Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Cell Physiol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946197

RESUMO

The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.

2.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892412

RESUMO

Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Raízes de Plantas , RNA Longo não Codificante , Estresse Salino , Oryza/genética , Oryza/metabolismo , RNA Longo não Codificante/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Pressão Osmótica , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , RNA de Plantas/genética , Plântula/genética , Transcriptoma
3.
Exp Eye Res ; 241: 109854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453037

RESUMO

Mucosal chemokines have antimicrobial properties and play an important role in mucosal immunity. However, little is known about their expression on the ocular surface. This study aimed to analyze the expression of the mucosal chemokines CCL28, CXCL14 and CXCL17 in corneal and conjunctival epithelial cells under in vitro dry eye (DE) conditions, and in conjunctival samples from healthy subjects and DE patients. Human corneal epithelial cells (HCE) and immortalized human conjunctival epithelial cells (IM-HConEpiC) were incubated under hyperosmolar (400-500 mOsM) or inflammatory (TNF-α 25 ng/mL) conditions for 6 h and 24 h to measure CCL28, CXCL14, and CXCL17 gene expression by RT-PCR and their secretion by immunobead-based analysis (CCL28, CXCL14) and ELISA (CXCL17). Additionally, twenty-seven DE patients and 13 healthy subjects were included in this study. DE-related questionnaires (OSDI, mSIDEQ and NRS) evaluated symptomatology. Ocular surface integrity was assessed using vital staining. Tactile sensitivity was measured with Cochet-Bonnet esthesiometer, and mechanic and thermal (heat and cold) sensitivity using Belmonte's non-contact esthesiometer. Subbasal nerve plexus and dendritic cell density were analyzed by in vivo confocal microscopy. Conjunctival cells from participants were collected by impression cytology to measure mucosal chemokines gene expression by RT-PCR. Our results showed that HCE and IM-HConEpiC cells increased CCL28, CXCL14, and CXCL17 secretion under hyperosmolar conditions. The gene expression of CCL28 was significantly upregulated in conjunctival samples from DE patients. CCL28 expression correlated positively with symptomatology, corneal staining, heat sensitivity threshold, and dendritic cell density. CXCL14 expression correlated positively with age, ocular pain, conjunctival staining, tactile sensitivity, and image reflectivity. CXCL17 expression correlated positively with corneal staining. These results suggest that corneal and conjunctival epithelial cells could be a source of CCL28, CXCL14, and CXCL17 on the ocular surface and that CCL28 might be involved in DE pathogenesis.


Assuntos
Dieldrin/análogos & derivados , Síndromes do Olho Seco , Humanos , Síndromes do Olho Seco/patologia , Quimiocinas/genética , Córnea/patologia , Túnica Conjuntiva/patologia , Quimiocinas CC , Quimiocinas CXC
4.
J Int Med Res ; 52(3): 3000605241235747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502003

RESUMO

Central diabetes insipidus (CDI) typically manifests as a polyuria-polydipsia syndrome, in which normonatremia is generally maintained through the polydipsia. A 53-year-old woman presented with diabetic ketosis and hyperosmolar hyperglycemic syndrome. Her medical history included herpes meningoencephalitis, which was associated with confusion and amnesia. On physical examination, she was apyretic, confused, and had signs of extracellular dehydration. Her capillary glucose concentration was high and her urine was positive for ketones. Laboratory investigations revealed severe hyperglycemia, hypernatremia (plasma hyperosmolarity of 393.6 mOsm/L), and mild acute renal failure. In addition, she had a paucisymptomatic COVID-19 infection. Intravenous rehydration with isotonic saline solution and insulin therapy were effective at controlling the ketosis and ameliorating the hyperglycemia, but failed to normalize the hypernatremia and hyperosmolarity. She was not thirsty and had a urine output of 1 L/day, with urinary hypotonicity. Desmopressin administration reduced the hypernatremia and hyperosmolarity to within their normal ranges, and the patient's urinary osmolarity increased to 743 mOsm/L. Therefore, adipsic CDI was diagnosed. Endocrine investigations revealed isolated central hypothyroidism. The results of pituitary magnetic resonance imaging were normal. Thus, patients with impaired thirst may have an atypical presentation of CDI. In addition, the diagnosis of adipsic CDI is particularly challenging.


