Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 39(7): 736-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23452291

RESUMO

AIMS: Sporadic inclusion body myositis (s-IBM) is characterized by rimmed vacuole formation and misfolded protein accumulation. Intracellular protein aggregates are cleared by autophagy. When autophagy is blocked aggregates accumulate, resulting in abnormal rimmed vacuole formation. This study investigated the autophagy-lysosome pathway contribution to rimmed vacuole accumulation. METHODS: Autophagy was studied in muscle biopsy specimens obtained from eleven s-IBM patients, one suspected hereditary IBM patient, nine patients with other inflammatory myopathies and nine non-myopathic patients as controls. The analysis employed morphometric methods applied to immunohistochemistry using the endosome marker Clathrin, essential proteins of the autophagic cascade such as AuTophaGy-related protein ATG5, splicing variants of microtubule-associated protein light chain 3a (LC3a) and LC3b, compared with Beclin 1, the major autophagy regulator of both the initiation phase and late endosome/lysosome fusion of the autophagy-lysosome pathway. RESULTS: In muscle biopsies of s-IBM patients, an increased expression of Clathrin, ATG5, LC3a, LC3b and Beclin 1 was shown. Moreover, the inflammatory components of the disease, essentially lymphocytes, were preferentially distributed around the Beclin 1(+) myofibres. These affected myofibres also showed a moderate sarcoplasmic accumulation of SMI-31(+) phospho-tau paired helical filaments. CONCLUSION: The overexpression of autophagy markers linked to the decreased clearance of misfolded proteins, including SMI-31, and rimmed vacuoles accumulation may exhaust cellular resources and lead to cell death.


Assuntos
Autofagia/fisiologia , Músculo Esquelético/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Miosite/metabolismo , Proteínas/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Biópsia , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Músculo Esquelético/patologia , Miosite de Corpos de Inclusão/patologia , Adulto Jovem
2.
Biochim Biophys Acta ; 1827(11-12): 1346-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23220121

RESUMO

The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane. The genes coding for the complex III have a dual origin. While cytochrome b is encoded by the mitochondrial genome, all the other subunits are encoded by the nuclear genome. In this review, we compile an exhaustive list of the known human mutations and associated pathologies found in the mitochondrially-encoded cytochrome b gene as well as the fewer mutations in the nuclear genes coding for the complex III structural subunits and accessory proteins such as BCS1L involved in the assembly of the complex III. Due to the inherent difficulties of studying human biopsy material associated with complex III dysfunction, we also review the work that has been conducted to study the pathologies with the easy to handle eukaryotic microorganism, the yeast Saccharomyces cerevisiae. Phenotypes, biochemical data and possible effects due to the mutations are also discussed in the context of the known three-dimensional structure of the eukaryotic complex III. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Miopatias Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Miopatias Mitocondriais/genética , Modelos Moleculares , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA