Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955379

RESUMO

This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.


Assuntos
Aquicultura , Biofilmes , Reatores Biológicos , Águas Residuárias , Purificação da Água , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Purificação da Água/métodos , Águas Residuárias/microbiologia , Águas Residuárias/química , Nitrogênio/metabolismo , Carvão Vegetal/química , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Análise da Demanda Biológica de Oxigênio , Microbiota , Eliminação de Resíduos Líquidos/métodos , Qualidade da Água
2.
Bioresour Technol ; : 131085, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977038

RESUMO

In this work, an effort has been made to enhance the efficacy of biological process for the effective degradation of 2, 4-dichlorophenol (2, 4-DCP) from wastewater. The polyurethane foam was modified with Fe3O4 nanoparticles and combined with polyvinyl alcohol, sodium alginate, and bacterial consortium for biodegradation of 2, 4-DCP in a packed bed biofilm reactor. The maximum removal efficiency of 2, 4-DCP chemical oxygen demand, and total organic carbon were found to be 92.51 ±â€¯0.83 %, 86.85 ±â€¯1.32, and 91.78 ±â€¯1.24 %, respectively, in 4 days and 100 mg L-1 of 2, 4-DCP concentration at an influent loading rate of 2 mg L-1h-1 and hydraulic retention time of 50 h. Packed bed biofilm reactor was effective for up to four cycles to remove 2, 4-DCP. Growth inhibition kinetics were evaluated using the Edward model, yielding maximum growth rate of 0.45 day-1, inhibition constant of 110.6 mg L-1, and saturation constant of 62.3 mg L-1.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38890256

RESUMO

The present study reports findings related to the treatment of polluted groundwater using macrophyte-assisted phytoremediation. The potential of three macrophyte species (Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) to tolerate exposure to multi-metal(loid) polluted groundwater was first evaluated in mesocosms for 7- and 14-day batch testing. In the 7-day batch test, the polluted water was completely replaced and renewed after 7 days, while for 14 days exposure, the same polluted water, added in the first week, was maintained. The initial biochemical screening results of macrophytes indicated that the selected plants were more tolerant to the provided conditions with 14 days of exposure. Based on these findings, the plants were exposed to HRT regimes of 15 and 30 days. The results showed that P. australis and S. holoschoenus performed better than T. angustifolia, in terms of metal(loid) accumulation and removal, biomass production, and toxicity reduction. In addition, the translocation and compartmentalization of metal(loid)s were dose-dependent. At the 30-day loading rate (higher HRT), below-ground phytostabilization was greater than phytoaccumulation, whereas at the 15-day loading rate (lower HRT), below- and above-ground phytoaccumulation was the dominant metal(loid) removal mechanism. However, higher levels of toxicity were noted in the water at the 15-day loading rate. Overall, this study provides valuable insights for macrophyte-assisted phytoremediation of polluted (ground)water streams that can help to improve the design and implementation of phytoremediation systems.

4.
Chemosphere ; 361: 142536, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844106

RESUMO

Domestic wastewater treatment plants (WWTPs) play a vital role in limiting the release of microplastics (MP) into the environment. This study examined MP removal efficiency from five centralized and four decentralized domestic WWTPs in Bangkok, Thailand. MP concentrations in wastewater and sludge were comparable between centralized and decentralized WWTPs, despite these decentralized WWTPs serving smaller populations and having limited treatment capacity. The elimination of MPs ranged from 50 to 96.8% in centralized WWTPs and 14.2-53.6% in decentralized WWTPs. It is noted that the retained MPs concentrations in sludge ranged from 20,000 to 228,100 MP/kg dry weight. The prevalence of synthetic fibers and fragments could be attributed to their pathways from laundry or car tires, and the accidental release of a variety of plastic wastes ended up in investigated domestic WWTPs. Removal of MPs between the centralized and decentralized WWTPs was influenced by several impact factors including initial MP concentrations, longer retention times, MP fragmentation, and variations of MP concentrations in sludge leading to different activated sludge process configurations. Sewage sludge has become a primary location for the accumulation of incoming microplastics in WWTPs. The MPs entering and leaving each unit process were varied due to the unique characteristics of MPs, and their different treatment efficiencies. While the extended hydraulic retention period in decentralized WWTPs decreased the MP removal efficacy, the centralized WWTP with the two-stage activated sludge process achieved the highest MP removal efficiency.


