Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
1.
Bioengineering (Basel) ; 11(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39061774

RESUMO

The assessment of human liver stem cells (HLSCs) as cell therapeutics requires scalable, controlled expansion processes. We first focused on defining appropriate process parameters for HLSC expansion such as seeding density, use of antibiotics, optimal cell age and critical metabolite concentrations in conventional 2D culture systems. For scale-up, we transferred HLSC expansion to multi-plate and stirred-tank bioreactor systems to determine their limitations. A seeding density of 4000 cells cm-2 was needed for efficient expansion. Although growth was not significantly affected by antibiotics, the concentrations of lactate and ammonia were important. A maximum expansion capacity of at least 20 cumulative population doublings (cPDs) was observed, confirming HLSC growth, identity and functionality. For the expansion of HLSCs in the multi-plate bioreactor system Xpansion (XPN), the oxygen supply strategy was optimized due to a low kLa of 0.076 h-1. The XPN bioreactor yielded a final mean cell density of 94 ± 8 × 103 cells cm-2, more than double that of the standard process in T-flasks. However, in the larger XPN50 device, HLSC density reached only 28 ± 0.9 × 103 cells cm-2, while the glucose consumption rate increased 8-fold. In a fully-controlled 2 L stirred-tank bioreactor (STR), HLSCs expanded at a comparable rate to the T-flask and XPN50 processes in a homogeneous microenvironment using advanced process analytical technology. Ultimately, the scale-up of HLSCs was successful using two different bioreactor systems, resulting in sufficient numbers of viable, functional and undifferentiated HLSCs for therapeutic applications.

2.
Methods Mol Biol ; 2837: 113-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044079

RESUMO

HBV covalently closed circular DNA (cccDNA) plays an important role in the persistence of hepatitis B virus (HBV) infection by serving as the template for transcription of viral RNAs. To cure HBV infection, it is expected that cccDNA needs either to be eliminated or silenced. Hence, precise cccDNA quantification is essential. Sample preparation is crucial to specifically detect cccDNA. Southern blot is regarded as the "gold standard" for specific cccDNA detection but lacks sensitivity. Here, we describe a rapid and reliable modified kit-based, HBV protein-free DNA extraction method as well as a novel enhanced sensitivity Southern blot that uses branched DNA technology to detect HBV DNA in cell culture and liver tissue samples. It is useful for both HBV molecular biology and antiviral research.


Assuntos
Southern Blotting , DNA Circular , DNA Viral , Vírus da Hepatite B , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Humanos , DNA Viral/genética , DNA Viral/isolamento & purificação , DNA Circular/isolamento & purificação , DNA Circular/análise , DNA Circular/genética , Southern Blotting/métodos , Hepatite B/virologia , Hepatite B/diagnóstico , Fígado/virologia
3.
Methods Mol Biol ; 2837: 171-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044084

RESUMO

The hepatitis delta virus (HDV) is a small RNA virus (1700 base pairs), which uses the surface proteins of the hepatitis B virus (HBV) as an envelope. Accurate and reliable quantitative detection of HDV RNA is central for scientific and translational clinical research or diagnostic purposes. However, HDV poses challenges for nucleic acid amplification techniques: (1) the circular genome displays high intramolecular base pairing; (2) high content of cytosine and guanine; and (3) enormous genomic diversity among the eight known HDV genotypes (GTs). Here, we provide step-by-step instructions for (A) a manual workflow to perform a quantitative HDV reverse transcription (RT)-PCR from serum and liver tissue and (B) a quantitative HDV RT-PCR assay with whole process control to be used for serum or plasma samples run on a fully automated system. Both assays target the conserved ribozyme region and demonstrate inclusivity for all eight HDV GTs. The choice of assay depends on the experimental needs and equipment availability. While the former is ideal for scientific research laboratories, the latter provides a useful tool in the field of translational research or diagnostics.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Fígado , RNA Viral , Fluxo de Trabalho , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/isolamento & purificação , Humanos , RNA Viral/genética , Hepatite D/diagnóstico , Hepatite D/virologia , Fígado/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Genótipo
4.
Biochem Pharmacol ; 227: 116447, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038553

RESUMO

Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-ß, Homeostasis model assessment of ß-cell function; IL-1ß, Interleukin-1ß; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.

5.
J Pharm Biomed Anal ; 248: 116335, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972226

RESUMO

Synthetic cathinones are the second largest group of new psychoactive substances (NPS) monitored by the European Monitoring Centre for Drugs and Drug Addiction. Although 3-methylmethcathinone (3-MMC, C11H15NO) is legally banned in many countries, it is readily available for purchase online and on the street. Due to the scarcity of information regarding the pharmacokinetic and toxicological profile of 3-MMC, understanding its biotransformation pathways is crucial in determining its potential toxicity in humans and in the development of analytical methods for screening of human matrices. To gain more insight, Phase I and Phase II in vitro biotransformation of 3-MMC was investigated using human liver microsomes and human liver cytosol. Suspect and non-target screening approaches were employed to identify metabolites. To confirm in vitro results in an in vivo setting, human matrices (i.e., plasma, urine, saliva and hair) positive for 3-MMC (n=31) were screened. In total three biotransformation products were identified in vitro: C11H15NO2 (a hydroxylated derivate), C11H17NO (a keto-reduced derivate) and C10H13NO (an N-desmethyl derivate). All three were confirmed as human metabolites in respectively 16 %, 52 % and 42 % of the analysed human samples. In total, 61 % of the analysed samples were positive for at least one of the three metabolites. Interestingly, three urine samples were positive for all three metabolites. The presence of 3-MMC in saliva and hair indicates its potential applicability in specific settings, e.g., roadside testing or chronic consumption analysis. To our knowledge, C11H17NO was not detected before in vivo. Although some of these metabolites have been previously suggested in vitro or in a single post mortem case report, a wide in vivo confirmation including the screening of four different human matrices was performed for the first time. These metabolites could serve as potential human biomarkers to monitor human 3-MMC consumption effectively.


Assuntos
Biotransformação , Citosol , Cabelo , Metanfetamina , Microssomos Hepáticos , Humanos , Microssomos Hepáticos/metabolismo , Citosol/metabolismo , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , Metanfetamina/farmacocinética , Cabelo/química , Cabelo/metabolismo , Saliva/metabolismo , Saliva/química , Psicotrópicos/metabolismo , Psicotrópicos/farmacocinética , Masculino , Adulto , Espectrometria de Massas em Tandem/métodos
6.
J Pharm Biomed Anal ; 249: 116342, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986350

RESUMO

A novel synthetic cannabinoid receptor agonist (SCRA), ADMB-FUBIATA, featuring an acetamide-linked structure, has emerged on the illicit drug market. To provide dependable verification of its consumption and identify reliable biomarkers, we investigated an in vitro metabolism study of ADMB-FUBIATA incubated with human primary hepatocytes (HPHs) for the first time and correlated our findings with those from human liver microsomes (HLMs). In this work, ADMB-FUBIATA (10 µM) was incubated with HLM and HPH for 1 and 5 h, respectively, and then subjected to LC-quadrupole-orbitrap MS. A total of 25 metabolites across 8 metabolic pathways were identified after incubation with HLM and HPH, respectively. Monohydroxylation and N-dealkylation were the major metabolic pathways, and formation to ketone was first identified. In addition, the metabolism of ADMB-FUBIATA were found to be mediated by multiple CYP450 enzymes, predominantly CYP2C19, 2D6, and 3A4. This research also initially characterized the fragmentation patterns of the metabolites of ADMB-FUBIATA, elaborating on their structural relationship with ADMB-FUBIATA analogs. To effectively monitor ADMB-FUBIATA abuse, metabolites M4 and M1 were proposed as reliable biomarkers by cross-validating the HLM and HPH incubation results.

7.
Saudi Pharm J ; 32(7): 102118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38841106

RESUMO

This study aimed to provide an understanding of the influence of eugenol on CYP1A2, 2C9, 2D6, and 3A4 in human liver microsomes (HLM). Specific substrate for CYP1A2, 2C9, 2D6, and 3A4 were incubated in HLM with or without eugenol. The formation of their respective metabolites was assessed with HPLC analytical methods. Eugenol at 1, 10 and 100 µM levels inhibited the activity of CYP1A2 and CYP2C9 by 23.38 %, 23.57 %, 39.80 % and 62.82 %, 63.27 %, 67.70 % respectively. While, CYP2D6 and CYP3A4 activity was decreased by 40.70 %, 45.88 %, 62.68 % and 37.41 %, 42.58 % and 67.86 % at 1, 10 and 100 µM eugenol level respectively. The IC50 value of eugenol for CYP2D6 and CYP3A4 was calculated as 11.09 ± 3.49 µM and 13.48 ± 3.86 µM respectively. Potential herb-drug interactions was noted when eugenol is administered simultaneously with medications metabolized by these enzymes, most notably CYP2C9, CYP2D6 and CYP3A4.

8.
Biomaterials ; 310: 122627, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38823194

RESUMO

The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Humanos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Animais , Suínos , Impressão Tridimensional , Microfluídica/métodos , Modelos Biológicos , Avaliação Pré-Clínica de Medicamentos/métodos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Biomimética/métodos
9.
Toxics ; 12(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922069

RESUMO

N-(1,3-Dimethyl butyl)-N'-phenyl-phenylenediamine-quinone (6PPD-Q) is a derivative of the widely used rubber tire antioxidant 6PPD, which was first found to be acutely toxic to coho salmon. Subsequent studies showed that 6PPD-Q had species-specific acute toxicity in fishes and potential hepatotoxicity in mice. In addition, 6PPD-Q has been reported in human urine, demonstrating the potential widespread exposure of humans to this chemical. However, whether 6PPD-Q poses a higher risk to humans than its parent compound, 6PPD, and could cause adverse effects in humans is still unclear. In this study, we utilized two human liver cell models (the human proto-hepatocyte model L02 and the human hepatocellular carcinoma cell line HepG2) to investigate the potentially differential effects of these two chemicals. Cell viability curve analysis showed that 6PPD-Q had lower IC50 values than 6PPD for both liver cell lines, suggesting higher toxicity of 6PPD-Q to human liver cells than 6PPD. In addition, L02 cells are more sensitive to 6PPD-Q exposure, which might be derived from its weaker metabolic transformation of 6PPD-Q, since significantly lower levels of phase I and phase II metabolites were detected in 6PPD-Q-exposed L02 cell culture medium. Furthermore, pathway analysis showed that 6PPD-Q exposure induced changes in phenylalanine, tyrosine, and tryptophan biosynthesis and tyrosine metabolism pathways in L02 cells, which might be the mechanism underlying its liver cell toxicity. Gene expression analysis revealed that exposure to 6PPD-Q induced excessive ROS production in L02 cells. Our results further supported the higher risk of 6PPD-Q than 6PPD and provided insights for understanding the effects of 6PPD-Q on human health.

10.
Toxins (Basel) ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922153

RESUMO

Physiologically based pharmacokinetic (PBPK) models were utilized to investigate potential interactions between aflatoxin B1 (AFB1) and efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor drug and inducer of several CYP enzymes, including CYP3A4. PBPK simulations were conducted in a North European Caucasian and Black South African population, considering different dosing scenarios. The simulations predicted the impact of EFV on AFB1 metabolism via CYP3A4 and CYP1A2. In vitro experiments using human liver microsomes (HLM) were performed to verify the PBPK predictions for both single- and multiple-dose exposures to EFV. Results showed no significant difference in the formation of AFB1 metabolites when combined with EFV (0.15 µM) compared to AFB1 alone. However, exposure to 5 µM of EFV, mimicking chronic exposure, resulted in increased CYP3A4 activity, affecting metabolite formation. While co-incubation with EFV reduced the formation of certain AFB1 metabolites, other outcomes varied and could not be fully attributed to CYP3A4 induction. Overall, this study provides evidence that EFV, and potentially other CYP1A2/CYP3A4 perpetrators, can impact AFB1 metabolism, leading to altered exposure to toxic metabolites. The results emphasize the importance of considering drug interactions when assessing the risks associated with mycotoxin exposure in individuals undergoing HIV therapy in a European and African context.


Assuntos
Aflatoxina B1 , Alcinos , Benzoxazinas , Ciclopropanos , Interações Medicamentosas , Microssomos Hepáticos , Modelos Biológicos , Inibidores da Transcriptase Reversa , Aflatoxina B1/farmacocinética , Aflatoxina B1/toxicidade , Humanos , Benzoxazinas/farmacocinética , Benzoxazinas/metabolismo , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacocinética , Masculino , Citocromo P-450 CYP3A/metabolismo , Adulto , Feminino , Citocromo P-450 CYP1A2/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , População Branca
11.
Infect Dis Poverty ; 13(1): 40, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822386

RESUMO

BACKGROUND: Opisthorchiid flukes, particularly Opisthorchis viverrini, Opisthorchis felineus, Clonorchis sinensis, and Metorchis spp. are the most common fish-borne zoonotic human liver flukes (hLFs). Liver fluke infections are more prevalent in resource-deprived and underprivileged areas. We herein estimated the prevalence of the metacercariae (MC) of major hLFs in common large freshwater fishes (lFWF) marketed for human consumption from some selected areas of Bangladesh along with detection of their molluscan vectors and reservoirs. METHODS: The current status of fish-borne zoonotic hLF infections in lFWF was investigated along with their molluscan vectors and mammalian reservoir hosts in Mymensingh and Kishoreganj in Bangladesh from July 2018-June 2022 using conventional and multiple molecular techniques, such as PCR, PCR-restriction fragment length polymorphism (RFLP), sequencing, and bioinformatic analyses. The infection rate of fishes was analyzed using the Z-test and the loads of MC were compared using the chi-squared (χ2) test. RESULTS: The MC of C. sinensis, Opisthorchis spp., and Metorchis spp. were detected in 11 species of common and popular lFWF. In lFWF, the estimated prevalence was 18.7% and the mean load was 137.4 ± 149.8 MC per 100 g of fish. The prevalence was the highest (P < 0.05) in spotted snakehead fishes (Channa punctata, 63.6%). The highest rate of infection (P < 0.05) was observed with the MC of C. sinensis (11.8%). Metacercariae were almost equally (P > 0.05) distributed between the head and body of fishes. The infection rate was slightly higher in cultured (19.6%) fishes. The MC of C. sinensis, O. felineus, O. viverrini, and Metorchis orientalis in fishes were confirmed using PCR, PCR-RFLP and bioinformatics. The cercariae of opisthorchiid (Pleurolophocercus cercariae) flukes were only recovered from Bithynia spp. (3.9%, 42 out of 1089). The ova of hLFs from dogs (4.3%, 5 out of 116) and cats (6.0%, 6 out of 100), and adult flukes (M. orientalis) from ducks (41.1% 113 out of 275) were detected. CONCLUSIONS: The MC of hLFs are highly prevalent in fresh water fishes in Bangladesh. Reservoir hosts, such as street dogs, cats, and ducks carried the patent infection, and residents of Bangladesh are at risk.


Assuntos
Reservatórios de Doenças , Doenças dos Peixes , Peixes , Água Doce , Zoonoses , Animais , Bangladesh/epidemiologia , Peixes/parasitologia , Água Doce/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Humanos , Reservatórios de Doenças/parasitologia , Reservatórios de Doenças/veterinária , Zoonoses/parasitologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Vetores de Doenças , Prevalência , Opisthorchis/genética , Opisthorchis/isolamento & purificação , Metacercárias/genética , Metacercárias/isolamento & purificação , Clonorchis sinensis/genética , Clonorchis sinensis/isolamento & purificação , Moluscos/parasitologia
12.
Cancer Cell Int ; 24(1): 206, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867242

RESUMO

BACKGROUND: Human liver cancer stem-like cells (HLCSLCs) are widely acknowledged as significant factors in the recurrence and eradication of hepatocellular carcinoma (HCC). The sustenance of HLCSLCs' stemness is hypothesized to be intricately linked to the epigenetic process of DNA methylation modification of genes associated with anticancer properties. The present study aimed to elucidate the stemness-maintaining mechanism of HLCSLCs and provide a novel idea for the clearance of HLCSLCs. METHODS: The clinical relevance of DNMT1 and SOCS1 in hepatocellular carcinoma (HCC) patients was evaluated through the GEO and TCGA databases. Cellular immunofluorescence assay, methylation-specific PCR, chromatin immunoprecipitation were conducted to explore the expression of DNMT1 and SOCS1 and the regulatory relationship between them in HLCSLCs. Spheroid formation, soft agar colony formation, expression of stemness-associated molecules, and tumorigenicity of xenograft in nude mice were used to evaluate the stemness of HLCSLCs. RESULTS: The current analysis revealed a significant upregulation of DNMT1 and downregulation of SOCS1 in HCC tumor tissues compared to adjacent normal liver tissues. Furthermore, patients exhibiting an elevated DNMT1 expression or a reduced SOCS1 expression had low survival. This study illustrated the pronounced expression and activity of DNMT1 in HLCSLCs, which effectively targeted the promoter region of SOCS1 and induced hypermethylation, consequently suppressing the expression of SOCS1. Notably, the stemness of HLCSLCs was reduced upon treatment with DNMT1 inhibitors in a concentration-dependent manner. Additionally, the overexpression of SOCS1 in HLCSLCs significantly mitigated their stemness. The knockdown of SOCS1 expression reversed the effect of DNMT1 inhibitor on the stemness of HLCSLCs. DNMT1 directly binds to the SOCS1 promoter. In vivo, DNMT1 inhibitors suppressed SOCS1 expression and inhibited the growth of xenograft. CONCLUSION: DNMT1 targets the promoter region of SOCS1, induces hypermethylation of its CpG islands, and silences its expression, thereby promoting the stemness of HLCSLCs.

13.
Ann Surg Open ; 5(2): e444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911661

RESUMO

Objective: The adverse effects of ischemia-reperfusion injury (IRI) remain a principal barrier to a successful outcome after lifesaving orthotopic liver transplantation (OLT). Gene expression during different phases of IRI is dynamic and modified by individual exposures, making it attractive for identifying potential therapeutic targets for improving the number of suitable organs for transplantation and patient outcomes. However, data remain limited on the functional landscape of gene expression during liver graft IRI, spanning procurement to reperfusion and recovery. Therefore, we sought to characterize transcriptomic profiles of IRI during multiple phases in human OLT. Methods: We conducted clinical data analyses, histologic evaluation, and RNA sequencing of 17 consecutive human primary OLT. We performed liver allograft biopsies at 4 time points: baseline (B, before donor cross-clamp), at the end of cold ischemia (CI), during early reperfusion (ER, after revascularization), and during late reperfusion (LR). Data were generated and then recipients grouped by post-OLT outcomes categories: immediate allograft function (IAF; n = 11) versus early allograft dysfunction (EAD; n = 6) groups. Results: We observed that CI (vs B) modified a transcriptomic landscape enriched for a metabolic and immune process. Expression levels of hallmark inflammatory response genes were higher transitioning from CI to ER and decreased from ER to LR. IAF group predominantly showed higher bile and fatty acid metabolism activity during LR compared with EAD group, while EAD group maintained more immunomodulatory activities. Throughout all time points, EAD specimens exhibited decreased metabolic activity in both bile and fatty acid pathways. Conclusions: We report transcriptomic profiles of human liver allograft IRI from prepreservation in the donor to posttransplantation in the recipient. Immunomodulatory and metabolic landscapes across ER and LR phases were different between IAF and EAD allografts. Our study also highlights marker genes for these biological processes that we plan to explore as novel therapeutic targets or surrogate markers for severe allograft injury in clinical OLT.

14.
Metabolites ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921465

RESUMO

Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.

15.
J Pharm Biomed Anal ; 245: 116187, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692215

RESUMO

The continuous emergence of new psychoactive substances (NPS) attracted a great deal of attention within recent years. Lately, the two hallucinogenic NPS 1cP-LSD and 4-AcO-DET have appeared on the global market. Knowledge about their metabolism to identify potential metabolic targets for analysis and their cytotoxic properties is lacking. The aim of this work was thus to study their in vitro and in vivo metabolism in pooled human liver S9 fraction (pHLS9) and in zebrafish larvae (ZL) by means of liquid chromatography-high-resolution tandem mass spectrometry. Monooxygenases involved in the initial metabolic steps were elucidated using recombinant human isozymes. Investigations on their cytotoxicity were performed on the human hepatoma cell line HepG2 using a multiparametric, fluorescence-based high-content screening assay. This included measurement of CYP-enzyme mediated effects by means of the unspecific CYP inhibitor 1-aminbenzotriazole (ABT). Several phase I metabolites of both compounds and two phase II metabolites of 4-AcO-DET were produced in vitro and in vivo. After microinjection of 1cP-LSD into the caudal vein of ZL, three out of seven metabolites formed in pHLS9 were also detected in ZL. Twelve 4-AcO-DET metabolites were identified in ZL after exposure via immersion bath and five of them were found in pHLS9 incubations. Notably, unique metabolites of 4-AcO-DET were only produced by ZL, whereas 1cP-LSD specific metabolites were found both in ZL and in pHLS9. No toxic effects were observed for 1cP-LSD and 4-AcO-DET in HepG2 cells, however, two parameters were altered in incubations containing 4-AcO-DET together with ABT compared with incubations without ABT but in concentrations far above expected in vivo concentration. Further investigations should be done with other hepatic cell lines expressing higher levels of CYP enzymes.


Assuntos
Alucinógenos , Larva , Fígado , Espectrometria de Massas em Tandem , Peixe-Zebra , Animais , Humanos , Células Hep G2 , Espectrometria de Massas em Tandem/métodos , Larva/efeitos dos fármacos , Larva/metabolismo , Cromatografia Líquida/métodos , Alucinógenos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fenetilaminas/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Benzilaminas , Dimetoxifeniletilamina/análogos & derivados
16.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798409

RESUMO

We examined the effect of alcohol consumption and smoking on the abundance of drug-metabolizing enzymes and transporters (DMET) in human liver microsomes (HLM) isolated from liver tissues of 94 donors. Global proteomics analysis was performed and DMET protein levels were analyzed in relation to alcohol consumption levels, smoking history, and sex using non-parametric tests (p-value ≤ 0.05; cutoff of 1.25-fold change, FC). The examination of the alcohol-induced changes was further enforced by correlational analysis, where we used arbitrary alcohol consumption grade (ACG) scaling from 0 to 4 to establish a set of protein markers. We elaborated a provisional index of alcohol exposure (PIAE) based on a combination of relative abundances of four proteins (ER chaperone HSPA5, protein disulfide isomerases PDIA3 and P4HB, and cocaine esterase CES2) best correlating with ACG. The PIAE index was then used to find its correlations with the abundances of DMET proteins. Our results demonstrate considerable alcohol-induced changes in composition of the pool of cytochrome P450 enzymes in HLM. We observed significantly increased abundances of CYP2E1, CYP2B6, CYP2J2, and NADPH-cytochrome P450 reductase. In contrast, CYP1A2, CYP2C8, CYP2C9, CYP4A11, and cytochrome b5 protein levels were downregulated. Significant alteration in abundances of UDP-glucuronosyltransferase (UGT) were also detected, comprising of elevated UGT1A6, UGT1A9, and UGT2A1, and reduced UGT1A3, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 levels. Important alcohol-induced changes were also observed in the expression of non-CYP and non-UGT DMET. Additionally, tobacco smoke was associated with elevated CYP1A2, UGT1A6, UGT2A1, and UGT2B4 and decreased FMO3, FMO4, and FMO5 levels.

17.
Chem Pharm Bull (Tokyo) ; 72(4): 393-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644165

RESUMO

Preparation of drug metabolites at the milligram scale is essential for determining the structure and toxicity of drug metabolites. However, their preparation using recombinant proteins and human liver microsomes (HLM) is often difficult because of technical and ethical issues. Reproducing human drug metabolism in food-derived microorganisms may be useful for overcoming these challenges. In this study, we identified an unknown metabolite of the anaesthetic drug lidocaine, which is metabolised by HLM. By screening for lidocaine metabolic activity in five types of foods (blue cheese, shiitake mushroom, natto, yoghurt, and dry yeast), we found that bacteria isolated from natto reproduced the lidocaine metabolic reaction that occurs in HLM. A fraction containing the unknown lidocaine metabolite was prepared through mass cultivation of a Bacillus subtilis standard strain, ethyl acetate extraction, open column chromatography, and HPLC purification. We identified the unknown metabolite as 3-(2,6-dimethylphenyl)-1-ethyl-2-methyl-4-imidazolidinone using NMR. Our results showed that food-derived microorganisms can produce large amounts of human drug metabolites via large-scale cultivation. Additionally, food microorganisms that can reproduce drug metabolism in humans can be used to examine drug metabolites at a low cost and without ethical issues.


