of a CO2-extract from Petasites hybridus (Ze 339). METHODS: We analyzed the infection and replication rate of SARS-CoV-2 in primary normal human bronchial epithelial cells (NHBEs) using a GFP-expressing version of the wild-type SARS-CoV-2 virus and live cell imaging. Upon infection with a clinical isolate of the Omicron variant, viral RNA content was quantified, and plaque assays were performed. In addition, the human transcriptome was analyzed after 4- and 24-hours post infection using whole genome microarrays. RESULTS: Ze 339 had a protective effect on primary airway epithelial cells during SARS-CoV-2 infection and impeded SARS-CoV-2 infection and replication in NHBE. Notably, Ze 339 inhibited the expression of infection-induced IFNA10 by 8.6-fold (p < 0.05) and additionally reduced a wide range of other interferons (IFNA6, IFNA7, IFNA8, IFNA21, IFNE, IFNW1). CONCLUSION: Thereby, Ze 339 attenuated epithelial infection by SARS-CoV-2 and modeled the IFN response. In conclusion, this study highlights Ze 339 as a potential treatment option for COVID-19 that limits infection-associated cell intrinsic immune responses.


Assuntos
COVID-19 , Petasites , Humanos , SARS-CoV-2 , Dióxido de Carbono , Síndrome de COVID-19 Pós-Aguda , Replicação Viral
7.
Ecotoxicol Environ Saf ; 270: 115778, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38147774

RESUMO

BACKGROUND: Studies have shown that fine particulate matter (PM2.5) remains a significant problem in developing countries and plays a critical role in the onset and progression of respiratory illnesses. Circular RNAs (circRNAs) are involved in many pathophysiological processes,but their relationship to PM2.5 pollution is largely unexplored. OBJECTIVES: To elucidate the functional role of hsa_circ_0000992 in PM2.5-induced inflammation in a human bronchial epithelial cell line (16HBE) and to clarify whether the competing endogenous RNA (ceRNA) mechanism is involved in the interrelationships between hsa_circ_0000992 and hsa-miR-936 and the inflammatory signaling pathways. METHODS: Detection of inflammatory factors in 16HBE cells exposed to PM2.5 by RT-qPCR and ELISA.High throughput sequencing and bioinformatics analysis methods were used to screen circRNA.The bioinformatics analysis method western blotting and dual-luciferase reporter gene system were used to verify mechanisms associated with circRNA. RESULTS: PM2.5 cause inflammation in the 16HBE cells. High throughput sequencing and RT-qPCR result revealed that the expression of hsa_circ_0000992 was markedly up-regulated in 16HBE exposed to PM2.5. The binding sites between hsa_circ_0000992 and hsa-miR-936 was confirmed by dual-luciferase reporter gene system.Western blotting and RT-qPCR showed that hsa_circ_0000992 can interact with hsa-miR-936 to regulate AKT serine/threonine kinase 3(AKT3),thereby activating the PI3K/AKT pathway and ultimately promoting the expression of interleukin (IL)- 1ß and IL-8. CONCLUSION: PM2.5 can induce the inflammatory response in 16HBE cells by activating the PI3K/AKT pathway. The expression of hsa_circ_0000992 increased when PM2.5 stimulated 16HBE cells,and the circRNA could then regulate the inflammatory response.Hsa_circ_0000992 regulates the hsa-miR-936/AKT3 axis through the ceRNA mechanism,thereby activating the PI3K/AKT signaling pathway,increasing the expression of cellular inflammatory factors,and promoting PM2.5-induced respiratory inflammation.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Material Particulado/toxicidade , Inflamação/induzido quimicamente , Inflamação/genética , Luciferases
8.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951288

RESUMO

AIMS: Chronic lung diseases are a major and increasing global health problem, commonly caused by cigarette smoke. We aimed to explore the antioxidant effects of lactic acid bacteria (LAB) against cigarette smoke in bronchial epithelial cells. METHODS AND RESULTS: The antioxidant effects of 21 heat-killed (HK) LAB strains were tested in cigarette smoke-stimulated BEAS-2B cells and 3-D bronchospheres organoids. We showed that HK Lactiplantibacillus plantarum BGPKM22 possesses antioxidant activity against cigarette smoke, resistance to hydrogen peroxide, and free radical neutralizing activity. We demonstrated that HK BGPKM22 inhibited cigarette smoke-induced expression of the Aryl hydrocarbon receptor (AhR) and Nuclear factor erythroid 2 related factor 2 (Nrf2) genes. The cell-free supernatant (SN) of BGPKM22 fully confirmed the effects of HK BGPKM22. CONCLUSIONS: For the first time, we revealed that HK and SN of Lactip. plantarum BGPKM22 possess antioxidant activity and modulate AhR and Nrf2 gene expression in bronchial epithelial cells exposed to cigarette smoke.


Assuntos
Fumar Cigarros , Lactobacillales , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Células Epiteliais , Nicotiana/metabolismo
9.
Toxics ; 11(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999558

RESUMO

Fine particulate matter (PM2.5) pollution increases the risk of respiratory diseases and death, and apoptosis is an important factor in the occurrence of respiratory diseases caused by PM2.5 exposure. In addition, circular RNAs (circRNAs) can interact with proteins and widely participate in physiological and pathological processes in the body. The aim of this study was to investigate the mechanism of circRNA and protein interaction on PM2.5-induced apoptosis of human bronchial epithelial cells (16HBE) in vitro. In this study, we exposed human bronchial epithelial cells to a PM2.5 suspension with different concentration gradients for 24 h. The results showed that apoptosis of 16HBE cells after PM2.5 treatment was accompanied by cell proliferation. After exposure of PM2.5 to 16HBE cells, circRNAs related to apoptosis were abnormally expressed. We further found that the expression of hsa_circ_0002854 increased with the increase in exposure concentration. Functional analysis showed that knocking down the expression of hsa_circ_0002854 could inhibit apoptosis induced by PM2.5 exposure. We then found that hsa_circ_0002854 could interact with MAPK1 protein and inhibit MAPK1 phosphorylation, thus promoting apoptosis. Our results suggest that hsa_circ_0002854 can promote 16HBE apoptosis due to PM2.5 exposure, which may provide a gene therapy target and scientific basis for PM2.5-induced respiratory diseases.

10.
Toxicol In Vitro ; 93: 105661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37586650

RESUMO

Electronic cigarettes have become a purported safer alternative to the conventional cigarettes in recent years. Nicotine is the main component of electronic cigarettes, and other nicotinic compounds are synthesized as alternatives to nicotine. However, scientific data on the potential health effects of electronic cigarettes are scarce. Herein, we evaluated the cytotoxicity of nicotine and its analog 6-methyl nicotine (6-MN) on human bronchial epithelial cells (BEAS-2B cells) in vitro. Furthermore, we performed transcriptome sequencing to systematically assess the effects of nicotine and 6-MN on BEAS-2B cells. The cytotoxicity assay revealed that BEAS-2B cells were more sensitive to 6-MN than to nicotine. Transcriptome sequencing revealed 1208 differentially expressed cancer-related proteins (CRP) in the 6-MN groups relative to that with CRP in the control group. In addition, 6-MN had a greater negative effect on the CRP expression than nicotine. Bioinformatic analysis revealed that the differentially expressed genes and proteins in the 6-MN group were significantly enriched in the cancer-related pathways, unlike those in the nicotine group. Further validations of some lung cancer-related proteins, such as NF-κB p65, EGFR, and MET, were conducted by immunoblotting and real-time PCR, which revealed that 6-MN may have a greater negative effect on tumor development and metastasis than nicotine. Taken together, our findings suggest that new electronic cigarettes with 6-MN might offer some advantages over conventional electronic cigarettes containing nicotine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias Pulmonares , Humanos , Nicotina/toxicidade , Brônquios , Carcinógenos/toxicidade , Transcriptoma , Células Epiteliais , Neoplasias Pulmonares/metabolismo , Carcinogênese
11.
Anim Cells Syst (Seoul) ; 27(1): 72-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033451

RESUMO

Airborne particulate matter (PM) is a major health hazard worldwide and is a key factor in lung cancer, which remains the most common type of malignancy and the leading cause of cancer-related deaths. DNA methylation is a critical mechanism underlying the detrimental effects of PM, however, the molecular link between PM exposure and lung cancer remains to be elucidated. N-α-acetyltransferase 10 (NAA10) is involved in the cell cycle, migration, apoptosis, differentiation, and proliferation. In order to investigate the role of NAA10 in PM-induced pathogenesis processes leading to lung cancer, we determined the expression and methylation of NAA10 in normal human bronchial epithelial (NHBE) cells treated with PM10, PM10-polycyclic aromatic hydrocarbons (PAH), and PM2.5 and evaluated the prognostic value of the NAA10 methylation status in lung cancer patients. Exposure to all PM types significantly increased the expression of NAA10 mRNA and decreased the methylation of the NAA10 promoter in NHBE cells compared with the mock-treated control. NAA10 hypomethylation was observed in 9.3% (13/140) of lung cancer tissue samples and correlated with NAA10 transcriptional upregulation. Univariate and multivariate analyses revealed that NAA10 hypomethylation was associated with decreased survival of patients with lung cancer. Therefore, these results suggest that PM-induced hypomethylation of the NAA10 may play an important role in the pathogenesis of lung cancer and may be used as a potential prognostic biomarker for lung cancer progression. Further studies with large numbers of patients are warranted to confirm our findings.

12.
Heliyon ; 9(3): e14115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911878

RESUMO

The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which -by leveraging available transcriptomic and proteomic databases-allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both>96%) the viral effects on cellular host-immune response, resulting in specific cellular SARS-CoV-2 signatures and ii) utilize these cell-specific signatures to identify promising repurposable therapeutics. Powered by this tool, coupled with domain expertise, we identify several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential druggable targets in COVID-19 pathogenesis.

13.
Proc Natl Acad Sci U S A ; 120(13): e2213584120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943879

RESUMO

Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.


Assuntos
Células Epiteliais , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Sistema Respiratório , Polissacarídeos/metabolismo , Nariz
14.
Heliyon ; 9(3): e14383, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938474

RESUMO

Cigarette smoking has many serious negative health consequences. The relationship between smoking and SARS-CoV-2 infection is controversial, specifically whether smokers are at increased risk of infection. We investigated the impact of cigarette smoke on ACE2 isoform expression and SARS-CoV-2 infection in differentiated primary human bronchial epithelial cells at the air-liquid-interface (ALI). We assessed the expression of ACE2 in response to CSE and therapeutics reported to modulate ACE2. We exposed ALI cultures to cigarette smoke extract (CSE) and then infected them with SARS-CoV-2. We measured cellular infection using flow cytometry and whole-transwell immunofluorescence. We found that CSE increased expression of full-length ACE2 (flACE2) but did not alter the expression of a Type I-interferon sensitive truncated isoform (dACE2) that lacks the capacity to bind SARS-CoV-2. CSE did not have a significant impact on key mediators of the innate immune response. Importantly, we show that, despite the increase in flACE2, CSE did not alter airway cell infection after CSE exposure. We found that nicotine does not significantly alter flACE2 expression but that NRF2 agonists do lead to an increase in flACE2 expression. This increase was not associated with an increase in SARS-CoV-2 infection. Our results are consistent with the epidemiological data suggesting that current smokers do not have an excess of SARS-CoV-2 infection. but that those with chronic respiratory or cardiovascular disease are more vulnerable to severe COVID-19. They suggest that, in differentiated conducting airway cells, flACE2 expression levels may not limit airway SARS-CoV-2 infection.

15.
Toxicol In Vitro ; 89: 105584, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36924977

RESUMO

Cigarette smoke exposure is a well-recognized causative factor for Chronic obstructive pulmonary disease (COPD), but the molecular mechanisms responsible for this effect need to be further investigated. An expanding number of studies suggest that m6A modification is involved in the progression of various diseases. Nevertheless, evidence on the regulatory function of m6A modification in human bronchial epithelial cells exposed to cigarette smoke is scarce. In this study, we investigated for the first time the effect of cigarette smoke exposure on contributing to high Mettl3 expression in HBE cells in vitro, an essential m6A writer. To investigate the pattern of m6A modification in HBE cells following cigarette smoke exposure, Mettl3 was down-regulated in HBE cells and a MeRIP-seq analysis revealed differences in m6A methylation between wild-type (WT) and Mettl3 knockdown HBE cells exposed to CSE. There were 1584 significantly hypomethylated genes engaged in multicellular organismal developments. We identified 200 differentially expressed genes with hypomethylated m6A peaks in conjunction with Mettl3 knockdown, among four candidate genes (NR1H4, TSPEAR, ACSBG1, and SLC5A5) that could be further explored in COPD. According to the research, cigarette smoke may control the behavior of human bronchial epithelial cells through m6A modification in COPD, providing a unique molecular mechanism.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Metilação , Transcriptoma , Células Epiteliais , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/farmacologia
16.
Viruses ; 15(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851770

RESUMO

Thymic stromal lymphopoietin (TSLP) is an epithelium-derived pro-inflammatory cytokine involved in lung inflammatory responses. Previous studies show conflicting observations in blood TSLP in COVID-19, while none report SARS-CoV-2 inducing TSLP expression in bronchial epithelial cells. Our objective in this study was to determine whether TSLP levels increase in COVID-19 patients and if SARS-CoV-2 induces TSLP expression in bronchial epithelial cells. Plasma cytokine levels were measured in patients hospitalized with confirmed COVID-19 and age- and sex-matched healthy controls. Demographic and clinical information from COVID-19 patients was collected. We determined associations between plasma TSLP and clinical parameters using Poisson regression. Cultured human nasal (HNEpC) and bronchial epithelial cells (NHBEs), Caco-2 cells, and patient-derived bronchial epithelial cells (HBECs) obtained from elective bronchoscopy were infected in vitro with SARS-CoV-2, and secretion as well as intracellular expression of TSLP was detected by immunofluorescence. Increased TSLP levels were detected in the plasma of hospitalized COVID-19 patients (603.4 ± 75.4 vs 997.6 ± 241.4 fg/mL, mean ± SEM), the levels of which correlated with duration of stay in hospital (ß: 0.11; 95% confidence interval (CI): 0.01-0.21). In cultured NHBE and HBECs but not HNEpCs or Caco-2 cells, TSLP levels were significantly elevated after 24 h post-infection with SARS-CoV-2 (p < 0.001) in a dose-dependent manner. Plasma TSLP in COVID-19 patients significantly correlated with duration of hospitalization, while SARS-CoV-2 induced TSLP secretion from bronchial epithelial cells in vitro. Based on our findings, TSLP may be considered an important therapeutic target for COVID-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfopoietina do Estroma do Timo , Tempo de Internação , Células CACO-2 , Tratamento Farmacológico da COVID-19 , Citocinas
17.
Exp Ther Med ; 25(1): 69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36605523

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent and long-term airway disease. It has been reported that fucoxanthin (FX) exhibits anti-inflammatory and antioxidant effects. However, the underlying mechanism of FX in COPD remains unknown. Therefore, to investigate the effect of FX on COPD, BEAS-2B cells were treated with cigarette smoke extract (CSE). The viability of BEAS-2B cells treated with increasing doses of FX was assessed by Cell Counting Kit-8. Lactate dehydrogenase (LDH) levels were measured using a corresponding kit. In addition, ELISA was carried out to detect the content of TNF-α, IL-1ß and IL-6. Additionally, a TUNEL assay and western blot analysis were performed to assess the cell apoptosis rate. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species levels, while the contents of oxidative stress-associated indexes were determined using the corresponding kits. Bioinformatics analysis using the search tool for interactions of chemicals database predicted that peroxisome proliferator-activated receptor γ (PPARγ) may be a target of FX. The binding capacity of FTX with PPARγ was confirmed by molecular docking. The protein expression levels of the PPARγ/NF-κB signaling-associated factors were detected by western blot analysis. Finally, the regulatory mechanism of FX in COPD was revealed following cell treatment with the PPARγ inhibitor, T0070907. The results demonstrated that FX enhanced CSE-induced BEAS-2B cell viability and attenuated CSE-induced BEAS-2B cell inflammation and oxidative damage, possibly via triggering PPARγ/NF-κB signaling. Pre-treatment of BEAS-2B cells with the PPARγ inhibitor, T0070907, could reverse the protective effects of FX on CSE-induced BEAS-2B cells. Overall, the present study suggested that FX could ameliorate oxidative damage as well as inflammation in CSE-treated human bronchial epithelial in patients with COPD via modulating the PPARγ/NF-κB signaling pathway.

18.
Pulm Pharmacol Ther ; 78: 102183, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481301

RESUMO

INTRODUCTION: In most asthma patients, symptoms are controlled by treatment with glucocorticoid, but long-term or high-dose use can produce adverse effects. Therefore, it is crucial to find new therapeutic strategies. ß-sitosterol could suppress type Ⅱ inflammation in ovalbumin (OVA)-induced mice, but its mechanisms have remained unclear. METHODS: A binding activity of ß-sitosterol with glucocorticoid receptor (GR) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) and human bronchial smooth muscle cells (HBSMC) were treated with different concentrations (0, 1, 5, 10, 20, and 50 µg/mL) of ß-sitosterol for suitable concentration selection. In transforming growth factor (TGF)-ß1 treated BEAS-2B and HBSMC, cells were treated with 20 µg/mL ß-sitosterol or dexamethasone (Dex) to analyze its possible mechanism. In OVA-induced mice, 2.5 mg/kg ß-sitosterol or Dex administration was performed to analyze the therapeutic mechanism of ß-sitosterol. A GR antagonist RU486 was used to confirm the mechanism of ß-sitosterol in the treatment of asthma. RESULTS: A good binding of ß-sitosterol to GR (score = -8.2 kcal/mol) was found, and the GR expression was upregulated with ß-sitosterol dose increase in BEAS-2B and HBSMC. Interleukin (IL)-25 and IL-33 secretion was significantly decreased by ß-sitosterol in the TGF-ß1-induced BEAS-2B, and the levels of collagen 1A and α-smooth muscle actin (SMA) were reduced in the TGF-ß1-induced HBSMC. In the OVA-challenged mice, ß-sitosterol treatment improved airway inflammation and remodeling through suppressing type Ⅱ immune response and collagen deposition. The therapeutic effects of ß-sitosterol were similar to Dex treatment in vitro and in vivo. RU486 treatment clearly hampered the therapeutic effects of ß-sitosterol in the TGF-ß1-induced cells and OVA-induced mice. CONCLUSION: This study identified that ß-sitosterol binds GR to perform its functions in asthma treatment. ß-sitosterol represent a potential therapeutic drug for allergic asthma.


Assuntos
Asma , Receptores de Glucocorticoides , Sitosteroides , Animais , Humanos , Camundongos , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Asma/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Pulmão , Camundongos Endogâmicos BALB C , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Simulação de Acoplamento Molecular , Ovalbumina , Receptores de Glucocorticoides/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Sitosteroides/farmacologia
19.
Environ Pollut ; 317: 120705, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410599

RESUMO

Diesel exhaust particles (DEPs) are a major cause of cancer progression as well as a variety of acute and chronic diseases. It is well-known that programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that can induce immune escape in tumor cells. However, the function of PD-L1 in bronchial epithelial cells or how PD-L1 relates to cellular oxidation under DEPs-mediated oxidative stress is not well known. In this study, we investigated how PD-L1 affected DEPs-induced oxidative stress and cytotoxicity in human bronchial epithelial (HBE) cells, Beas-2B. DEPs not only induced intracellular reactive oxygen species (ROS) production, but also increased PD-L1 expression in HBE cells. Beas-2B cells overexpressing PD-L1 showed higher levels of ROS production, DNA damage, and apoptosis after DEPs treatment compared to control cells. In particular, the expression of an antioxidant enzyme heme-oxygenase-1 (HO-1) and nuclear translocation and transcriptional activity of Nrf2, a major regulator of HO-1, were lower in Beas-2B overexpressing PD-L1 cells than in control cells. DEPs-induced ROS generation, DNA damage and apoptosis in Beas-2B cells overexpressing PD-L1 were significantly restored by overexpressing HO-1. Collectively, our results suggest that DEPs can increase the expression of PD-L1 in HBE cells and that overexpressing PD-L1 might eventually promote DEPs-induced oxidative DNA damage and apoptosis.


Assuntos
Antígeno B7-H1 , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Antígeno B7-H1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Células Epiteliais/patologia
20.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203480

RESUMO

Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.


Assuntos
Klebsiella , Pneumonia , Humanos , Flagelina/farmacologia , Meropeném/farmacologia , Células Epiteliais , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...