Assuntos
Microplásticos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Esgotos/química , Águas Residuárias/química , Microplásticos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Tailândia , Monitoramento Ambiental , Plásticos/análise
5.
Mar Pollut Bull ; 205: 116559, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852202

RESUMO

This study investigated the effect of hydraulic retention time (HRT) on the denitrification performance and microbial composition of reactors, packed with composite polycaprolactone and corncob carbon sources, during the treatment mariculture wastewater. The optimal HRT was 3 h, and average nitrogen removal efficiency was 99.00 %, 99.07 %, and 98.98 % in the HRT =3, 5, and 7 h groups, respectively. However, the 3 h group (DOC 2.91 mg/L) was the only group with a lower DOC concentration than that of the influent group (3.31 mg/L). Moreover, species richness was lower at HRT =3 h, with a greater proportion of denitrification-dominant phyla, such as Proteobacteria. The abundance of the NarG, NirK, and NirS functional genes suggested that the HRT =3 h group had a significant advantage in the nitrate and nitrite reduction phases. Under a short HRT, the composite carbon source achieved a good denitrification effect.

6.
Bioresour Technol ; : 131047, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942212

RESUMO

This study investigated the efficacy of the rotating algal biofilm (RAB) for treating soy sauce wastewater (SW) and its related treatment mechanisms. The RAB system demonstrated superior nutrient removal (chemical oxygen demand, ammonium nitrogen, total nitrogen, and phosphorus for 92 %, 94 %, 91 %, and 82 %, respectively) and biofilm productivity (14 g m-2 d-1) at optimized 5-day harvest time and 2-day hydraulic retention time. This was mainly attributed to the synergistic interactions within the algae-fungi (Apiotrichum)-bacteria (Acinetobacter and Rhizobia) consortium, which effectively assimilated certain extracellular polymeric substances into biomass to enhance algal biofilm growth. Increased algal productivity notably improved protein and essential amino acid contents in the biomass, suggesting a potential for animal feed applications. This study not only demonstrates a sustainable approach for managing SW but also provides insight into the nutrient removal and biomass conversion, offering a viable strategy for large-scale applications in nutrient recovery and wastewater treatment.

7.
Mar Pollut Bull ; 203: 116404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718546

RESUMO

This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Anaerobiose , Biofilmes , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Análise da Demanda Biológica de Oxigênio , Aquicultura , Biodegradação Ambiental , Purificação da Água/métodos
8.
Bioresour Bioprocess ; 11(1): 23, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38647945

RESUMO

Hydrolysis at changing hydraulic retention time, recirculation, bedding straw content in the feed, bioaugmentation and the impact of those changes on gradient formation in the liquid phase in plug-flow reactors (PFRs) was examined. The pH-value, conductivity and oxidation-reduction potential (ORP) were monitored at three spots along the PFRs to study potential correlations to process performance during a total process time of 123 weeks. The on-line monitoring showed good correlations to acidogenesis: namely, the pH and ORP to the acidification, to butyric (and lactic) acid concentration and to the acid yield. The ORP (measured at the inlet) showed the most stable correlation to acidogenesis under dynamic operation, while the conductivity (at the outlet) correlated to the acid concentration in dependence on the feedstock. Multiple measurement spots as used in this study allow to gain more information about acidogenic fermentation than a single spot, simplifying process control and automation attempts with recalcitrant feedstock.

9.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619899

RESUMO

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Assuntos
Amônia , Nitrogênio , Nitrogênio/análise , Desnitrificação , Estações do Ano , Reatores Biológicos/microbiologia , Águas Residuárias
10.
Bioresour Technol ; 401: 130705, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631655

RESUMO

A novel 70 L composite tubular photo-bioreactor was constructed, and its photo-fermentation hydrogen production characteristics of batch and continuous modes were investigated with glucose as the substrate in an outdoor environment. In the batch fermentation stage, the hydrogen production rate peaked at 37.6 mL H2/(L·h) accompanied by a high hydrogen yield of 7 mol H2/mol glucose. The daytime light conversion efficiency is 4 %, with 37 % of light energy from the sun. An optimal hydraulic retention time of 5 d was identified during continuous photo-fermentation. Under this condition, the stability of the cell concentration is maintained and more electrons can be driven to the hydrogen generation pathway while attaining a hydrogen production rate of 20.7 ± 0.9 mL H2/(L·h). The changes of biomass, volatile fatty acids concentration and ion concentration during fermentation were analyzed. Continuous hydrogen production by composite tubular photo-bioreactor offers new ideas for the large-scale deployment of photobiological hydrogen production.


Assuntos
Reatores Biológicos , Fermentação , Hidrogênio , Hidrogênio/metabolismo , Biomassa , Glucose/metabolismo , Projetos Piloto , Ácidos Graxos Voláteis/metabolismo , Luz , Técnicas de Cultura Celular por Lotes , Fotobiorreatores , Concentração de Íons de Hidrogênio
11.
Environ Sci Pollut Res Int ; 31(21): 31577-31589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635092

RESUMO

Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO42-) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device. The performance and mechanism of removing high-concentration sulfate wastewater under different sulfate concentrations, hydraulic retention times (HRT), and chemical oxygen demand (COD)/SO42- were discussed. The results show that the iron-carbon microelectrolysis-enhanced SRB technology can remove high-concentration sulfate wastewater, and the system can still operate normally at low pH. In the high hydraulic loading stage (HRT = 12 h, COD/SO42- = 1.4), the SO42- removal rate of the R1 reactor reached 98.08%, and the ORP value was stable between - 350 and - 450 mV, providing a good ORP environment for SRB. When HRT = 12 h and influent COD/SO42- = 1.4, the R1 reactor sulfate removal rate reached 96.7%. When the influent COD/SO42- = 0.7, the sulfate removal rate was 52.9%, higher than the control group. Biological community analysis showed that the abundance of SRB in the R1 reactor was higher than that in the other three groups, indicating that the IC-ME bioreactor could promote the enrichment of SRB and improve its population competitive advantage. It can be seen that the synergistic effect between IC-ME and biology plays a vital role in the treatment of high-concentration sulfate wastewater and improves the biodegradability of sulfate. It is a promising process for treating high-concentration sulfate wastewater.


Assuntos
Reatores Biológicos , Carbono , Ferro , Sulfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio
12.
Chemosphere ; 358: 142156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679172

RESUMO

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Assuntos
Biofilmes , Reatores Biológicos , Nitrificação , Reatores Biológicos/microbiologia , Compostos de Amônio/metabolismo , Purificação da Água/métodos , Cinética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Microbiota , Nitritos/metabolismo , Bactérias/metabolismo , Bactérias/genética , RNA Ribossômico 16S/genética , Nitratos/metabolismo
13.
Bioresour Technol ; 400: 130679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588781

RESUMO

Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by âˆ¼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.


Assuntos
Biofilmes , Desnitrificação , Nitrogênio , Esgotos , Nitrogênio/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Anaerobiose , Purificação da Água/métodos , Oxirredução , Carbono/metabolismo , Nitritos/metabolismo
14.
Sci Rep ; 14(1): 7553, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555358

RESUMO

The objective of the study was to evaluate the performance of Pistia stratiotes for treatment of domestic wastewater in a free surface water flow constructed wetland. The objective of the study was to evaluate contaminants removal efficiency of the constructed wetland vegetated with P. stratiotes in treatment of domestic wastewater against Hydraulic retention time (HRT) of 10, 20 and 30 days was investigated. This asks for newer and efficient low-cost nature-based water treatment system which along with cost takes into consideration the sustainability of the ecosystem. Five constructed wetland setups improved the wastewater quality and purify it significantly by reducing the TDS by 83%, TSS by 82%, BOD by 82%, COD by 81%, Chloride by 80%, Sulfate by 77%, NH3 by 84% and Total Oil and Grease by 74%. There was an increase in pH of about 11.9%. Color and odor of wastewater was also improved significantly and effectively. It was observed that 30 days' HRT was optimum for the treatment of domestic wastewater. The final effluent was found to be suitable as per national environmental quality standards and recycled for watering plants and crop irrigation but not for drinking purposes. The treatment in constructed wetland system was found to be economical, as the cost of construction only was involved and operational and maintenance cost very minimal. Even this research was conducted on the sole purpose of commuting the efficiency of pollutant removal in short span time.


Assuntos
Araceae , Purificação da Água , Águas Residuárias , Áreas Alagadas , Ecossistema , Eliminação de Resíduos Líquidos
15.
Environ Sci Pollut Res Int ; 31(19): 28062-28076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530522

RESUMO

The Anaerobic Baffled Reactor (ABR) is an effective solution for landfill leachate treatment using an anaerobic fermentation process, which helps to reduce operating costs and sludge volume. To better understand the biological, chemical, and physical processes involved, especially when combining the ABR with an aerobic component, the study aimed to investigate the performance of an Anaerobic-Aerobic Hybrid Baffled Reactor (AABR) that includes an Anaerobic Filter (AF) for treating landfill leachate. This research utilized two glass reactors. The first reactor, designated as AABR-AF, consisted of six independent rectangular glass chambers arranged side by side. The third and sixth chamber designed for aerobic treatment and AF, respectively. The second reactor was used as a control reactor and did not include any aerobic chamber. The highest Removal Efficiencies (REs) for turbidity, COD, BOD, TP, TKN, nitrate, TOC, and TSS in the AABR-AF and ABR-AF were found to be (65.4% and 56.3%), (98.3% and 94.1%), (98.1% and 93.2%), (86.4% and 65%), (89.2% and 76.7%), (81.2% and 64.4%), (88.2% and 79.4%), and (72.4% and 68.5%), respectively. These optimal REs were achieved at an HRT of 48 h and an OLR of 10 kg/m3.d. Also, the highest and the lowest REs in Heavy Metals (HMs) were 89.57% for manganese in AABR-AF and 6.59% for nickel in ABR-AF, in an OLR of 10 kg/m3.d, respectively. The effective removal of Organic Matters (OMs) from landfill leachate using the AABR-AF and ABR-AF was found to be strongly influenced by HRT and OLR. The AABR-AF configuration, featuring a single aerobic chamber in the reactor, exhibited a higher efficiency in removing OMs compared to the ABR-AF configuration.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Aerobiose
16.
World J Microbiol Biotechnol ; 40(3): 100, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366203

RESUMO

Photosynthetic microorganisms have a wide range of biotechnical applications, through the application of their versatile metabolisms. However, their use in industry has been extremely limited to date, partially because of the additional complexities associated with their cultivation in comparison to other organisms. Strategies and developments in photobioreactors (PBRs) designed for their culture and applications are needed to drive the field forward. One particular area which bears examination is the use of strategies to separate solid- and hydraulic-residence times (SRT and HRT), to facilitate flow-through systems and continuous processing. The aim of this review is to discuss the various types of PBRs and methods which are currently demonstrated in the literature and industry, with a focus on the separation of HRT and SRT. The use of an efficient method of biomass retention in a PBR may be advantageous as it unlocks the option for continuous operation, which may improve efficiency, and improve economic feasibility of large-scale implementation of photosynthetic biocatalysts, especially where biomass is not the primary product. Due to the underexplored nature of the separation of HRT and SRT in reactors using photosynthetic microorganisms, limited literature is available regarding their performance, efficiencies, and potential issues. This review first introduces an overview into photosynthetic microorganisms cultivated and commonly exploited for use in biotechnological applications, with reference to bioreactor considerations specific to each organism. Following this, the existing technologies used for the separation of HRT and SRT in PBRs are explored. The respective advantages and disadvantages are discussed for each PBR design, which may inform an interested bioprocess engineer.


Assuntos
Reatores Biológicos , Fotobiorreatores , Fotossíntese , Biomassa
17.
J Environ Manage ; 354: 120420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387358

RESUMO

Recent observations have highlighted the rapidly growing prevalence of emerging contaminants such as Imidacloprid (IMI) within our environment. These insecticidal pollutants, coexisting with more traditional contaminants, have become predominant in aquatic systems, posing risks to both human and ecological well-being. Among the various wastewater treatment approaches tested, biofilm reactors are currently gaining prominence. In this study, we employed an Algae-Bacteria Biofilm Reactor (ABBR) to concurrently address both conventional and emergent contaminants, specifically IMI, over an extended timeframe. Following a 60-day assessment, the ABBR consistently demonstrated removal efficiencies exceeding 85% for total dissolved nitrogen, ammonia nitrogen, and total dissolved phosphorus, and also achieved removal efficacy for the soluble chemical oxygen demand (sCOD). Despite the removal efficiency of IMI (with initial concentration is 1.0 mg/L) in ABBR showed a gradual decline over the extended period, it remained consistently effective over 50% due to the microalgae-mediated free radical reactions, indicating the ABBR's sustained efficiency in long-duration operations. Additionally, applying some non-conventional modifications, like aeration removal and reducing light exposure, demonstrated minimal impact on the reactor's pollutant removal efficiencies, achieving comparable results to the control group (which utilized aeration with a 14:10 light/dark ratio), 0.92 kW h/L/d of electricity can be saved economically, which accentuated the potential for energy conservation. An in-depth analysis of the treated effluents from the ABBRs, using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique, uncovered four potential transformation pathways for IMI. Overall, our findings suggest that these optimized processes did not influence the transformation products of IMI, thereby reaffirming the viability of our proposed optimization.


