Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Am J Med Genet A ; : e63809, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949089

RESUMO

Carbonic anhydrase 5A (CA5A) belongs to a family of carbonic anhydrases which are zinc metalloenzymes involved in the reversible hydration of CO2 to bicarbonate. Mutations in CA5A are very rare and known to cause Carbonic anhydrase 5A deficiency (CA5AD), an autosomal recessive inborn error of metabolism characterized clinically by acute onset of encephalopathy in infancy or early childhood. CA5A also has two very identical pseudogenes whose interference may result in compromised accuracy in targeted sequencing. We report a unique case of CA5AD caused by compound heterozygous variant (NM_001739.2: c.721G>A: p.Glu241Lys & NM_001739.2: c.619-3420_c.774 + 502del4078bp) in an infant in order to expand the phenotypic spectrum and underscore the impact of pseudogenes, which can introduce complexities in molecular genetic analysis.

2.
JIMD Rep ; 65(4): 226-232, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974611

RESUMO

Carbonic anhydrase VA (CA-VA) deficiency is a rare cause of hyperammonemia caused by biallelic mutations in CA5A. Most patients present with hyperammonemic encephalopathy in early infancy to early childhood, and patients usually have no further recurrence of hyperammonemia with a favorable outcome. This retrospective cohort study reports 18 patients with CA-VA deficiency caused by homozygosity for a founder mutation, c.59G>A p.(Trp20*) in CA5A. The reported patients show significant intrafamilial and interfamilial variability, and display atypical clinical features. Two adult patients were asymptomatic, 7/18 patients had recurrent hyperammonemia, 7/18 patients developed variable degree of developmental delay, 9/11 patients had hyperCKemia, and 7/18 patients had failure to thrive. Microcephaly was seen in three patients and one patient developed a metabolic stroke. The same variant had been reported already in a single South Asian patient presenting with neonatal hyperammonemic encephalopathy and subsequent development of seizures and developmental delay. This report highlights the limitations of current understanding of the pathomechanisms involved in this disorder, and calls for further evaluation of the possible role of genetic modifiers in this condition.

3.
Clin Liver Dis ; 28(3): 541-554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945642

RESUMO

Portal hypertension has cerebral consequences via its causes and complications, namely hepatic encephalopathy (HE), a common and devastating brain disturbance caused by liver insufficiency and portosystemic shunting. The pathogenesis involves hyperammonemia and systemic inflammation. Symptoms are disturbed personality and reduced attention. HE is minimal or grades I to IV (coma). Bouts of HE are episodic and often recurrent. Initial treatment is of events that precipitated the episode and exclusion of nonhepatic causes. Specific anti-HE treatment is lactulose. By recurrence, rifaximin is add-on. Anti-HE treatment is efficacious also for prophylaxis, but emergence of HE marks advanced liver disease and a dismal prognosis.


Assuntos
Encefalopatia Hepática , Hipertensão Portal , Lactulose , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/fisiopatologia , Humanos , Hipertensão Portal/etiologia , Hipertensão Portal/complicações , Hipertensão Portal/fisiopatologia , Lactulose/uso terapêutico , Rifaximina/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Hiperamonemia/etiologia , Hiperamonemia/complicações
4.
Genes (Basel) ; 15(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927689

RESUMO

The genetic bases of Alzheimer's disease (AD) and frontotemporal dementia (FTD) have been comprehensively studied, which is not the case for atypical cases not classified into these diagnoses. In the present study, we aim to contribute to the molecular understanding of the development of non-AD and non-FTD dementia due to hyperammonemia caused by mutations in urea cycle genes. The analysis was performed by pooled whole-exome sequencing (WES) of 90 patients and by searching for rare pathogenic variants in autosomal genes for enzymes or transporters of the urea cycle pathway. The survey returned two rare pathogenic coding mutations leading to citrullinemia type I: rs148918985, p.Arg265Cys, C>T; and rs121908641, p.Gly390Arg, G>A in the argininosuccinate synthase 1 (ASS1) gene. The p.Arg265Cys variant leads to enzyme deficiency, whereas p.Gly390Arg renders the enzyme inactive. These variants found in simple or compound heterozygosity can lead to the late-onset form of citrullinemia type I, associated with high ammonia levels, which can lead to cerebral dysfunction and thus to the development of dementia. The presence of urea cycle disorder-causing mutations can be used for the early initiation of antihyperammonemia therapy in order to prevent the neurotoxic effects.


