Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 5): 127244, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806416

RESUMO

Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.


Assuntos
Bromelaínas , Peptídeos , Hidrólise , Bromelaínas/química , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/química , Hidrolisados de Proteína/química
2.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144827

RESUMO

The enzymatic modification of starch extends its industrial use to flavor delivery and probiotic encapsulants, among other uses. However, it is not known how starch from different cassava varieties responds to enzymatic hydrolysis. Starches from two Ecuadorian cassava varieties (INIAP 650, an edible starch, and INIAP 651, an industrial starch) were partially modified at three enzymatic hydrolysis degrees (0%, 30%, and 50%), and their physicochemical properties were assessed. The structural analysis revealed that both varieties showed progressive structural damage as hydrolysis increases, probably due to exo-hydrolysis. However, deeper pores were observed in INIAP 651 with the SEM analysis. The crystallinity percentage obtained by XRD analyses remained constant in INIAP 651 and decreased (by 26%) in INIAP 650 (p < 0.05). In addition, the amylose−lipid complex index in INIAP 650 remained constant, while INIAP 651 increased (p < 0.05) at 30% hydrolysis (by 93%). In both varieties, hydrolysis increased (p < 0.05) the water holding capacity (WHC) (by 10−14%) and the water binding capacity (WBC) (by 16%), but 50% hydrolysis of INIAP 650 was needed to significantly affect these properties. No differences were observed in the varieties' thermal properties. Regarding the rheological properties, the variety did not influence the changes in the storage module (G') and the loss modulus (G″) with the hydrolysis (p > 0.05). However, the phase angle decreased significantly (p < 0.05) with the hydrolysis, being higher in the INIAP 650 variety than in the INIAP 651 variety. In general, the results indicate that the variety affects the response of the starch granule to enzymatic hydrolysis (noticeable in the principal component analysis, PCA) and opens up the possibility to modulate starch properties.


Assuntos
Amilose , Manihot , Amilose/química , Hidrólise , Lipídeos , Manihot/química , Amido/química , Viscosidade , Água/química
3.
Food Chem ; 346: 128884, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401088

RESUMO

Edible mushrooms used as a protein-rich food may be an attractive alternative to conventional protein sources, while promoting its valorization. This work aimed to obtain a protein concentrate from a Pleurotus ostreatus mushroom flour, its characterization, and nutritional and functional properties evaluation. Methodologies applied for extraction and precipitation of protein were optimized - pH 4 and 12, respectively; and flour-solvent ratio of 1:20 w/v. The protein density was increased by 78%. P. ostreatus flour and concentrate were characterized by proximal composition. The content of total phenolic compounds in the protein concentrate decreased, leading to a positive effect on protein digestibility, while the DPPH radical scavenging activity was not significantly affected. Peptides with molecular weights from 12 to 35 kDa, with possible bioactivity, were identified by electrophoresis. Protein digestibility assessed by in vitro gastrointestinal digestion showed a 4.2-fold higher hydrolysis degree in the protein concentrate than the flour.


Assuntos
Proteínas Fúngicas/química , Valor Nutritivo , Pleurotus/metabolismo , Antioxidantes/química , Digestão , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Fenóis/química , Solubilidade , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA