Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38951360

RESUMO

PURPOSE: Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS: Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS: Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION: Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.

2.
Dev Cell ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38889726

RESUMO

To implant in the uterus, mammalian embryos form blastocysts comprising trophectoderm (TE) surrounding an inner cell mass (ICM), confined to the polar region by the expanding blastocoel. The mode of implantation varies between species. Murine embryos maintain a single layered TE until they implant in the characteristic thick deciduum, whereas human blastocysts attach via polar TE directly to the uterine wall. Using immunofluorescence (IF) of rapidly isolated ICMs, blockade of RNA and protein synthesis in whole embryos, or 3D visualization of immunostained embryos, we provide evidence of multi-layering in human polar TE before implantation. This may be required for rapid uterine invasion to secure the developing human embryo and initiate formation of the placenta. Using sequential fluorescent labeling, we demonstrate that the majority of inner TE in human blastocysts arises from existing outer cells, with no evidence of conversion from the ICM in the context of the intact embryo.

3.
Cureus ; 16(5): e60353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756714

RESUMO

Background Human embryo vasculogenesis (blood vessel development starting from endothelial precursors) includes the ability of mesenchymal cells and pluripotent stem cells to differentiate into endothelial cells. Quantification of endothelial progenitor cells is difficult to assess during the early steps of human embryo development due to several factors, especially due to the paucity of human embryo tissue which is usually discarded after early-stage pregnancy abortive methods. CD133 (Promimin-1) is a general marker of progenitor cells, but combined with other endothelial markers such as CD34, it may identify endothelial progenitor cells during embryonic development. CD34 immunohistochemistry was previously performed by our team to identify human embryo capillaries and comparatively assess microvessel density between different human embryonic tissues. TIE2 is an angiopoietin receptor strongly involved in the newly formed blood vessel maturation due to its expression in some mesenchymal precursors for future pericytes. CD34 assesses the presence of endothelial cells but its single use does not evaluate the endothelial progenitor state as CD133 may do nor vessel maturation as TIE2 may do. Data about the dynamics of CD133/TIE2 expression in the early stages of human embryo development are scarce. Hence, in this study, we aimed to comparatively assess the dynamic of CD133+ endothelial precursors and TIE2 expression on five and seven-week-old human embryonic tissues with a special emphasis on their expression on embryonic vascular beds. Methodology CD133 and TIE2 immunohistochemistry was performed on five and seven-week-old human embryonic tissues followed by their quantification using the Qu Path digital image analysis (DIA) automated method. Results CD133 and TIE2 showed divergent patterns of expression during the initial phases of human embryonic development, specifically in the vascular endothelium of tiny capillaries. The expression of CD133 in endothelial cells lining the perfused lumen gradually decreased from five to seven-week-old embryos. It remained expressed with greater intensity in cells located at the tip of the vascular bud that emerged into pre-existing capillaries. TIE2 was much more specific than CD133, being restricted to the level of the vascular endothelium; therefore, it was easier to quantify using digital image analysis. The endothelium of the embryonic aorta was an exception to the divergent expression, as CD133 and TIE2 were consistently co-expressed in the seven-week-old embryo. The Qu Path DIA assessment increased the accuracy of CD133 and TIE2 evaluation, being the first time they were quantified by using automated software and not manually. Conclusions High heterogeneity of CD133 and TIE2 was observed between five and seven-week-old embryonic tissues as well as between different embryonic regions from the same gestational age. The unique finding of CD133/TIE2 co-expression persistence inside aortic endothelium needs further studies to elucidate the role of this co-expression.

4.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38744282

RESUMO

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Assuntos
Blastômeros , Linhagem da Célula , Embrião de Mamíferos , Feminino , Humanos , Blastômeros/citologia , Blastômeros/metabolismo , Divisão Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Masculino , Animais , Camundongos
5.
J Anat ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783643

RESUMO

Much has been learned over the last half century regarding the molecular and genetic changes that take place during cardiac development. As yet, however, these advances have not been translated into knowledge regarding the marked changes that take place in the anatomical arrangements of the different cardiac components. As such, therefore, many aspects of cardiac development are still described on the basis of speculation rather than evidence. In this review, we show how controversial aspects of development can readily be arbitrated by the interested spectator by taking advantage of the material now gathered together in the Human Developmental Biology Resource; HDBR. We use the material to demonstrate the changes taking place during the formation of the ventricular loop, the expansion of the atrioventricular canal, the incorporation of the systemic venous sinus, the formation of the pulmonary vein, the process of atrial septation, the remodelling of the pharyngeal arches, the major changes occurring during formation of the outflow tract, the closure of the embryonic interventricular communication, and the formation of the ventricular walls. We suggest that access to the resource makes it possible for the interested observer to arbitrate, for themselves, the ongoing controversies that continue to plague the understanding of cardiac development.

6.
Regen Ther ; 26: 9-13, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798744

RESUMO

Rules and ethical considerations regarding research on embryo models have been debated across numerous countries. In this paper, we provide insights from our attitude survey conducted among Japanese researchers, including members of the Japanese Society for Regenerative Medicine, and among the general public residing in Japan, the US, the UK, Canada, and Australia. Our survey revealed that many researchers expressed the need for clear guidelines for embryo model research. Furthermore, a minority but significant portion of the general public in each country expressed opposition to research on embryo models but did not oppose research involving real embryos.

7.
Hum Reprod ; 39(6): 1186-1196, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622061

RESUMO

STUDY QUESTION: How do transcriptomics vary in haploid human androgenote embryos at single cell level in the first four cell cycles of embryo development? SUMMARY ANSWER: Gene expression peaks at the fourth cell cycle, however some androcytes exhibit unique transcriptional behaviors. WHAT IS KNOWN ALREADY: The developmental potential of an embryo is determined by the competence of the oocyte and the sperm. However, studies of the contribution of the paternal genome using pure haploid androgenotes are very scarce. STUDY DESIGN, SIZE, DURATION: This study was performed analyzing the single-cell transcriptomic sequencing of 38 androcytes obtained from 10 androgenote bioconstructs previously produced in vitro (de Castro et al., 2023). These results were analyzed through different bioinformatics software such as g: Profiler, GSEA, Cytoscape, and Reactome. PARTICIPANTS/MATERIALS, SETTING, METHODS: Single cell sequencing was used to obtain the transcriptomic profiles of the different androcytes. The results obtained were compared between the different cycles studied using the DESeq2 program and functional enrichment pathways using g: Profiler, Cytoscape, and Reactome. MAIN RESULTS AND THE ROLE OF CHANCE: A wave of paternally driven transcriptomic activation was found during the third-cell cycle, with 1128 upregulated and 225 downregulated genes and the fourth-cell cycle, with 1373 upregulated and 286 downregulated genes, compared to first-cell cycle androcytes. Differentially expressed routes related to cell differentiation, DNA-binding transcription, RNA biosynthesis and RNA polymerase II transcription regulatory complex, and cell death were found in the third and fourth with respect to the first-cell cycle. Conversely, in the fourth cell cycle, 153 downregulated and 332 upregulated genes were found compared with third cell cycle, associated with differentially expressed processes related to E-box binding and zinc finger protein 652 (ZNF652) transcription factor. Further, significant overexpression of LEUTX, PRAMEF1, DUXA, RFPL4A, TRIM43, and ZNF675 found in androgenotes, compared to biparental embryos, highlights the paternal contributions to zygote genome activation. LARGE SCALE DATA: All raw sequencing data are available through the Gene Expression Omnibus (GEO) under accessions number: GSE216501. LIMITATIONS, REASONS FOR CAUTION: Extrapolation of biological events from uniparental constructs to biparental embryos should be done with caution. Maternal and paternal genomes do not act independently of each other in a natural condition. The absence of one genome may affect gene transcription of the other. In this sense, the haploid condition of the bioconstructs could mask the transcriptomic patterns of the single cells. WIDER IMPLICATIONS OF THE FINDINGS: The results obtained demonstrated the level of involvement of the human paternal haploid genome in the early stages of embryo development as well as its evolution at the transcriptomic level, laying the groundwork for the use of these bioconstructs as reliable models to dispel doubts about the genetic role played by the paternal genome in the early cycles of embryo development. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by Instituto de Salud Carlos III (ISCIII) through the project 'PI22/00924', co-funded by European Regional Development Fund (ERDF); 'A way to make Europe'. F.D. was supported by the Spanish Ministry of Economy and Competitiveness through the Miguel Servet program (CPII018/00002). M.J.E. was supported by Instituto de Salud Carlos III (PI19/00577 [M.J.E.]) and FI20/00086. P.dC. was supported by a predoctoral grant for training in research into health (PFIS PI19/00577) from the Instituto de Salud Carlos III. All authors declare having no conflict of interest with regard to this trial.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única , Humanos , Desenvolvimento Embrionário/genética , Masculino , Transcriptoma , Feminino , Perfilação da Expressão Gênica , Haploidia , Espermatozoides/metabolismo
8.
Natl Sci Rev ; 11(3): nwad328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449877

RESUMO

The reprogramming of parental epigenomes in human early embryos remains elusive. To what extent the characteristics of parental epigenomes are conserved between humans and mice is currently unknown. Here, we mapped parental haploid epigenomes using human parthenogenetic and androgenetic embryos. Human embryos have a larger portion of genome with parentally specific epigenetic states than mouse embryos. The allelic patterns of epigenetic states for orthologous regions are not conserved between humans and mice. Nevertheless, it is conserved that maternal DNA methylation and paternal H3K27me3 are associated with the repression of two alleles in humans and mice. In addition, for DNA-methylation-dependent imprinting, we report 19 novel imprinted genes and their associated germline differentially methylated regions. Unlike in mice, H3K27me3-dependent imprinting is not observed in human early embryos. Collectively, allele-specific epigenomic reprogramming is different in humans and mice.

9.
J Bioeth Inq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478325

RESUMO

In order to study early human development while avoiding the burdens associated with human embryo research, scientists are redirecting their efforts towards so-called human embryo-like structures (hELS). hELS are created from clusters of human pluripotent stem cells and seem capable of mimicking early human development with increasing accuracy. Notwithstanding, hELS research finds itself at the intersection of historically controversial fields, and the expectation that it might be received as similarly sensitive is prompting proactive law reform in many jurisdictions, including the Netherlands. However, studies on the public perception of hELS research remain scarce. To help guide policymakers and fill this gap in the literature, we conducted an explorative qualitative study aimed at mapping the range of perspectives in the Netherlands on the creation and research use of hELS. This article reports on a subset of our findings, namely those pertaining to (the degrees of and requirements for) confidence in research with hELS and its regulation. Despite commonly found disparities in confidence on emerging biotechnologies, we also found wide consensus regarding the requirements for having (more) confidence in hELS research. We conclude by reflecting on how these findings could be relevant to researchers and (Dutch) policymakers when interpreted within the context of their limitations.

10.
Magn Reson Med Sci ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38369336

RESUMO

PURPOSE: To delineate brain microstructures in human embryos during the formation of the various major primordia by MR microscopy, with different contrasts appropriate for each target. METHODS: We focused mainly on the internal structures in the cerebral cortex and the accessory nerves of the brain. To find appropriate sequence parameters, we measured nuclear magnetic resonance (NMR) parameters and created kernel density plots of T1 and T2 values. We performed T1-weighted gradient echo imaging with parameters similar to those used in the previous studies. We performed T2*-weighted gradient echo imaging to delineate the target structures with the appropriate sequence parameters according to the NMR parameter and flip angle measurements. We also performed high-resolution imaging with both T1- and T2*-weighted sequences. RESULTS: T1, T2, and T2* values of the target tissues were positively correlated and shorter than those of the surrounding tissues. In T1-weighted images with a voxel size of (30 µm)3 and (20 µm)3, various organs and tissues and the agarose gel were differentiated as in previous studies, and the structure of approximately 40 µm in size was depicted, but the detailed structures within the cerebral cortex and the accessory nerves were not delineated. In T2*-weighted images with a voxel size of (30 µm)3, the layered structure within the cerebral cortex and the accessory nerves were clearly visualized. Overall, T1-weighted images provided more information than T2*-weighted images, but important internal brain structures of interest were visible only in T2*-weighted images. Therefore, it is essential to perform MR microscopy with different contrasts. CONCLUSION: We have visualized brain structures in a human embryo that had not previously been delineated by MR microscopy. We discussed pulse sequences appropriate for the structures of interest. This methodology would provide a way to visualize crucial embryological information about the anatomical structure of human embryos.

11.
Magn Reson Med Sci ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417909

RESUMO

A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 µm cube voxel size) clarified the relationship between R2 (transverse relaxation rate), R2* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R2* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R2* (~130 s-1) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.

12.
Dev Biol ; 509: 43-50, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325560

RESUMO

Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Humanos , Gravidez , Adulto , Feminino , Animais , Camundongos , Blastocisto , Células-Tronco
13.
Methods Mol Biol ; 2767: 105-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37243859

RESUMO

The human extraembryonic mesoderm (EXM) is an important tissue in the postimplantation embryo which is specified before gastrulation in primates but not in rodents. EXM is mesenchymal and plays an important role in embryogenesis, including early erythropoiesis, and provides mechanical support to the developing embryo. Recently, it has been shown that self-renewing extraembryonic mesoderm cells (EXMCs) can be modeled in vitro by using human naive pluripotent stem cells. Here, we present a detailed step-by-step protocol to induce EXMCs from naive pluripotent stem cells in vitro.


Assuntos
Mesoderma , Células-Tronco Pluripotentes , Animais , Humanos , Embrião de Mamíferos , Desenvolvimento Embrionário , Primatas , Diferenciação Celular
14.
Methods Mol Biol ; 2767: 213-250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37351839

RESUMO

Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of the molecular processes of early development and provided us with the means to capture biological heterogeneity and assess the cellular composition in early embryos. Comparative analysis of the transcriptional landscapes of embryos with single-cell resolution allows us to better understand and improve stem-cell-based embryo models. However, proper comparison between different single-cell datasets acquired by different laboratories and through different technologies is imperative for adequate analysis and findings. In this chapter, we focus on the analysis of human blastoids, which model the blastocyst, and their integrative analysis with human embryo datasets and a 2D in vitro early development model system dataset, which models epiblast, extraembryonic mesoderm, and trophoblast cells.


Assuntos
Embrião de Mamíferos , Transcriptoma , Humanos , Blastocisto , Trofoblastos , Células-Tronco , Análise de Célula Única
15.
Biotechnol Bioeng ; 121(1): 131-138, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855050

RESUMO

Minute virus of mice (MMV) has contaminated biotechnological processes in the past and specific MMV testing is therefore recommended, if the production cell line is known to be permissive for this virus. Testing is widely done using cell-culture-based adventitious virus assays, yet MMV strains may differ in their in vitro cell tropism. Here, we investigated the growth characteristics of different MMV strains on A9 and 324K cells and identified significant differences in susceptibility of these widely used indicator cell lines to infection by different strains of MMV, which has implications for MMV detectability during routine testing of biotechnology process harvests. An MMV-specific polymerase chain reaction was evaluated as a more encompassing method and was shown as suitable replacement for cell culture-based detection of the different MMV strains, with the additional benefit that detection is more rapid and can be extended to other rodent parvoviruses that might contaminate biotechnological processes. Although no MMV contamination event of human-derived cell lines has happened in the past, biotechnological processes that are based on these also need to consider MMV-specific testing, as, for example, HEK293, a human-derived cell line commonly used in biopharmaceutical manufacturing, was shown as susceptible to productive MMV infection in the current work.


Assuntos
Vírus Miúdo do Camundongo , Parvovirus , Vírus , Animais , Humanos , Camundongos , Células HEK293 , Técnicas de Cultura de Células
16.
J Anat ; 244(1): 159-169, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602519

RESUMO

The symmetry of the right and left bronchi, proposed in a previous comparative anatomical study as the basic model of the mammalian bronchial tree, was examined to determine if it applied to the embryonic human bronchial tree. Imaging data of 41 human embryo specimens at Carnegie stages (CS) 16-23 (equivalent to 6-8 weeks after fertilization) belonging to the Kyoto collection were obtained using phase-contrast X-ray computed tomography. Three-dimensional bronchial trees were then reconstructed from these images. Bronchi branching from both main bronchi were labeled as dorsal, ventral, medial, or lateral systems based on the branching position with numbering starting cranially. The length from the tracheal bifurcation to the branching point of the labeled bronchus was measured, and the right-to-left ratio of the same labeled bronchus in both lungs was calculated. In both lungs, the human embryonic bronchial tree showed symmetry with an alternating pattern of dorsal and lateral systems up to segmental bronchus B9 as the basic shape, with a more peripheral variation. This pattern is similar to that described in adult human lungs. Bronchial length increased with the CS in all labeled bronchi, whereas the right-to-left ratio was constant at approximately 1.0. The data demonstrated that the prototype of the human adult bronchial branching structure is formed and maintained in the embryonic stage. The morphology and branching position of all lobar bronchi and B6, B8, B9, and the subsegmental bronchus of B10 may be genetically determined. On the other hand, no common structures between individual embryos were found in the peripheral branches after the subsegmental bronchus of B10, suggesting that branch formation in this region is influenced more by environmental factors than by genetic factors.


Assuntos
Brônquios , Pulmão , Adulto , Animais , Humanos , Brônquios/anatomia & histologia , Brônquios/diagnóstico por imagem , Brônquios/embriologia , Pulmão/anatomia & histologia , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Tomografia Computadorizada por Raios X/métodos , Traqueia/anatomia & histologia , Traqueia/diagnóstico por imagem , Traqueia/embriologia
17.
Stem Cell Reports ; 19(1): 41-53, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38101401

RESUMO

While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.


Assuntos
Gástrula , Gastrulação , Humanos , Desenvolvimento Embrionário , Blastocisto , Mesoderma
18.
J Assist Reprod Genet ; 41(2): 323-332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38133877

RESUMO

OBJECTIVE: This study is to discover hormone pathways active in early cleaving human embryos. METHODS: A list of 152 hormones and receptors were compiled to query the microarray database of mRNAs in 8-cell human embryos, two lines of human embryonic stem cells plus human fibroblasts before and after induced pluripotency. RESULTS: Over half of the 152 hormones and receptors were silent on the arrays of all cell types, and more were detected at high or moderate levels on the 8-cell arrays than on the pluripotent cell or fibroblast arrays. Eight hormone family genes were uniquely detected at least 22-fold higher on the 8-cell arrays than the stem cell arrays: AVPI1, CCK, CORT, FSTL4, GIP, GPHA2, OXT, and PPY suggesting novel roles for these proteins in early development. Oxytocin was detected by pilot immunoassay in culture media collected from Day 3 embryos. Robust detection of CRHR1 and EPOR suggests the 8-cell embryo may be responsive to maternal CRH and EPO. The over-expression of POMC and GHITM suggests POMP peptide products may have undiscovered roles in early development and GHITM may contribute to mitochondrial remodeling. Under-detected on the 8-cell arrays at least tenfold were two key enzymes in steroid biosynthesis, DHCR24 and FDPS. CONCLUSIONS: The 8-cell human embryo may be secreting oxytocin, which could stimulate its own progress down the fallopian tube as well as play a role in early neural precursor development. The 8-cell embryo does not synthesize reproductive steroid hormones. As previously reported for growth factor families, the early embryo over-expresses more hormones than hormone receptors.


Assuntos
Fibroblastos , Ocitocina , Feminino , Humanos , Ocitocina/genética , Ocitocina/metabolismo , Fibroblastos/metabolismo , Embrião de Mamíferos , Análise em Microsséries , Esteroides/metabolismo
19.
Emerg Top Life Sci ; 7(4): 383-396, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38087898

RESUMO

During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.


Assuntos
Gastrulação , Células-Tronco Embrionárias Humanas , Animais , Humanos , Camadas Germinativas , Gástrula , Morfogênese , Mamíferos
20.
Cell ; 186(26): 5910-5924.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38070509

RESUMO

The evolution and development of the head have long captivated researchers due to the crucial role of the head as the gateway for sensory stimuli and the intricate structural complexity of the head. Although significant progress has been made in understanding head development in various vertebrate species, our knowledge of early human head ontogeny remains limited. Here, we used advanced whole-mount immunostaining and 3D imaging techniques to generate a comprehensive 3D cellular atlas of human head embryogenesis. We present detailed developmental series of diverse head tissues and cell types, including muscles, vasculature, cartilage, peripheral nerves, and exocrine glands. These datasets, accessible through a dedicated web interface, provide insights into human embryogenesis. We offer perspectives on the branching morphogenesis of human exocrine glands and unknown features of the development of neurovascular and skeletomuscular structures. These insights into human embryology have important implications for understanding craniofacial defects and neurological disorders and advancing diagnostic and therapeutic strategies.


Assuntos
Embrião de Mamíferos , Cabeça , Humanos , Morfogênese , Cabeça/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...