Assuntos
Doença de Alzheimer , Argininossuccinato Sintase , Sequenciamento do Exoma , Demência Frontotemporal , Hiperamonemia , Humanos , Hiperamonemia/genética , Demência Frontotemporal/genética , Doença de Alzheimer/genética , Feminino , Masculino , Argininossuccinato Sintase/genética , Idoso , Mutação , Pessoa de Meia-Idade , Citrulinemia/genética , Demência/genética
5.
J Zhejiang Univ Sci B ; 25(6): 485-498, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38910494

RESUMO

End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 ß|-galactoside α2,|3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein ß8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.


Assuntos
Proteínas Reguladoras de Apoptose , Autofagia , Encéfalo , Encefalopatia Hepática , Polissacarídeos , Sialiltransferases , Sialiltransferases/metabolismo , Sialiltransferases/genética , Animais , Camundongos , Polissacarídeos/metabolismo , Encefalopatia Hepática/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Amônia/metabolismo , Astrócitos/metabolismo , Masculino , beta-Galactosídeo alfa-2,3-Sialiltransferase , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Inativação Gênica , Proteínas Associadas aos Microtúbulos/metabolismo , Camundongos Endogâmicos C57BL
6.
Heliyon ; 10(11): e32134, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912440

RESUMO

Hyperammonemia syndrome has a high mortality rate in the immunosuppressed population due to its association with mental status changes. Recently studies have shown that Ureaplasma organisms' infection can lead to hyperammonemia in post-transplant patients. Symptoms typically occur within 30 days postoperatively. However, the late-onset hyperammonemia caused by Ureaplasma parvum infection after kidney transplantation has never been reported. In this case study, a 64-year-old Chinese male presented with symptoms such as nausea, vomiting, trouble sleeping, and deteriorating mental status 81 days after kidney transplantation. His plasma ammonia level was significantly elevated, and there was no evidence of liver synthetic dysfunction. Although common methods for ammonia clearance, such as haemodialysis and oral lactulose were initiated, his serum ammonia levels remained high. Metagenomic sequencing of serum determined Ureaplasma parvum infection. Levofloxacin and minocycline were administered respectively, which resulted in a decrease in ammonia levels, but normalization was not achieved. The computed tomographic scan revealed the presence of cerebral edema. Unfortunately, the patient eventually became brain dead with multiple organ failure. This case highlights that Ureaplasma parvum can cause late-onset hyperammonemia in kidney transplant patients. Once the mental status changes are identified, immediate empiric treatments should be initiated without waiting for a confirmed diagnosis of Ureaplasma spp. infection.

