Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400562, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344558

RESUMO

This study describes the synthesis and characterization of a series of novel hydrazide-hydrazone derivatives containing a 1,2,4-triazole ring. The compounds were characterized using various spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, HRMS, and elemental analysis. The antiproliferative activity of the synthesized compounds was evaluated against a panel of human cancer cell lines (HCT-116, HepG-2, KLN205, LTPA, U138, and SW620) and healthy cell lines (HSkMC and iPSCs). Among the compounds tested, compounds 4, 5p, 5r, and 5s showed the highest effectiveness in inhibiting the growth of cancer cells with Bcl-xL inhibitory concentration (IC50) values. These compounds further demonstrated selective cytotoxicity against the Bcl-xL-dependent lymphoma cell line (DBs). Molecular docking studies were also performed to investigate the potential binding interactions of compounds 4, 5p, 5r, and 5s with the active site of Bcl-xL (PDB ID: 7LH7, 1.4 Å). Mechanistic studies revealed that compounds 4, 5r, and 5s induced apoptosis predominantly through the intrinsic mitochondrial pathway, while compound 5p exhibited a distinct cell cycle arrest profile, impacting both the S and G2/M phases. Western blot analysis suggested that these compounds may downregulate cyclin expression, thereby blocking its association with Bcl-xL. Overall, these results demonstrate the potential of these novel hydrazide-hydrazone derivatives as anticancer agents with activity comparable or superior to doxorubicin and 5-fluorouracil.

2.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39338334

RESUMO

Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 µM; IC50eeAChE-4.145 µM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.

3.
Chemistry ; : e202403128, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291449

RESUMO

The 1,3,4-oxadiazole is a widely encountered motif in the areas of pharmaceuticals, materials, and agrochemicals. This work has established a mild, mediated electrochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles from N-acyl hydrazones. Using DABCO as the optimal redox mediator has enabled a mild oxidative cyclisation, without recourse to stoichiometric oxidants. In contrast to previous methods, this indirect electrochemical oxidation has enabled a broad range of substrates to be accessed, with yields of up to 83%, and on gram scale. The simplicity of the method has been further demonstrated by the development of a one-pot procedure, directly transforming readily available aldehydes and hydrazides into valuable heterocycles.

4.
Molecules ; 29(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339333

RESUMO

Neurodegenerative diseases such as Parkinson's and Alzheimer's continue to be some of the most significant challenges in modern medicine. Recent research related to the molecular mechanisms of parkinsonism has opened up new approaches to antiparkinsonian therapy. In response to this, we present the evaluation of the potential neuroprotective and MAOA/MAOB inhibitory effects of newly synthesized hydrazones, containing a pyrrole moiety in the carboxyl fragment of the structure. The substances were studied on different brain subcellular fractions, including rat brain synaptosomes, mitochondria, and microsomes. The single application of 50 µM of each compound to the subcellular fractions showed that all substances exhibit a weak neurotoxic effect, with 7b, 7d, and 8d being the least neurotoxic representatives. The corresponding neuroprotective and antioxidant effects were also evaluated in different injury models on subcellular fractions, single out 7b, 7d, and 8d as the most prominent derivatives. A 1 µM concentration of each molecule from the series was also studied for potential hMAOA/hMAOB inhibitory effects. The results revealed a lack of hMAOA activity for all evaluated structures and the appearance of hMAOB effects, with compounds 7b, 7d, and 8d showing effects similar to those of selegiline. The best hMAOB selectivity index (>204) was determined for 7d and 8d, distinguishing these two representatives as the most promising molecules for further studies as potential selective MAOB inhibitors. The performed molecular docking simulations defined the appearance of selective MAOB inhibitory effects based on the interaction of the tested molecules with Tyr398, which is one of the components of the aromatic cage of MAOB and participated in π-π stabilization with the aromatic pyrrole ring. The preliminary PAMPA testing indicated that in relation to the blood-brain barrier (BBB) permeability, the tested pyrrole-based hydrazones may be considered as high permeable, except for 8a and 8e, which were established to be permeable in the medium range with -logP of 5.268 and 5.714, respectively, compared to the applied references.


Assuntos
Hidrazonas , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Fármacos Neuroprotetores , Pirróis , Monoaminoxidase/metabolismo , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Animais , Ratos , Pirróis/química , Pirróis/farmacologia , Humanos , Estrutura Molecular , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Estrutura-Atividade , Neuroproteção/efeitos dos fármacos
5.
Future Med Chem ; 16(18): 1865-1882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301894

RESUMO

Aim: This work explores the eco-friendly synthesis of various heterocycles from a piperidine-based compound (1) and explore their potential as antitumor agents.Materials & methods: Ultrasonic irradiation was used to synthesize heterocycles like pyridone, thiophene and coumarin, with computational tools analyzing stability and biological interactions.Results: Compounds 9 and 14 exhibit strong cytotoxic activity, surpassing doxorubicin. Compounds 2, 6, 10 and 13 exhibited intermediate activity, while compounds 3, 7 and 12 had minimal effects. Docking studies suggest potential ADORA1 receptor interaction. Computational tools analyze stability and interaction with biological systems, revealing potential antitumor mechanisms.Conclusion: Green synthesis of diverse heterocycles yielded potent antitumor agents (compounds 9 & 14). DFT and Docking studies suggest interaction with ADORA1 receptor, a potential mechanism.


[Box: see text].


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos , Simulação de Acoplamento Molecular , Piperidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Ondas Ultrassônicas
6.
Curr Med Chem ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39318003

RESUMO

INTRODUCTION: Prolyl oligopeptidase (POP) is a pivotal druggable target implicated in diverse biological processes and linked to the development of various ailments, including neurodegenerative disorders. While conventional peptide-based inhibitors have been a centerpiece, their limitations, such as restricted bioavailability, necessitate exploration of non-peptidic inhibitors for their therapeutic potential. METHOD: This study focuses on designing, synthesizing, and assessing morpholine-based hydrazones targeting the catalytic serine residue of POP. The hydrazones (5a-o), reported as moderately potent analogs compared to the renowned Z-Pro-Prolinal, demonstrated in vitro POP inhibition with IC50 values ranging from 13.60 ± 2.51 to 36.51 ± 1.82 µM. The derivative 5h, with an IC50 of 13.60 ± 2.51 µM, emerged as the most potent inhibitor. RESULTS: Moreover, the in vitro kinetic study of compound 5h indicated that it exhibited concentration-dependent type of inhibition. in silico docking studies of 5h revealed robust interactions in the POP enzyme's active site, yielding a docking score of -6.30 Kcal/- mol, consistent with experimental results. CONCLUSION: All findings underscored the potential of synthesized derivatives for drug development.

7.
Bioorg Chem ; 153: 107822, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39305609

RESUMO

Carbonic anhydrase II (CA II) is crucial for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance. It is a pivotal druggable target which is implicated in glaucoma, renal, gastric, and pancreatic carcinomas, as well as in malignant brain tumours. Therefore, to identify new CA II (bovine) inhibitors, the current study was designed to synthesize a library of 20 new triazole-linked hydrazones (6a-t). All compounds were characterized by using spectroscopic techniques such as NMR and mass spectrometry. The in-vitro evaluation resulted in impressive inhibitory capability against CA II with IC50 values ranging from 9.10 ± 0.26-48.26 ± 1.30 µM. Among all derivatives, compounds 6a, 6b, 6d, 6k-6m, 6q, 6s and 6t exhibited potent inhibitory potential with 6t deemed as the most active inhibitor. Additionally, kinetic study of the hybrid 6t revealed concentration dependent type of inhibition with Ki value 7.24 ± 0.0086 µM. Furthermore, molecular docking of 6t correlates well with the kinetic analysis. The in-silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development.

8.
Chembiochem ; : e202400700, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252635

RESUMO

Imine reductases (IREDs) provide promising opportunities for the synthesis of various chiral amines. Initially, asymmetric imine reduction was reported, followed by reductive aminations of aldehydes and ketones via imines. Herein we present the reductive amination of structurally diverse carbonyls and dicarbonyls with hydrazines (reductive hydrazination), catalyzed by the IRED from Myxococcus stipitatus. In analogy to IRED-catalyzed reductive aminations, various carbonyls and dicarbonyls could react with simple hydrazines to produce substituted acyclic and cyclic N-alkylhydrazines. By incorporating and scaling up hydrogenase cofactor regeneration system, we demonstrated the scalability and atom-efficiency of an H2-driven double reductive hydrazination, highlightling the potential of IREDs in biocatalysis.

9.
Food Chem ; 460(Pt 2): 140583, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089026

RESUMO

Thin-layer chromatography (TLC) hyphenated to bioassays is a modern tool used for discovery of biologically active compounds from complex mixtures. The first bioautographic assay for detecting laccase inhibitors on a TLC plate was developed in this study. The on-plate reaction of laccase with colourless ABTS that renders the blue ABTS∙+ radical was optimised. Combination of the enzymatic TLC-assay with a control TLC-assay, wherein ABTS∙+ radical is chemically generated and then applied on the TLC, allowed to differentiate between the pure laccase inhibitor sodium azide and radical scavengers such as gallic and kojic acids. The limit of detection and quantification for the method were 54.9 and 166 ng of sodium azide respectively. The methodology was applied successfully to a recently discovered laccase inhibitor chemotype: hydrazones. A model hydrazone was compared with several hydrazones synthesized for this study. For the first time, laccase inhibitors separated on a TLC plate can be detected individually.


Assuntos
Inibidores Enzimáticos , Lacase , Lacase/antagonistas & inibidores , Lacase/química , Cromatografia em Camada Fina , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Hidrazonas/química , Hidrazonas/farmacologia
10.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125014

RESUMO

The data on the synthesis of N-aminomorpholine hydrazones are presented. It is shown that the interaction of N-aminomorpholine with functionally substituted benzaldehydes and 4-pyridinaldehyde in isopropyl alcohol leads to the formation of corresponding hydrazones. The structure of the synthesized compounds was studied by 1H and 13C NMR spectroscopy methods, including the COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C) methodologies. The values of chemical shifts, multiplicity, and integral intensity of 1H and 13C signals in one-dimensional NMR spectra were determined. The COSY (1H-1H), HMQC (1H-13C), and HMBC (1H-13C) results revealed homo- and heteronuclear interactions, confirming the structure of the studied compounds. The antiviral, cytotoxic, and antimicrobial activity of some synthesized hydrazones were investigated. It is shown that 2-((morpholinoimino)methyl)benzoic acid has a pronounced viral inhibitory property, comparable in its activity to commercial drugs Tamiflu and Remantadine. A docking study was performed using the influenza virus protein models (1930 Swine H1 Hemagglutinin and Neuraminidase of 1918 H1N1 strain). The potential binding sites that are complementary with 2-((morpholinoimino)methyl)benzoic acid were found.


Assuntos
Hidrazonas , Simulação de Acoplamento Molecular , Morfolinas , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Morfolinas/química , Morfolinas/farmacologia , Morfolinas/síntese química , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Estrutura Molecular
11.
Chem Biol Drug Des ; 104(1): e14590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039615

RESUMO

Hydrazones display an interesting profile of biological activities, which includes mainly antimicrobial and antiproliferative properties. Hydrazones also play an important role in the synthesis of heterocyclic rings and in coordination chemistry. Currently, the synthesis of complexes of hydrazones with transition metals is quite frequently reported in the scientific literature. The interest in this topic is largely due to diverse biological activities of the metal complexes of hydrazones that in some cases are much more effective than hydrazones themselves. This review focuses on the complexes of hydrazones with transition metals which display antibacterial, antitubercular, antifungal and anticancer activities. In the following subchapters devoted to a given activity, an attempt has been made to present the most active complexes of hydrazones, their trends in their activity and application in medicinal chemistry. The paper presents the literature data from 2009 to 2023. This review constitutes a useful guide for the researchers who intend to synthesize and investigate complexes of hydrazones in terms of their antimicrobial and anticancer activities.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Hidrazonas , Elementos de Transição , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Elementos de Transição/química , Elementos de Transição/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Neoplasias/tratamento farmacológico
12.
J Mol Model ; 30(8): 294, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39080111

RESUMO

CONTEXT: Hydrazones have been studied for a myriad of chemical and physiochemical properties, such as sensors, chelators and numerous biological activities. Experimental data indicates that hydrazones are unstable under cathodic potentials irrespective of the solvent. The single electron reduction of hydrazones to produce radical anions result in unstable species that cleaves at the N-N bond in a heterolytic manner. The literature has proposed a mechanism favouring the radical on the imine moiety, however in this study DFT calculations suggest the radical on the amine product is more likely upon bond cleavage. This has implications on electrochemical mechanisms, and the active molecule in biological studies viz the method of delivery to target areas. METHODS: Density functional theory calculations were carried out using the GAMESS software package. The structures were optimized in the gas phase (B3LYP/6-31G(d,p)) as indicated by the absence of imaginary frequencies in the Hessian, and in CH3CN (B3LYP/6-31G(d,p)/SMD) with the Pople polarization functions. As a comparison, selected pathways were fully optimized using PBE0/6-31G(d,p) and PBE0/6-31G(d,p)/SMD for gas phase and CH3CN, respectively with the Pople polarization functions. The values were not significantly different (< 5% difference). As such only the B3LYP is evaluation is discussed.

13.
J Fluoresc ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954084

RESUMO

The application of quinolones stretches over a large umbrella of medicinal field as well as chemosensor due to the presence of privileged heterocyclic aromatic rig system. Salicyl and Naphthyl Hydrazide motifs are also established fluorophore groups. Therefore in this work, we have designed and synthesized Salicyl hydrazide (3a-c) and naphthyl hydrazide fused nitroquinolones (5a-c) investigated for their fluorescent behaviour. Preliminary UV- absorption studies were carried out and the metal selectivity were examined with various metal ion. Among them, it was found that compound 3a was selective towards Fe3+ ions (λex = 330 nm, 1:1 DMF:H2O at pH = 7.4 in HEPES Buffer medium). 3a shows decrease emission intensity in presence of Fe3+ ions. Compound 5a shows enhancement in fluorescence intensity upon addition of Pb2+ ion (λex = 280 nm, 1:1 DMF:H2O at pH = 7.4 in HEPES Buffer medium). Further, the concentration dependence, competitive binding and EDTA reversibility were studied for selected compounds towards the respective cations selectivity. Jobs plot analysis indicate that 1:1 binding of 3a with Fe3+ ion (Ka = 3.17 x104M-1 and Limit Of Detection (LOD) = 5.1 × 10-7 M) whereas 5a showed 1:2 binding mode with Pb2+ ions (Ka = 2.14 × 106 M-1 and Limit Of Detection (LOD) = 2.613 × 10-9 M). Density Function Theoretical studies were performed as support for the experimental results.

14.
Future Med Chem ; 16(15): 1519-1535, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864182

RESUMO

Aim: A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. Materials & methods: All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of GSK-3α, GSK-3ß, DYRK1 and CDK5 were assessed in the presence of compounds 6m and 6p.Results:6m and 6p; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. 6m demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, 6m displayed a significant downregulation in mRNA levels of GSK-3α, GSK-3ß and CDK5.Conclusion: The target compounds could be considered in developing anti-Alzheimer's disease agents.


[Box: see text].


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Quinase 5 Dependente de Ciclina , Hidrazonas , Triazóis , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Butirilcolinesterase/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
15.
Bioorg Chem ; 150: 107587, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941700

RESUMO

Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1ß, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.


Assuntos
Hidrazonas , Fármacos Neuroprotetores , Doença de Parkinson , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Desenho de Fármacos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Animais , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/síntese química
16.
Beilstein J Org Chem ; 20: 1334-1340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887584

RESUMO

For the first time, the interaction of aroyl containing pyrano[2,3-d]isoxazolone derivatives with various hydrazines was studied. It was shown that the considered process includes formation of corresponding hydrazones followed by Boulton-Katritzky rearrangement. As a result, the general method for the synthesis of substituted 1,2,3-triazoles bearing an allomaltol fragment was elaborated. The suggested approach can be applied to various aromatic and heterocyclic hydrazines. At the same time for unsubstituted hydrazine the Boulton-Katritzky recyclization is not implemented. In this case the opening of the pyranone ring was observed leading to pyrazolylisoxazole derivatives. Both types of aforementioned structures were proved by X-ray analysis.

17.
Molecules ; 29(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792260

RESUMO

(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and their related impairment of tubulin dynamics. (2) Methods: The antiproliferative activity was assessed with the MTT assay. Alterations in tubulin polymerization were evaluated with an in vitro tubulin polymerization assay and a docking analysis. (3) Results: All derivatives showed time-dependent cytotoxicity with IC50 varying from 40 to 60 µM after 48 h and between 13 and 20 µM after 72 h. Immunofluorescent and DAPI staining revealed the pro-apoptotic potential of benzimidazole derivatives and their effect on tubulin dynamics in living cells. Compound 5d prevented tubulin aggregation and blocked mitosis, highlighting the importance of the methyl group and the colchicine-like fragment. (4) Conclusions: The benzimidazole derivatives demonstrated moderate cytotoxicity towards MDA-MB-231 by retarding the initial phase of tubulin polymerization. The derivative 5d containing a colchicine-like moiety and methyl group substitution in the benzimidazole ring showed potential as an antiproliferative agent and microtubule destabilizer by facilitating faster microtubule aggregation and disrupting cellular and nuclear integrity.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Hidrazonas , Tubulina (Proteína) , Feminino , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Hidrazonas/química , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Polimerização , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química
18.
Molecules ; 29(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792153

RESUMO

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.


Assuntos
Apoptose , Aziridinas , Neoplasias da Mama , Proliferação de Células , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Tamoxifeno/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Células MCF-7 , Feminino , Aziridinas/farmacologia , Aziridinas/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrazonas/farmacologia , Hidrazonas/química , Probióticos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-38698530

RESUMO

Condensation of 5-benzyl-3-hydrazino-1,2,4-triazino[5,6-b]indole with various sugar aldoses or ketoses gave the corresponding sugar hydrazones as single geometrical isomer or exist in E/Z tautomeric isomers. The hydrazones underwent heterocyclization with Fe(Ш)Cl3 to give the N2-adduct acyclo C-nucleosides: 3-(alditol-1yl)-10-benzyl-1,2,4-triazolo[4,3-b]1,2,4-triazino[5,6-b]indoles rather than the N4-adduct: 10-(alditol-1-yl)-3-benzyl-1,2,4-triazolo[3,4-c]1,2,4-triazino[5,6-b] indoles on the basis of chemical and UV spectral proofs. Conformational analysis of their polyacetates were studied. The new acyclo C-nucleosides were evaluated for antimicrobial activity.

20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732078

RESUMO

This study aimed to synthesize molybdenum complexes coordinated with an aroyl hydrazone-type ligand (H2L), which was generated through the condensation of 2-hydroxy-5-nitrobenzaldehyde with benzhydrazide. The synthesis yielded two types of mononuclear complexes, specifically [MoO2(L)(MeOH)] and [MoO2(L)(H2O)], as well as a bipyridine-bridged dinuclear complex, [(MoO2(L))2(4,4'-bpy)]. Those entities were thoroughly characterized using a suite of analytical techniques, including attenuated total reflectance infrared spectroscopy (IR-ATR), elemental analysis (EA), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction (SCXRD). Additionally, solid-state impedance spectroscopy (SS-IS) was employed to investigate the electrical properties of these complexes. The mononuclear complexes were tested as catalysts in the epoxidation of cyclooctene and the oxidation of linalool. Among these, the water-coordinated mononuclear complex, [MoO2(L)(H2O)], demonstrated superior electrical and catalytic properties. A novel contribution of this research lies in establishing a correlation between the electrical properties, structural features, and the catalytic efficiency of the complexes, marking this work as one of the pioneering studies in this area for molybdenum coordination complexes, to the best of our knowledge.


Assuntos
Benzaldeídos , Complexos de Coordenação , Molibdênio , Oxirredução , Molibdênio/química , Catálise , Complexos de Coordenação/química , Benzaldeídos/química , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA