Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Anal Sci ; 40(6): 1071-1080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483788

RESUMO

In this paper, we optimized a method for fast and accurate determination of five impurity elements (As, Sb, Bi, Se, and Ge) in graphite samples to overcome the shortcomings of existing methods, such as complicated equipment, cumbersome process, multiple-time preparation, separate determination, and large error in results. Graphite samples were digested with HNO3-H2SO4-HClO4-HF in a high-temperature and high-pressure microwave digestion apparatus, and the elements were extracted and determined separately by AFS (atomic fluorescence spectrometry). There is no element loss during the processing and analysis of this method. The spike recoveries (As: 90.30%-102.3%, Sb: 90.73%-110.0%, Bi: 90.00%-99.67%, Se: 93.33%-110.0%, Ge: 92.26%-104.2%) and precision (RSD%; As: 1.34%-8.96%, Sb: 2.67%-7.10%, Bi: 1.83%-4.58%, Se: 0.36%-3.25%, Ge: 4.41%-8.65%) meet the requirements of the corresponding quality specifications. The method has some advantages (such as no elemental loss, fast testing, strong element targeting, and accurate results), and thus can achieve batch determination of graphite samples. The optimized method for graphite sample and final solution preparations can be used for diverse spectrometric technologies, and that for spectrometer conditions have reference value for HG-AFS instruments.

2.
Talanta ; 272: 125782, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364568

RESUMO

The aim of the current study was to separate and determine arsenic in water and fish samples using a novel and green solidified floating organic drop microextraction (SFODME), which is based on switchable hydrophilicity solvent (SHS)-assisted procedure followed by hydride generation atomic absorption spectrometry (HG-AAS). The 4-((2-hydroxyquinoline-7-yl)diazenyl)-N-(4-methylisoxazol-3-yl)benzene sulfonamide (HDNMBA) and tertiary amine (4-(2-aminoethyl)-N,N-dimethylbenzylamine (AADMBA) were used as ligand and SHS, respectively. The use of SHS promotes quantitative extraction of arsenic complexes into an extraction solvent (1-undecanol). Some factors that impact extraction recovery were studied. Under optimal conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.005 µg L-1 and 0.015 µg L-1, respectively. The calibration graph was linear up to 900.0 µg L-1 arsenic, with the enrichment factor is 267. The proposed SHS-SFODME methodology for arsenic quantification in water and fish samples was successfully implemented. The environmental friendliness and safety of proposed method were approved by the Analytical Greenness Calculator (AGREE) and the Blue Applicability Grade Index (BAGI) tools.


Assuntos
Arsênio , Microextração em Fase Líquida , Animais , Água/química , Solventes/química , Arsênio/análise , Espectrofotometria Atômica/métodos , Limite de Detecção , Peixes , Microextração em Fase Líquida/métodos
3.
Anal Chim Acta ; 1287: 342130, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182352

RESUMO

BACKGROUND: The electrochemical hydride generation technology, which uses electrolysis instead of chemical reagents to generate reducing species to achieve gaseous transformation and sample introduction of the tested elements, has received widespread attention in the field of atomic spectroscopy due to its simple, economical, and green characteristics. However, limited by the effective area of the electrode, the introduction efficiency and spectral signal of most elements (e.g., germanium) in practical applications are lower than traditional chemical hydride generation. RESULTS: In this paper, an efficient electrochemical hydride generation (EHG) method based on metal foam electrode for µg L-1 level germanium was constructed. Systematic electrochemical and spectral tests showed that the low charge transfer resistance and the high electrochemical activity of nickel-based foam electrodes jointly promoted the efficient electroreduction of Ge(IV). Besides, the porous network structure of the metal foam material improves the contact probability of reactants while reducing the gas-evolution effect caused by bubble accumulation. Interestingly, adequate reaction sites are crucial for the conversion of germanium, but large foam electrodes are not always compatible with analytical performance. After coupling atomic fluorescence spectroscopy, this new electrolysis method has been proven to be suitable for efficient conversion and quantitative detection of Ge over a wide concentration range (5-150 µg L-1). SIGNIFICANCE: Our proposal to improve the electrosynthesis efficiency of germanane (GeH4) by using metal foam electrode is extremely effective for the detection of trace or ultra-trace germanium. The exploration of electrode material, structure, and especially effective area will also provide ideas for the establishment of highly sensitive analysis methods in the future.

4.
Anal Chim Acta ; 1283: 341901, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977772

RESUMO

BACKGROUND: Selenium is an indispensable microelement for humans and food is the main source of selenium intake. As one of the best techniques for the determination of selenium, inductive coupling plasma-mass spectrometry (ICP-MS) features some unique advantages, such as wide linear range and high sensitivity. Nevertheless, it still remains a challenge to achieve the accurate and high sensitivity determination of ultra-trace selenium in food samples by ICP-MS owning to the high first ionization energy of selenium and interferences from sample matrices as well as isobaric interferences. RESULTS: In this work, UiO-66-NH2 (metal organic framework, MOF) was fast synthesized by microwave method and employed for the preconcentration of ultra-trace selenium with an adsorption efficiency of nearly 100%. The selenium-adsorbed MOF was collected by filtration, and then simply converted to slurry for in situ hydride generation (HG) for sensitive detection of selenium by ICP-MS. Various factors affecting the adsorption of selenium by the MOF (including pH, adsorption time, and amount of MOF) together with main parameters of hydride generation (including concentrations of HCl and NaBH4) were carefully evaluated. Experimental results show that effective matrix separation can greatly reduce interference, with an excellent detection limit of 1 ng/L. The practicability and accuracy of this method were successfully confirmed by the determination of trace selenium in several food samples. SIGNIFICANCE: UiO-66-NH2 (MOF) was used as an effective adsorbent for the preconcentration of selenium prior to direct slurry sampling HG-ICP-MS determination. Direct slurry sampling avoided additional elution procedures and was conducive to eliminating matrix and isobaric interferences. High sensitivity and anti-interference determination were achieved for determination of ultra-trace Se in complex food samples.


Assuntos
Estruturas Metalorgânicas , Selênio , Humanos , Selênio/análise , Água , Espectrometria de Massas/métodos
5.
J Pharm Biomed Anal ; 236: 115682, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37660547

RESUMO

The analysis of homeopathic medicines for the content of total inorganic As by hydride generation (HG) hyphenated with the ICP OES detection was presented. Various forms of medicaments (sugar pellets, tablets, alcohol-based drops), containing Arsenicum album or Arsenicum iodatum in several potencies (C9-200, D6-10), as well as different sample preparation approaches (wet digestion, extraction, dissolution, dilution, direct analysis) before spectrometric measurements were studied. The influence of the undecomposed sample matrix (mainly sugar and alcohol) on the HG process of As was examined in detail. Under optimal conditions found, simplified sample preparation procedures for the determination of As traces were proposed. The suitable sensitivity, the limit of detection of As < 0.1 ng g-1, the precision within 0.31-7.4 % (as RSD), and the adequate trueness (94.9-113 % as confirmed by the recovery test) were achieved. Using the species-selective HG conditions and the developed direct analysis method, the speciation of As in arsenic drops without any prior chromatographic separation of As(III) and As(V) was carried out. The applicability of the developed strategies was demonstrated by the determination of As in 13 homeopathic products available on the Polish market.

6.
Anal Chim Acta ; 1278: 341746, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709475

RESUMO

BACKGROUND: Inductively coupled plasma-mass spectrometry (ICP-MS) is one of the most powerful instrumental techniques for the determination of tungsten for its low detection limit and wide linear range, while it remains challenging since the analytical performance can be affected by complicated sample matrix. Chemical vapor generation (CVG) harbors the potential to be an alternative to conventional solution nebulization for sample introduction to reduce matrix effect. However, the CVG of tungsten was low in efficiency. It is clear that green and homogeneous enhancement for CVG of tungsten is desired and the mechanism is worth in-depth investigation. RESULTS: Two green and homogeneous enhancement systems for CVG of tungsten were studied, including photochemical vapor generation (PVG) and hydride generation (HG) with sensitizers, Fe3+ and DDTC, respectively. Under optimal conditions, the limits of detection (LODs) were 0.02 µg L-1 for the PVG and 0.003 µg L-1 for the HG, respectively. For PVG, the Fe3+/Fe2+ cycling, free radical species, gaseous product, and the chemical speciation evolution of W in the PVG process were studied in detail. Photo-Fenton effect, generated reductive radical ·CO2-, gaseous product Fe(CO)5, and the mixed valence of W5+/W6+ in the PVG process were found to be crucial for the enhancement. As for HG, the complexation between W(VI) and DDTC might be conducive to the enhanced HG efficiency. SIGNIFICANCE: This work not only in-depth expands the element scope of CVG, but also investigates the enhancement mechanisms experimentally, which might render a deep insight into the CVG processes and foreshadow new guidelines for screening green and efficient homogeneous sensitizers for CVGs of more elements in the future.

7.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764390

RESUMO

In this study, determination of the inorganic and organic forms of tin in waters of different salinities is considered. The possibility of the separation of speciations of tin using liquid-liquid extraction (LLE); precipitation with fluorides, iodides, ammonia, and iron (III) chloride; and sorption of organotin compounds (OTCs) was studied. The LLE and analyte precipitation methods proved to be ineffective. Inorganic and organic forms of tin were separated by the sorption of OTCs using silica gel sorbent Diapak C18. Under optimized conditions, a technique for the separate determination of the forms of tin in natural waters was developed. The technique combines hydride generation and microwave mineralization of solutions followed by ICP spectrometry. The inorganic forms of tin were determined after their solid-phase separation from organotin compounds. The lower limits of analyte quantification were 0.03 µg/L (ICP-MS) and 0.05 µg/L (ICP-OES), which provide separate determinations of inorganic and organic forms of tin in waters with different salinities. The content of OTCs in water was determined by subtracting the inorganic concentration from the total concentration of tin. The technique will allow a comprehensive assessment of the toxicological impact of tin speciations on the aquatic ecosystem.

8.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630219

RESUMO

This paper considers the features of determining the total tin content in waters with different salinity. Direct ICP-spectrometric analysis of sea waters with a salinity of more than 6‱ significantly reduced the analytical signal of tin by 70% (ICP-MS) and 30% (ICP-OES). The matrix effect of macrocomponents was eliminated by generating hydrides using 0.50 M sodium borohydride and 0.10 M hydrochloric acid. The effect of transition metals on the formation of tin hydrides was eliminated by applying L-cysteine at a concentration of 0.75 g/L. The total analyte concentrations, considering the content of organotin compounds, were determined after microwave digestion of sample with oxidizing mixtures based on nitric acid. The generation of hydrides with the ICP-spectrometric determination of tin leveled the influence of the sea water matrix and reduced its detection limit from 0.50 up to 0.05 µg/L for all digestion schemes. The developed analysis scheme made it possible to determine the total content of inorganic and organic forms of tin in sea waters. The total content of tin was determined in the waters of the Azov and Black seas at the levels of 0.17 and 0.24 µg/L, respectively.

9.
Food Chem ; 428: 136806, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450952

RESUMO

The reaction mechanism of Ag-containing metal organic framework (Ag-BTC) and hydrogen arsenide (AsH3) was discussed in detail in this work. Silver ions in Ag-BTC were reacted with AsH3, and silver nanoparticles were generated on the surface of Ag-BTC, causing its color changed. This property was further applied to a hydride generation-colorimetric analytical system. As(III) was converted to AsH3via hydride generation and then reacted with the Ag-BTC (immobilized on test paper), leading to the test paper changed from white to black. Visual colorimetric and smartphone RGB readout mode were used for this analytical system. The results could be readout by naked-eye in visual colorimetric mode and a smartphone in RGB readout mode. Under the optimized conditions, As(III) concentration as low as 10 µg/L and 50 µg/L could be readout by smartphone and naked-eye, respectively. This method was further successful applied to As(III) determination in real samples (drinking water samples and scented tea samples), with recoveries of 91-113%.


Assuntos
Arsênio , Nanopartículas Metálicas , Estruturas Metalorgânicas , Colorimetria/métodos , Smartphone , Prata
10.
Food Chem X ; 18: 100634, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36968312

RESUMO

A miniaturized/portable dual-mode colorimetric analytical system was established for inorganic arsenic determination in honey and drinking water samples. Hydride generation (HG) was utilized as a sampling technique for this colorimetric system, because of its high generation efficiency and efficient matrix separation. AsH3 was generated via HG and then reacted with HAuCl4, gold nanoparticles (Au NPs) were formed on the paper sheet, leading the paper color changed from light yellow to dark blue, it could be readout by naked-eye (visual colorimetric mode) and a smartphone (RGB readout mode) simultaneously. The accuracy and potential application for field analysis were further confirmed by the analysis of two water samples, four honey samples and two certified reference water samples (BWB2440-2016 and GBW08650), good recoveries (90-116%) were obtained for those samples and their spiked samples.

11.
Chemosphere ; 313: 137316, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414033

RESUMO

Antimony is present in different types of plastics as a catalyzer residue and/or as a synergistic fire retardant; relatively high concentrations of this element reported in polyethylene terephthalate (PET) bottles and wrappers as well as its migration to the edible products or to different environment compartments are of concern. In this work, Sb determination is such products had been undertaken using hydride generation - microwave plasma - atomic emission spectrometry. To avoid harsh conditions typically reported for the digestion of PET, alkaline methanolysis was introduced whereas water samples were analyzed directly. Another original approach was to perform quantification by partial least squares regression (PLS1), taking spectral data from 2-nm range that comprised two emission lines (217.581 nm and less intense 217.919 nm). For PET, the calibration solutions contained Sb-free digest and covered the Sb concentration range 80-230 µg L-1. For the analysis of water, the calibration range was 0.5-10 µg L-1 and aqueous standard solutions were used. PLS1 provided reliable prediction, eliminating spectral interferences detected in the presence of PET digests and compensating for the spectral changes observed at low Sb concentrations. After standard addition to the real-world samples, the percentage recoveries were in the range 93.8-99.3% and 68-102% for PET and for bottled water, respectively. The method quantification limit for PET was 10 mg kg-1 and for water it corresponded to 0.20 µg L-1. The concentrations of Sb found in the analyzed samples were: 154-279 mg kg-1 for PET bottles and <0.5-5.30 µg L-1 for water.


Assuntos
Água Potável , Polietilenotereftalatos , Polietilenotereftalatos/química , Antimônio/química , Micro-Ondas , Análise dos Mínimos Quadrados , Água Potável/química , Análise Espectral
12.
Talanta ; 253: 123898, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108519

RESUMO

A method based on flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) with an on-line pre-reduction of Se(VI) to Se(IV) was developed and optimized to determine phosphate-extractable Se (0.1 M phosphate buffer KH2PO4/K2HPO4 at pH 7). The extracted fraction involves water-soluble Se (i.e. the most mobile Se fraction) and exchangeable Se (i.e. sorbed onto soil component surface). Kinetic discrimination mechanisms allowed the complete removal of interferences caused by organic matter due to the formation of humic substances (HS)-Se(IV) complexes observed when batch pre-reduction processes were used. Se(IV) and Se(VI) recoveries ranged 95-105% at a fortification level of 150 µg kg-1. The pre-reduction was efficiently carried out in 20 s in a 6 M HCl medium at 100 °C. Results from phosphate-extractable fractions were comparable to those obtained by ICP-MS. Se bound to organic matter was released digesting the remaining material from the phosphate buffer extraction with 0.1 M K2S2O8. Detection and quantification limits were 15 µg kg-1 Se and 50 µg kg-1 Se, respectively, in each fraction. The methodology was applied to 10 agricultural soils from Argentina with total Se concentration levels between 130 µg kg-1 and 419 µg kg-1.


Assuntos
Selênio , Espectrofotometria Atômica , Solo , Fosfatos
13.
Anal Bioanal Chem ; 415(2): 317-326, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36348039

RESUMO

This work describes the intricacies of the determination of the trimethylselenonium ion (TMSe) in human urine via high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). By definition, this technique requires that the separated TMSe can be online converted into a volatile compound. Literature data for the determination of TMSe via the hydride generation technique are contradictory; i.e., some authors claim that direct formation of volatile compounds is possible under reduction with NaBH4, whereas others reported that a digestion step is mandatory prior to conversion. We studied and optimized the conditions for online conversion by varying the mobile phase composition (pyridine, phosphate, and acetate), testing different reaction coils, and optimizing the hydride generation conditions, although technically no hydride (H2Se) is formed but a dimethylselenide (DMSe). The optimized conditions were used for the analysis of 64 urine samples of 16 (unexposed) volunteers and the determination of low amounts of TMSe (LOD = 0.2 ng mL-1). Total (specific gravity-corrected) selenium concentrations in the urine samples ranged from 7.9 ± 0.7 to 29.7 ± 5.0 ng mL-1 for individual volunteers. Four volunteers were characterized as TMSe producers (hINMT genotype GA) and 12 were non-producers (hINMT genotype GG). Urine of TMSe producers contained 2.5 ± 1.7 ng mL-1 of TMSe, compared to 0.2 ± 0.2 ng mL-1 for non-producers.


Assuntos
Compostos de Selênio , Selênio , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Fluorescência , Selênio/urina
14.
Front Pharmacol ; 13: 967608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110533

RESUMO

Realgar- and cinnabar-containing AnGongNiuHuang Pill (AGNHP) is widely used for treating encephalopathy syndrome. However, it raises great safety concerns due to the adverse effects reported by arsenic or mercury poisoning. Although AGNHP has been generally recognized, little is known about the metabolism of arsenic and mercury and their resulting potential health risk in vivo. Thus, comparative pharmacokinetics and urinary excretion of arsenic and mercury were conducted in rats after oral administration of realgar, cinnabar and AGNHP, respectively. The contents of arsenic and mercury in rat blood and urine were determined by hydride-generation atomic fluorescence spectrometry (HG-AFS) after wet digestion. AGNHP significantly reduced the absorption of arsenic in blood and promoted urinary arsenic excretion. Whereas, it increased the blood mercury absorption and reduced urinary mercury excretion. No significant toxicity was observed in the clinical dose range of AGNHP. However, excessive exposure to arsenic and mercury may still pose risks especially by long-term or excessive medication. The results are helpful for the rational clinical applications of realgar- and cinnabar-containing TCMs.

15.
Anal Chim Acta ; 1229: 340324, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156216

RESUMO

A miniaturized atomic absorption spectrometer (AAS) was proposed with a planar dielectric barrier discharge (DBD) microplasma as an atomizer, a charge coupled device (CCD) spectrometer as a spectral detector, and a hydride generation (HG) unit as a sampler, and the potential analytical capability was evaluated through the determination of cadmium. Auxiliary hydrogen was added to enhance the atomic absorption signals and the potential mechanism of enhancement effect was studied by use of various techniques. The HG-DBD-AAS was further applied to the determination of Cd, yielding a 1.7-fold enhancement in AAS response with added hydrogen and a limit of detection (LOD) of 0.3 µg L-1 under optimized conditions. Good agreement with the certified values, and desirable spike recoveries ranging between 98% and 108%, were obtained for two certified reference materials and several real water samples, respectively. It can be useful in field analysis of many trace elements with high detectability.


Assuntos
Cádmio , Oligoelementos , Hidrogênio , Espectrofotometria Atômica/métodos , Água
16.
Mikrochim Acta ; 189(7): 243, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657569

RESUMO

The development of the first microfluidic paper-based analytical device (µPAD) for the speciation of inorganic arsenic in environmental aqueous samples as arsenite (As(III)) and arsenate (As(V)) which implements hydride generation on a paper platform is described. The newly developed µPAD has a 3D configuration and uses Au(III) chloride as the detection reagent. Sodium borohydride is used to generate arsine in the device's sample zone by reducing As(III) in the presence of hydrochloric acid or both As(III) and As(V) (total inorganic As) in the presence of sulfuric acid. Arsine then diffuses across a hydrophobic porous polytetrafluoroethylene membrane into the device's detection zone where it reduces Au(III) to Au nanoparticles. This results in a color change which can be related to the concentration of As(III) or total inorganic As (i.e., As(III) and As(V)) concentration. Under optimal conditions, the µPAD is characterized by a limit of detection of 0.43 mg L-1 for total inorganic As (As(III) + As(V)) and 0.41 mg L-1 for As(III) and a linear calibration range in both cases of 1.2-8.0 mg As L-1. The newly developed µPAD-based method was validated by applying it to groundwater and freshwater samples and comparing the results with those obtained by conventional atomic spectrometric techniques.


Assuntos
Arsênio , Nanopartículas Metálicas , Arsênio/análise , Ouro , Microfluídica , Água/análise
17.
Talanta ; 243: 123372, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287019

RESUMO

Chemical vapor or hydride generation (CVG/HG) still plays a significant role in continuous flow sample introduction system. The development and higher accessibility of new commercial CVG/HG accessories (especially modified spray chambers and nebulizers) improves the analytical possibilities of plasma-based optical emission spectrometry for determination of hydride forming analytes. These systems are still designed and widely applied despite the better availability of its alternatives. The commercialization of the first nitrogen microwave induced plasma optical emission spectrometry instrument (MIP OES) also contributes to the increase in popularity of these solutions. The latest achievements in commercial and laboratory-made generators and instruments, as well as new strategies in sample preparation for total content and speciation analysis, are discussed in the review.


Assuntos
Gases , Micro-Ondas , Gases/química , Análise Espectral/métodos
18.
Anal Chim Acta ; 1192: 339366, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057941

RESUMO

A miniaturized/portable visual colorimetric system based on hydride generation headspace solid phase extraction (HG-HS-SPE) was proposed for arsenic detection by naked eyes. As(III) was transformed into AsH3via hydride generation process, the volatile AsH3 was introduced into reaction bottle and reacted with AgNO3 subsequently. Silver nanoparticles (Ag NPs) were generated in situ, resulting in the color changed from white to black, it could be readout by naked eyes or a smartphone application (color extraction, for RGB readout). The interferences from 9 common ions and 10 conventional hydride generation elements were discussed, the results demonstrated that the proposed method exhibit a good anti-interference. The proposed visual colorimetric method was further applied to seven water samples and their spiked samples, and a certified reference water sample (GBW08605) for demonstrating its accuracy and applicability.


Assuntos
Arsênio , Nanopartículas Metálicas , Colorimetria , Prata , Água
19.
Anal Chim Acta ; 1190: 339256, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34857132

RESUMO

Atomization of hydrides and their methylated analogues in a dielectric barrier discharge (DBD) plasma atomizer was investigated. Selected ion flow tube mass spectrometry (SIFT-MS) was chosen as a detector being capable of selective detection of non-atomized original volatile species allowing thus direct quantification of atomization efficiency. Selenium hydride (SeH2) and three volatile arsenic species, namely arsenic hydride (AsH3), monomethylarsane (CH3AsH2) and dimethylarsane ((CH3)2AsH), were selected as model analytes. The mechanistic study performed contributes to understanding of the atomization processes in atomic absorption spectrometry (AAS). The presented results are compatible with a complete atomization of arsenic hydride as well as its methylated analogues and with atomization efficiency of SeH2 below 80%. Using AsH3 as a model analyte and a combination of AAS and SIFT-MS detectors has revealed that the hydride is not atomized, but decomposed in the DBD atomizer in absence of hydrogen fraction in the carrier gas. Apart from investigation of analyte atomization, the SIFT-MS detector is capable of quantitative determination of water vapor content being either transported to, or produced in the atomizer. This information is crucial especially in the case of the low-power/temperature DBD atomizer since its performance is sensitive to the amount of water vapor introduced into the plasma.


Assuntos
Arsênio , Hidrogênio , Espectrometria de Massas , Nebulizadores e Vaporizadores , Espectrofotometria Atômica
20.
Chinese Journal of Endemiology ; (12): 585-590, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-955752

RESUMO

Objective:To establish a hydride generation atomic fluorescence method using ammonium persulfate as the digestion reagent for determination of arsenic in urine (hereinafter referred to as this method).Methods:The collected urine samples with ammonium persulfate were heated and digested on the tubular electric heating automatic control constant temperature digester (60 holes), with 5% hydrochloric acid solution as reaction medium and current carrier and 1.5% potassium borohydride solution as reducing agent. Arsenic content was determined with a four-channel atomic fluorescence spectrometer. The arsenic standard solution of 0 - 10 μg/L was prepared to determine the standard curve of this method, and the method was evaluated from the detection limit, linear range, correlation coefficient, precision, standard addition recovery experiment, and urine arsenic quality control sample detection. The standard method "Determination of Arsenic in Urine by Hydride Generation Atomic Fluorescence Spectrometry" (WS/T 474-2015, referred to as the standard method) was used for comparison experiments.Results:When the sampling volume was 1 ml, the detection limit of this method (digest with 1 ml 1.5 mol/L ammonium persulfate) was 0.03 μg/L. In the range of arsenic content from 0 - 10 μg/L, the linear relationship between arsenic content and fluorescence intensity was good, and the correlation coefficients ( r) were all 0.999 9. The relative standard deviations( RSD) of the three replicates of urine samples with different concentrations were 1.00%, 0.89% and 0.49%, respectively. Urine arsenic quality control samples were tested, and the test results were all within the range of public values; the overall average recovery was 102.29%, and the recovery range was 92.10% - 108.15%. Compared with the standard method in the determination results of 20 urine samples, the difference was not statistically significant ( t = - 0.40, P > 0.05). Conclusions:The hydride generation atomic fluorescence spectrometry using ammonium persulfate as digestion reagent for the determination of arsenic in urine has the advantages of low detection limit, good precision, high accuracy, small amount of sampling and digestion reagent, simple operation, and less harmful gas generation in sample pretreatment. It is suitable for rapid determination of arsenic in urine in large quantities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...