7.
Microbiol Spectr ; 12(7): e0390223, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842310

RESUMO

Cryptococcus neoformans and Cryptococcus gattii are both known urease producers and have the potential to cause hyperammonemia. We hypothesized that the risk of hyperammonemia is increased by renal failure, burden of cryptococcal infection, and fungal strain characteristics. We performed a retrospective review of plasma ammonia levels in patients with cryptococcal infections. Risk factors for hyperammonemia were statistically compared between patients with and without hyperammonemia (>53 µmol/L). Cryptococcal cells from three patients included in the study were recovered from our biorepository. Strain characteristics including urease activity, ammonia production, growth curves, microscopy, melanin production, and M13 molecular typing were analyzed and compared with a wild-type (WT) C. neoformans strain. We included 29 patients, of whom 37.9% had hyperammonemia, 59% had disseminated cryptococcal infection (DCI), and 41% had isolated central nervous system infection. Thirty-eight percent of patients had renal failure and 28% had liver disease. Renal failure was associated with 4.4 times (95% confidence interval [CI] 1.5, 13.0) higher risk of hyperammonemia. This risk was higher in DCIs (RR 6.2, 95% CI 1.0, 40.2) versus isolated cryptococcal meningitis (RR 2.5, 95% CI, 0.40, 16.0). Liver disease and cryptococcal titers were not associated with hyperammonemia. C. neoformans from one patient with extreme hyperammonemia demonstrated a 4- to 5-fold increase in extracellular urease activity, slow growth, enlarged cell size phenotypes, and diminished virulence factors. Hyperammonemia was strongly associated with renal failure in individuals with DCI, surpassing associations with liver failure or cryptococcal titers. However, profound hyperammonemia in one patient was attributable to high levels of urease secretion unique to that cryptococcal strain. Prospective studies are crucial to exploring the significance of this association.IMPORTANCECryptococcus produces and secretes the urease enzyme to facilitate its colonization of the host. Urease breaks down urea into ammonia, overwhelming the liver's detoxification process and leading to hyperammonemia in some hosts. This underrecognized complication exacerbates organ dysfunction alongside the infection. Our study investigated this intricate relationship, uncovering a strong association between the development of hyperammonemia and renal failure in patients with cryptococcal infections, particularly those with disseminated infections. We also explore mechanisms underlying increased urease activity, specifically in strains associated with extreme hyperammonemia. Our discoveries provide a foundation for advancing research into cryptococcal metabolism and identifying therapeutic targets to enhance patient outcomes.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Hiperamonemia , Urease , Humanos , Criptococose/microbiologia , Hiperamonemia/microbiologia , Hiperamonemia/etiologia , Feminino , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Urease/metabolismo , Adulto , Idoso , Amônia/metabolismo , Fatores de Risco , Insuficiência Renal/complicações , Insuficiência Renal/microbiologia , Idoso de 80 Anos ou mais
8.
J Inherit Metab Dis ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837457

RESUMO

The pathway of ammonia disposal in the mammalian organism has been described in 1932 as a metabolic cycle present in the liver in different compartments. In 1958, the first human disorder affecting this pathway was described as a genetic condition leading to cognitive impairment and constant abnormalities of amino acid metabolism. Since then, defects in all enzymes and transporters of the urea cycle have been described, referring to them as primary urea cycle disorders causing primary hyperammonemia. In addition, there is a still increasing list of conditions that impact on the function of the urea cycle by various mechanisms, hereby leading to secondary hyperammonemia. Despite great advances in understanding the molecular background and the biochemical specificities of both primary and secondary hyperammonemias, there remain many open questions: we do not fully understand the pathophysiology in many of the conditions; we do not always understand the highly variable clinical course of affected patients; we clearly appreciate the need for novel and improved diagnostic and therapeutic approaches. This study does look back to the beginning of the urea cycle (hi)story, briefly describes the journey through past decades, hereby illustrating advancements and knowledge gaps, and gives examples for the extremely broad perspective imminent to some of the defects of ureagenesis and allied conditions.

9.
Metab Brain Dis ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833093

RESUMO

Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is an extremely rare disorder of urea cycle, with few patients reported worldwide. Despite hyperammonemia control, the long-term outcome remains poor with progressive neurological deterioration. We report the clinical, biochemical, and molecular features of two Lebanese siblings diagnosed with this disorder and followed for 8 and 15 years, respectively. Variable clinical manifestations and neurological outcome were observed. The patient with earlier onset of symptoms had a severe neurological deterioration while the other developed a milder form of the disease at an older age. Diagnosis was challenging in the absence of the complete biochemical triad and the non-specific clinical presentations. Whole exome sequencing revealed a homozygous variant, p.Phe188del, in the SLC25A15 gene, a French- Canadian founder mutation previously unreported in Arab patients. Hyperammonemia was controlled in both patients but hyperonithinemia persisted. Frequent hyperalaninemia spikes and lactic acidosis occured concomitantly with the onset of seizures in one of the siblings. Variable neurological deterioration and outcome were observed within the same family. This is the first report from the Arab population of the long-term outcome of this devastating neurometabolic disorder.

10.
Microbiome Res Rep ; 3(2): 17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841407

RESUMO

Hepatic encephalopathy (HE) is a clinical manifestation of neurological and psychiatric abnormalities that are caused by complications of liver dysfunction including hyperammonemia, hyperuricemia, and portal hypertension. Accumulating evidence suggests that HE could be reversed through therapeutic modifications of gut microbiota. Multiple preclinical and clinical studies have indicated that gut microbiome affects the physiological function of the liver, such as the regulation of metabolism, secretion, and immunity, through the gut-liver crosstalk. In addition, gut microbiota also influences the brain through the gut-brain crosstalk, altering its physiological functions including the regulation of the immune, neuroendocrine, and vagal pathways. Thus, key molecules that are involved in the microbiota-gut-liver-brain axis might be able to serve as clinical biomarkers for early diagnosis of HE, and could be effective therapeutic targets for clinical interventions. In this review, we summarize the pathophysiology of HE and further propose approaches modulating the microbiota-gut-liver-brain axis in order to provide a comprehensive understanding of the prevention and potential clinical treatment for HE with a microbiota-targeted therapy.

11.
JA Clin Rep ; 10(1): 42, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904738

RESUMO

BACKGROUND: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive urea cycle disorder associated with a high risk of exacerbation of hyperammonemia during the perioperative period. Here, we describe an adult patient with HHH syndrome who developed hyperammonemic encephalopathy secondary to postoperative constipation. CASE PRESENTATION: A 52-year-old patient with HHH syndrome underwent intrathecal baclofen pump insertion for lower limb spasticity under general anesthesia. The surgery was uneventful, without any increase in serum ammonia levels. However, after surgery, he was constipated, and on postoperative day (POD) 3, he fell into a coma with an exacerbation of hyperammonemia (894 µg/dL). After administering a glycerin enema, he defecated, leading to a rapid decrease in serum ammonia levels to 165 µg/dL. He regained consciousness, and serum ammonia levels remained stable as long as he defecated. CONCLUSIONS: We suggest strict management of defecation during the perioperative period to prevent hyperammonemia in patients with HHH syndrome.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 512-517, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38802913

RESUMO

Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 µmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 µmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.


Assuntos
Doença da Deficiência de Ornitina Carbomoiltransferase , Fenilbutiratos , Humanos , Masculino , Doença da Deficiência de Ornitina Carbomoiltransferase/tratamento farmacológico , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Fenilbutiratos/uso terapêutico , Criança , Glicerol/análogos & derivados
13.
J Zhejiang Univ Sci B ; : 1-14, 2024 May 14.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38772740

RESUMO

End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 ß|-galactoside α2,|3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein ß8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.

14.
Cureus ; 16(4): e57861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38721206

RESUMO

Hepatic encephalopathy is typically seen in advanced liver disease and in patients with a transjugular intrahepatic portosystemic shunt. Common triggers include infections, gastrointestinal bleeding, electrolyte disturbances, dehydration, and drug/toxin use such as benzodiazepines and alcohol. In rare instances, other metabolic abnormalities such as hypothyroidism may also exacerbate hyperammonemia in patients with underlying liver disease due to hypothyroidism-induced myopathy, which increases urea production and decreases clearance through reduced glutamine synthetase activity. We present the case of a 60-year-old female who presented with markedly elevated thyroid stimulating hormone, reduced free thyroxine, and elevated serum ammonia levels. Although lactulose and rifaximin were initially started, her symptoms did not clinically improve until the underlying cause of her hyperammonemia was treated. Levothyroxine was initiated, and she reported rapid clinical improvement in her symptoms. Hyperammonemia carries a 40% mortality rate, and therefore clinicians need to be aware of this rare but intricate relationship between advanced liver disease and hypothyroidism for the prompt diagnosis and management of this condition.

15.
Indian J Pediatr ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703326

RESUMO

Lysinuric protein intolerance (LPI) is an inborn metabolic error caused by cationic amino acid transport defects. The disease has a significant degree of phenotypic variation, with no confirmed genotype-phenotype correlation. Because it presents with symptoms similar to far more common diseases, the diagnosis is often missed, resulting in increased morbidity and mortality. This case series describes three examples of LPI with pulmonary, neurological, and immunological manifestations, emphasising the importance of keeping this disorder on the differential list. Appropriate metabolic and genetic testing is important in providing the correct diagnosis and timely care in such cases.

16.
Mol Syndromol ; 15(2): 156-160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585546

RESUMO

Introduction: Primary carnitine deficiency (PCD) is a rare autosomal recessive disorder caused by loss of function mutations in the solute carrier family 22 member 5 (SLC22A5) gene that encodes a high-affinity sodium-ion-dependent organic cation transporter protein (OCTN2). Carnitine deficiency can result in acute metabolic decompensation or, in a more insidious presentation, cardiomyopathy. Cardiomyopathy associated with PCD often presents with life-threatening heart failure. This presentation also usually includes skeletal muscle myopathy. Early recognition of this disorder and treatment with carnitine can avoid life-threatening complications related to cardiomyopathy. Case Presentation: Herein, we present a 10-month-old male patient with PCD, which was diagnosed while investigating the etiology of dilated cardiomyopathy and confirmed by molecular genetic analysis. Conclusion: Homozygous c.254_265 insGGCTCGCCACC (p.I89Gfs) pathogenic variant of the SLC22A5 gene was detected. With oral L-carnitine supplementation, the free carnitine level increased up to 14 µmol/L and the symptoms disappeared. LVEF increased by 45-70%. We would like to emphasize that this problem is a combination of the metabolic decompensation and the cardiac phenotypes, which are usually separated to either phenotype.

17.
Cureus ; 16(3): e55711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586796

RESUMO

Sepsis is characterized by a dysregulated immune response to an infection. It is a major public health problem owing to its high mortality and morbidity. Sepsis is a medical emergency and requires aggressive and timely management. It can cause multiorgan failure, unmask an existing but undiagnosed disease such as ornithine transcarbamylase deficiency (OTCD), or make a known well-controlled disease worse. We present the case of a 52-year-old male who was brought to the emergency department unresponsive. He was diagnosed with severe sepsis which was associated with multiorgan failure and hyperammonemia crisis. Hyperammonemia was due to a newly diagnosed, late-onset OTCD which was unmasked by severe sepsis. This case will enable physicians to be aware and consider OTCD in a patient presenting with severe sepsis, altered mentation, and seizures, with no obvious cause of hyperammonemia.

18.
Prev Nutr Food Sci ; 29(1): 1-7, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38576877

RESUMO

Engineered probiotics (EPs) can be used to treat/manage chronic and congenital diseases. However, to the best of our knowledge, no systematic review has evaluated the effects of EPs on congenital metabolic disorders in murine models and human subjects. Thus, the present study systematically reviewed interventional studies that assessed the effects of EPs on congenital metabolic disorders. PubMed, Web of Science, and Scopus databases were searched up to February 2023 to retrieve related publications. Seventy-six articles were obtained in the primary step. After screening the titles/abstracts based on the inclusion and exclusion criteria, 11 papers were included. Finally, only seven articles were included after performing full-text evaluation. The included articles evaluated the effects of EPs on managing phenylketonuria (PKU, n=4) and hyperammonemia (n=3). Moreover, these studies examined mice and/or rats (n=6), monkeys (n=1), and humans (n=2). Studies on EPs and hyperammonemia revealed that some wild strains such as Lactobacillus plantarum have an innate ammonia-hyper-consuming potential; thus, there was no need to manipulate them. However, manipulation is needed to obtain a phenylalanine-metabolizing strain. In conclusion, EPs can be used to manage or treat congenital metabolic diseases including PKU.