Assuntos
Neonicotinoides , Nitrocompostos , Eliminação de Resíduos Líquidos , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos/métodos , Cromatografia Líquida , Reatores Biológicos/microbiologia , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Nitrogênio/análise , Biofilmes
18.
Heliyon ; 10(3): e24914, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317929

RESUMO

Understanding the impact of various parameters on the kinetics of dissolved selenium (Se) removal in bioreactors can be a challenging task, primarily due to the mass transfer limitations inherent in bioreactors employing attached growth configurations. This study successfully established a proof-of-concept for the efficient removal of Se from aqueous solutions using a chemostat bioreactor that relies solely on suspended growth. The research investigated the effect of selenate-Se feed concentrations under two distinct Se concentration conditions. One experiment was conducted at a considerably elevated concentration of 25 mg/L to impose stress on the system and evaluate its response. Another experiment replicated an environmentally relevant concentration of 1 mg/L, mirroring the typical Se concentrations in mine water. The bioreactor, featuring a working volume of 0.35 L, was operated as an anaerobic, fully mixed chemostat with hydraulic retention times (HRTs) ranging from 5 to 0.25 days. The outcomes revealed the chemostat's capacity to remove up to 25 mg/L of dissolved Se from water for all HRTs exceeding 1 day, under otherwise optimal conditions encompassing temperature, pH, and salinity. The research's significance lies in the development of a versatile tool designed to examine Se removal kinetics within a system devoid of mass transfer limitations. Furthermore, this study verified the ability of the bacterial consortium, obtained from a mine-influenced environment and enriched in the laboratory, to grow and sustain Se removal activities within a chemostat operating with HRTs as short as 1 day.

19.
Water Environ Res ; 96(2): e10993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348629

RESUMO

Effects of total vermibed depth, as well as the ratio of aerobic (the unsubmerged) to anaerobic (the submerged) zone on the performance of the horizontal subsurface flow macrophyte-assisted vermifilters (HSSF-MAVFs) treating synthetic brewery wastewater at a higher hydraulic loading rate (HLR), were investigated for the first time. Results showed that the HSSF-MAVF with a 50 cm total and 18 cm submerged vermibed depth yielded the optimum removal of the pollutants, ensuring a (91.2 ± 1.7)%, (81.8 ± 1.9)%, (67.4 ± 3.9)%, and (63.1 ± 2.3)% removal of chemical oxygen demand (COD), ammonium N (NH4 + -N), total N (TN), and organic N, respectively, whereas there was an increase of (142 ± 6.3)% in the effluent nitrate-N (NO3 - -N) than that in the influent. At the optimum condition, the effluent concentrations of all the pollutants including COD, NH4 + -N, NO3 - -N, TN, and organic N were well below the surface water discharge standards specified by the Central Pollution Control Board (CPCB), and thus, the effluent of the HSSF-MAVF could be safely discharged into the surface water bodies. PRACTITIONER POINTS: Total vermibed depth of HSSF-MAVFs was optimized for organic and nitrogen removal. HSSF-MAVFs were subjected to the higher HLR of synthetic brewery wastewater. Removal of COD and NH4 + -N was decreased with the increase in submerged bed depth. Removal of organic N and TN was increased with the increase in submerged bed depth. Total/unsubmerged bed depth had a positive impact on the organic and N removal.


Assuntos
Poluentes Ambientais , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Nitrogênio , Reatores Biológicos , Água , Desnitrificação
20.
Bioresour Technol ; 396: 130419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325610

RESUMO

Effects of short hydraulic retention time (HRT) in wet weather and long HRT in dry weather on sludge properties, microbial community, and metabolomic of anammox granular system were studied. Results showed under equal nitrogen loading rate (0.4 kg N/(m3 · d)) conditions, an HRT of 4.41 h was beneficial for total nitrogen removal efficiency (78.9 %). The shorter the HRT, the lower the particle density (1.01±0.34 g/cm3), the lower the settling performance (1.18±0.28 cm/s), and the worse the biomass retention (1.04±0.18 g/L), but the higher the mechanical strength (85.22 Pa). Properly decreasing HRT could increase the permeability of anammox granules, ensuring their activity. Metabolomics analysis indicated that the activity of anaerobic ammonium oxidizing bacteria was promoted by stimulating the metabolic pathways of amino acids and glycerophospholipids. In summary, this research clarified the effect of wet/dry weather on anammox granular system and provided theoretical guidance for the application in engineering.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Tempo (Meteorologia) , Nitrogênio/metabolismo , Oxirredução , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...