Assuntos
Lidocaína , Microssomos Hepáticos , Humanos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/química , Lidocaína/metabolismo , Lidocaína/química , Lidocaína/análise , Bacillus subtilis/metabolismo , Estrutura Molecular , Cromatografia Líquida de Alta Pressão
18.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559126

RESUMO

Human liver organoids (HLOs) hold significant potential for recapitulating the architecture and function of liver tissues in vivo. However, conventional culture methods of HLOs, forming Matrigel domes in 6-/24-well plates, have technical limitations such as high cost and low throughput in organoid-based assays for predictive assessment of compounds in clinical and pharmacological lab settings. To address these issues, we have developed a unique microarray 3D bioprinting protocol of progenitor cells in biomimetic hydrogels on a pillar plate with sidewalls and slits, coupled with a clear bottom, 384-deep well plate for scale-up production of HLOs. Microarray 3D bioprinting, a droplet-based printing technology, was used to generate a large number of small organoids on the pillar plate for predictive hepatotoxicity assays. Foregut cells, differentiated from human iPSCs, were mixed with Matrigel and then printed on the pillar plate rapidly and uniformly, resulting in coefficient of variation (CV) values in the range of 15 - 18%, without any detrimental effect on cell viability. Despite utilizing 10 - 50-fold smaller cell culture volume compared to their counterparts in Matrigel domes in 6-/24-well plates, HLOs differentiated on the pillar plate exhibited similar morphology and superior function, potentially due to rapid diffusion of nutrients and oxygen at the small scale. Day 25 HLOs were robust and functional on the pillar plate in terms of their viability, albumin secretion, CYP3A4 activity, and drug toxicity testing, all with low CV values. From three independent trials of in situ assessment, the IC50 values calculated for sorafenib and tamoxifen were 6.2 ± 1.6 µM and 25.4 ± 8.3 µM, respectively. Therefore, our unique 3D bioprinting and miniature organoid culture on the pillar plate could be used for scale-up, reproducible generation of HLOs with minimal manual intervention for high-throughput assessment of compound hepatotoxicity.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38556900

RESUMO

This work consists of the study of the time-fractional human liver model with the Caputo-Fabrizio fractional derivative. The existence and uniqueness of the proposed model are shown using fixed point theory. Also, the stability of the considered model is shown using the Ulam Hyres theorem and the Lyapunov function. The solution of the proposed model is obtained using a semi-analytical and numerical scheme. The series solution obtained from the semi-analytical method gives the proper result at any time, similarly, the numerical scheme gives the solution for a long time. The obtained numerical results are compared with real clinical data and earlier published work and found to be very close to real data than earlier published work. Results in the graphs and tables show that the proposed fractional-order model is superior to the traditional model.

20.
Talanta ; 273: 125902, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508126

RESUMO

Current genotoxicity assessment methods are mainly employed to verify the genotoxic safety of drugs, but do not allow for rapid screening of specific genotoxic impurities (GTIs). In this study, a new approach for the recognition of GTIs has been proposed. It is to expose the complex samples to an in vitro nucleoside incubation model, and then draw complete DNA adduct profiles to infer the structures of potential genotoxic impurities (PGIs). Subsequently, the genotoxicity is confirmed in human by 3D bioprinted human liver organoids. To verify the feasibility of the approach, lansoprazole chloride compound (Lanchlor), a PGI during the synthesis of lansoprazole, was selected as the model drug. After confirming genotoxicity by Comet assay, it was exposed to different models to map and compare the DNA adduct profiles by LC-MS/MS. The results showed Lanchlor could generate diverse DNA adducts, revealing firstly its genotoxicity at molecular mechanism of action. Furthermore, the largest variety and content of DNA adducts were observed in the nucleoside incubation model, while the human liver organoids exhibited similar results with rats. The results showed that the combination of DNA adductomics and 3D bioprinted organoids were useful for the rapid screening of GTIs.


Assuntos
Adutos de DNA , Nucleosídeos , Humanos , Ratos , Animais , Nucleosídeos/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Dano ao DNA , Fígado , DNA , Organoides , Lansoprazol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...