19.
Biol Res ; 57(1): 18, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671534

RESUMO

BACKGROUND: Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with mild cognitive impairment and motor incoordination. Rats with chronic hyperammonemia reproduce these alterations. Motor incoordination in hyperammonemic rats is due to increased GABAergic neurotransmission in cerebellum, induced by neuroinflammation, which enhances TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway activation. The initial events by which hyperammonemia triggers activation of this pathway remain unclear. MHE in cirrhotic patients is triggered by a shift in inflammation with increased IL-17. The aims of this work were: (1) assess if hyperammonemia increases IL-17 content and membrane expression of its receptor in cerebellum of hyperammonemic rats; (2) identify the cell types in which IL-17 receptor is expressed and IL-17 increases in hyperammonemia; (3) assess if blocking IL-17 signaling with anti-IL-17 ex-vivo reverses activation of glia and of the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway. RESULTS: IL-17 levels and membrane expression of the IL-17 receptor are increased in cerebellum of rats with hyperammonemia and MHE, leading to increased activation of IL-17 receptor in microglia, which triggers activation of STAT3 and NF-kB, increasing IL-17 and TNFα levels, respectively. TNFα released from microglia activates TNFR1 in Purkinje neurons, leading to activation of NF-kB and increased IL-17 and TNFα also in these cells. Enhanced TNFR1 activation also enhances activation of the TNFR1-S1PR2-CCL2-BDNF-TrkB pathway which mediates microglia and astrocytes activation. CONCLUSIONS: All these steps are triggered by enhanced activation of IL-17 receptor in microglia and are prevented by ex-vivo treatment with anti-IL-17. IL-17 and IL-17 receptor in microglia would be therapeutic targets to treat neurological impairment in patients with MHE.


Assuntos
Cerebelo , Hiperamonemia , Microglia , Ratos Wistar , Receptores de Interleucina-17 , Animais , Hiperamonemia/metabolismo , Microglia/metabolismo , Cerebelo/metabolismo , Masculino , Ratos , Receptores de Interleucina-17/metabolismo , Doenças Neuroinflamatórias/metabolismo , Interleucina-17/metabolismo , Encefalopatia Hepática/metabolismo , Transdução de Sinais , Modelos Animais de Doenças
20.
Orphanet J Rare Dis ; 19(1): 168, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637895

RESUMO

BACKGROUND: The autosomal recessive disorder N-acetylglutamate synthase (NAGS) deficiency is the rarest defect of the urea cycle, with an incidence of less than one in 2,000,000 live births. Hyperammonemic crises can be avoided in individuals with NAGS deficiency by the administration of carbamylglutamate (also known as carglumic acid), which activates carbamoyl phosphatase synthetase 1 (CPS1). The aim of this case series was to introduce additional cases of NAGS deficiency to the literature as well as to assess the role of nutrition management in conjunction with carbamylglutamate therapy across new and existing cases. METHODS: We conducted retrospective chart reviews of seven cases of NAGS deficiency in the US and Canada, focusing on presentation, diagnosis, medication management, nutrition management, and outcomes. RESULTS: Five new and two previously published cases were included. Presenting symptoms were consistent with previous reports. Diagnostic confirmation via molecular testing varied in protocol across cases, with consecutive single gene tests leading to long delays in diagnosis in some cases. All patients responded well to carbamylglutamate therapy, as indicated by normalization of plasma ammonia and citrulline, as well as urine orotic acid in patients with abnormal levels at baseline. Although protein restriction was not prescribed in any cases after carbamylglutamate initiation, two patients continued to self-restrict protein intake. One patient experienced two episodes of hyperammonemia that resulted in poor long-term outcomes. Both episodes occurred after a disruption in access to carbamylglutamate, once due to insurance prior authorization requirements and language barriers and once due to seizure activity limiting the family's ability to administer carbamylglutamate. CONCLUSIONS: Follow-up of patients with NAGS deficiency should include plans for illness and for disruption of carbamylglutamate access, including nutrition management strategies such as protein restriction. Carbamylglutamate can help patients with NAGS deficiency to liberalize their diets, but the maximum safe level of protein intake to prevent hyperammonemia is not yet known. Patients using this medication should still monitor their diet closely and be prepared for any disruptions in medication access, which might require immediate dietary adjustments or medical intervention to prevent hyperammonemia.


Assuntos
Glutamatos , Hiperamonemia , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Aminoácido N-Acetiltransferase/genética , Aminoácido N-Acetiltransferase/metabolismo , Hiperamonemia/tratamento farmacológico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...