Assuntos
COVID-19 , Diabetes Insípido Neurogênico , Diabetes Insípido , Diabetes Mellitus , Hiperglicemia , Hipernatremia , Meningoencefalite , Humanos , Feminino , Pessoa de Meia-Idade , Diabetes Insípido Neurogênico/complicações , Diabetes Insípido Neurogênico/tratamento farmacológico , Hipernatremia/complicações , COVID-19/complicações , Polidipsia
5.
Clin Ophthalmol ; 18: 743-753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476359

RESUMO

Purpose: To understand the impact of subjectivity on diagnosis rates of dry eye disease (DED) in an unbiased population. Patients and Methods: A multicenter study enrolled 818 subjects with complete report forms (465 females, 67.1 ± 16.7 years, 353 males, 65.0 ± 15.9 years). Subjects were evaluated for staining, TBUT, tear osmolarity, meibomian gland disease, and OSDI. Results: Physicians diagnosed 48.7% of subjects as having DED, ranging from 42.9% to 62.3% between sites. Positivity rates for staining (≥ grade 1) ranged from 41.3% to 84.1% (mean = 0.8 ± 0.9 grade), TBUT (<10s) ranged from 39.1% to 61.6% (mean = 10.4 ± 6.6 seconds), osmolarity (>308 mOsm/L) ranged from 63.7% to 72.4% (mean = 319.7 ± 20.8), MGD grading ranged from 28.9% to 51.3% (mean = 0.5 ± 0.7), and symptoms measured by OSDI ranged from 57.6% to 71.0% (mean = 23.5 ± 20.5) between sites. Tear osmolarity was the most consistent between sites (max/min positivity = 114%), followed by OSDI (123%), TBUT (158%), MGD (178%), and staining (204%). DED markers were uncorrelated (average r2 = 0.05 ± 0.07). A substantial number of subjects (N = 110) exhibited positive symptoms (OSDI = 32.4 ± 15.7) and hyperosmolarity (338.1 ± 20.1 mOsm/L) but no other obvious signs of DED (MGD grade = 0.2 ± 0.4, TBUT = 13.5 ± 7.0 seconds, staining grade = 0.4 ± 0.5). Conclusion: Subjective signs of DED varied considerably, whereas objective measurements of OSDI and osmolarity were the most consistent between sites. A large proportion of subjects exhibited high symptoms and hyperosmolarity but no other obvious signs of dry eye disease, most of whom were undiagnosed by clinical assessment without access to the osmolarity measurement.

6.
Nefrología (Madrid) ; 44(1): 10-22, ene.- feb. 2024. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-229417

RESUMO

Receptor interacting protein kinase 3 (RIPK3) is an intracellular kinase at the crossroads of cell death and inflammation. RIPK3 contains a RIP homotypic interaction motif (RHIM) domain which allows interactions with other RHIM-containing proteins and a kinase domain that allows phosphorylation of target proteins. RIPK3 may be activated through interaction with RHIM-containing proteins such as RIPK1, TRIF and DAI (ZBP1, DLM-1) or through RHIM-independent mechanisms in an alkaline intracellular pH. RIPK3 mediates necroptosis and promotes inflammation, independently of necroptosis, through either activation of NFκB or the inflammasome. There is in vivo preclinical evidence of the contribution of RIPK3 to both acute kidney injury (AKI) and chronic kidney disease (CKD) and to the AKI-to-CKD transition derived from RIPK3 deficient mice or the use of small molecule RIPK3 inhibitors. In these studies, RIPK3 targeting decreased inflammation but kidney injury improved only in some contexts. Clinical translation of these findings has been delayed by the potential of some small molecule inhibitors of RIPK3 kinase activity to trigger apoptotic cell death by inducing conformational changes of the protein. A better understanding of the conformational changes in RIPK3 that trigger apoptosis, dual RIPK3/RIPK1 inhibitors or repurposing of multiple kinase inhibitors such as dabrafenib may facilitate clinical development of the RIPK3 inhibition concept for diverse inflammatory diseases, including kidney diseases (AU)


La proteína quinasa 3 que interactúa con el receptor (RIPK3) es una quinasa intracelular que se encuentra a medio camino entre la muerte celular y la inflamación. La RIPK3 contiene un dominio motivo de interacción homotípica de RIP (RHIM), que permite las interacciones con otras proteínas que contienen RHIM, y un dominio de quinasa que permite la fosforilación de las proteínas diana. La RIPK3 puede ser activada a través de la interacción con las proteínas que contienen RHIM tales como RIPK1, TRIF y DAI (ZBP1, DLM-1), o a través de mecanismos independientes de RHIM en un pH intracelular alcalino. La RIPK3 media en la necroptosis y promueve la inflamación, independientemente de la necroptosis, bien a través de la activación de NFκB, o del inflamasoma. Existe evidencia preclínica in vivo de la contribución de RIPK3 a la insuficiencia renal aguda (IRA) y la enfermedad renal crónica (ERC), así como a la transición IRA-ERC derivada de ratones con deficiencia de RIPK3 o del uso de pequeñas moléculas inhibidoras de RIPK3. En dichos estudios, el tener a RIPK3 como objetivo redujo la inflamación, pero la nefropatía mejoró solo en algunos contextos. La traducción clínica de estos hallazgos se ha demorado debido al potencial de ciertas pequeñas moléculas inhibidoras de la actividad de la quinasa RIPK3 para activar la muerte celular induciendo cambios conformacionales de la proteína. Comprender mejor los cambios conformacionales de RIPK3 activadores de la apoptosis, los inhibidores duales RIPK3/RIPK1 o la reconversión de múltiples inhibidores de la quinasa tales como dabrafenib podría facilitar el desarrollo clínico del concepto de la inhibición de RIPK3 para diversas enfermedades inflamatorias, incluyendo las enfermedades renales (AU)


Assuntos
Humanos , Insuficiência Renal/metabolismo , Inflamação , Concentração Osmolar , Proteína Quinase 3 Ativada por Mitógeno , Doença Aguda
7.
Int J Med Sci ; 21(2): 341-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169592

RESUMO

The in-situ osmolarity is an important physicochemical factor that regulates cell fate of nucleus pulposus cells (NPCs). Our previous studies demonstrated that reduced N-cadherin (NCDH) expression in nucleus pulposus cells is associated with cellular damage under hyper-osmolarity microenvironment. This study was aimed at exploring the impacts of NCDH on senescence and apoptosis of NPCs, as well as the potential molecular mechanism. By comparing NPCs from patients with lumbar fractures and lumbar disc herniation, we identified a correlation between decreased NCDH expression and increased endoplasmic reticulum stress (ERS), resulting in undesirable cell fate (senescence and apoptosis). After blocking Reactive oxygen species (ROS) or ERS, it was indicated that hyper-osmolarity microenvironment induced ERS was ROS-dependent. Further results demonstrated the correlation in rat NPCs. Upregulation of NCDH expression reduced ROS-dependent ERS, thus limiting undesirable cell fates in vitro. This was further confirmed through the rat tail acupuncture injection model. NCDH overexpression successfully mitigated ERS, preserved extracellular matrix production and alleviating intervertebral disc degeneration in vivo. Together, NCDH can alleviate senescence and apoptosis of NPCs by suppressing ROS-dependent ERS via the ATF4-CHOP signaling axis in the hyper-osmolarity microenvironment, thus highlighting the therapeutic potential of NCDH in combating degenerative disc diseases.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , Apoptose/genética , Caderinas/genética , Caderinas/metabolismo , Senescência Celular/genética , Estresse do Retículo Endoplasmático/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Concentração Osmolar , Espécies Reativas de Oxigênio/metabolismo
8.
Clin Ophthalmol ; 18: 247-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292853

RESUMO

Purpose: Contact lens (CL) wear challenges the balance of the ocular surface environment by increasing water evaporation and tear osmolarity. Maintaining ocular surface homeostasis during CL wear remains a goal of lens manufacturers and an important consideration for eye care professionals. The purpose of this study was to measure the metabolic activity and inflammatory responses of a transformed human corneal epithelial cell (THCEpiC) line under hyperosmotic conditions in the presence of CL packaging solutions. Methods: CL packaging solutions sampled from seven daily disposable silicone hydrogel CL blister packages were prepared at 25% and made hyperosmolar (400 mOsm/kg) with NaCl. THCEpiCs were incubated with each solution for 24 hr, after which cell culture supernatants were collected. THCEpiC metabolic activity was determined by an alamarBlue assay. Concentrations in cell culture supernatants of inflammatory cytokine (interleukin [IL]-6) and chemokine (IL-8), as well as monocyte chemoattractant protein-1 (MCP-1), were quantitated by specific enzyme-linked immunosorbent assays. Results: THCEpiC metabolic activity under hyperosmolar conditions decreased in the presence of somofilcon A and senofilcon A solutions (p=0.04 and 0.004, respectively), but no other solution (all p≥0.09). Concentrations of IL-6 increased in the presence of delefilcon A, somofilcon A, narafilcon A, and senofilcon A solutions (all p≤0.001), but no other solution (all p≥0.08), while those of IL-8 increased in the presence of all solutions (all p≤0.03) but kalifilcon A (p>0.99), and those of MCP-1 increased in the presence of delefilcon A, verofilcon A, somofilcon A, and stenfilcon A solutions (all p<0.0001), but no other solution (all p>0.99). Conclusion: CL packaging solutions differ in their capacity to inhibit epithelial inflammation. THCEpiC inflammatory response was less in the presence of a CL packaging solution containing osmoprotectants than in solutions lacking osmoprotectants under moderately hyperosmolar conditions in vitro. Clinical studies are warranted to further substantiate the benefit of osmoprotectants.

9.
Nefrologia (Engl Ed) ; 44(1): 10-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37150671

RESUMO

Receptor interacting protein kinase 3 (RIPK3) is an intracellular kinase at the crossroads of cell death and inflammation. RIPK3 contains a RIP homotypic interaction motif (RHIM) domain which allows interactions with other RHIM-containing proteins and a kinase domain that allows phosphorylation of target proteins. RIPK3 may be activated through interaction with RHIM-containing proteins such as RIPK1, TRIF and DAI (ZBP1, DLM-1) or through RHIM-independent mechanisms in an alkaline intracellular pH. RIPK3 mediates necroptosis and promotes inflammation, independently of necroptosis, through either activation of NFκB or the inflammasome. There is in vivo preclinical evidence of the contribution of RIPK3 to both acute kidney injury (AKI) and chronic kidney disease (CKD) and to the AKI-to-CKD transition derived from RIPK3 deficient mice or the use of small molecule RIPK3 inhibitors. In these studies, RIPK3 targeting decreased inflammation but kidney injury improved only in some contexts. Clinical translation of these findings has been delayed by the potential of some small molecule inhibitors of RIPK3 kinase activity to trigger apoptotic cell death by inducing conformational changes of the protein. A better understanding of the conformational changes in RIPK3 that trigger apoptosis, dual RIPK3/RIPK1 inhibitors or repurposing of multiple kinase inhibitors such as dabrafenib may facilitate clinical development of the RIPK3 inhibition concept for diverse inflammatory diseases, including kidney diseases.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Animais , Camundongos , Apoptose , Fosforilação , Inflamação
10.
Cells ; 12(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067183

RESUMO

Dry eye disease (DED) is a multifactorial disorder of the lacrimal system and ocular surface, characterized by a deficiency in the quality and/or quantity of the tear fluid. The multifactorial nature of DED encompasses a number of interconnected underlying pathologies, including loss of homeostasis, instability and hyperosmolarity of the tears, and the induction and propagation of detrimental inflammatory responses in the eyes, which finally results in the development of neurosensory dysfunction and visual disruption. Dryness, grittiness, scratchiness, discomfort, inflammation, burning, watering, ocular fatigue, pain, and decreased functional visual acuity are common symptoms of DED. Eye dysfunction drastically attenuates patients' quality of life. Accordingly, a better understanding of the pathogenic processes that regulate the development and progression of DED is crucially important for the establishment of new and more effective DED-related treatment approaches, which would significantly improve the quality of life of DED patients. Since the process of osmoregulation, which guards the ocular surface epithelia and maintains normal vision, is affected when the osmolarity of the tears is greater than that of the epithelial cells, tear hyperosmolarity (THO) is considered an initial, important step in the development, progression, and aggravation of DED. In order to delineate the role of THO in the pathogenesis of DED, in this review article, we summarize current knowledge related to the molecular mechanisms responsible for the development of THO-induced pathological changes in the eyes of DED patients, and we briefly discuss the therapeutic potential of hypo-osmotic eye drops in DED treatment.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Humanos , Qualidade de Vida , Lágrimas , Células Epiteliais
11.
Cont Lens Anterior Eye ; 46(4): 101850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137757

RESUMO

PURPOSE: With soft-contact-lens wear, evaporation of the pre-lens tear film affects the osmolarity of the post-lens tear film and this can introduce a hyperosmotic environment at the corneal epithelium, leading to discomfort. The purposes of the study are to ascertain whether there are differences in evaporation flux (i.e., the evaporation rate per unit area) between symptomatic and asymptomatic soft-contact-lens wearers, to assess the repeatability of a flow evaporimeter, and to assess the relationship between evaporation fluxes, tear properties, and environmental conditions. METHODS: Closed-chamber evaporimeters commonly used in ocular-surface research do not control relative humidity and airflow, and, therefore, misestimate the actual tear-evaporation flux. A recently developed flow evaporimeter overcomes these limitations and was used to measure accurate in-vivo tear-evaporation fluxes with and without soft-contact-lens wear for symptomatic and asymptomatic habitual contact-lens wearers. Concomitantly, lipid-layer thickness, ocular-surface-temperature decline rate (i.e., °C/s), non-invasive tear break-up time, tear-meniscus height, Schirmer tear test, and environmental conditions were measured in a 5 visit study. RESULTS: Twenty-one symptomatic and 21 asymptomatic soft-contact-lens wearers completed the study. A thicker lipid layer was associated with slower evaporation flux (p < 0.001); higher evaporation flux was associated with faster tear breakup irrespective of lens wear (p = 0.006). Higher evaporation flux was also associated with faster ocular-surface-temperature decline rate (p < 0.001). Symptomatic lens wearers exhibited higher evaporation flux than did asymptomatic lens wearers, however, the results did not reach statistical significance (p = 0.053). Evaporation flux with lens wear was higher than without lens wear but was also not statistically significant (p = 0.110). CONCLUSIONS: The repeatability of the Berkeley flow evaporimeter, associations between tear characteristics and evaporation flux, sample-size estimates, and near statistical significance in tear-evaporation flux between symptomatic and asymptomatic lens wearers all suggest that with sufficient sample sizes, the flow evaporimeter is a viable research tool to understand soft-contact-lens wear comfort.


Assuntos
Lentes de Contato Hidrofílicas , Epitélio Corneano , Cristalino , Humanos , Lágrimas , Lipídeos
12.
Life Sci ; 319: 121544, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871933

RESUMO

AIMS: Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 â†’ PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS: MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS: Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE: This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Oxalato de Cálcio/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Cálculos Renais/química , Células Madin Darby de Rim Canino , Animais , Cães
13.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839901

RESUMO

Dry eye disease (DED) is a common ocular disorder characterized by an inadequate lubrication of the eye by tears leading to inflammation and the alteration of the ocular surface. Current treatments are often limited due to their side effects and ineffectiveness. Thymoquinone (TQ) is a natural compound present in the essential oil of Nigella sativa L., with anti-inflammatory and antioxidant activities. In this study, conventional and hyaluronic acid-coated liposomes were developed to improve TQ activity at ocular level. In the present study, the cytoprotective effects of TQ or TQ liposomes were assessed against oxidative and inflammatory processes in human corneal epithelial cells (HCE-2). Hyperosmolarity conditions (450 mOsm) were used as a model of DED. Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) and tumor necrosis factor (TNFα) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR); COX-2 and Phospho-NF-κB p65 (p-p65) by Western blotting (WB). Moreover, the mitochondrial reactive oxygen species (mtROS) levels were measured by MitoSOX assay. The hyperosmotic treatment induced a significant increase of the proinflammatory genes and proteins expression that were significantly decreased in the liposomes-treated cells. The coincubation with hyaluronic acid-coated liposomes significantly reverted the increase of mtROS production, evidently stimulated by the hyperosmotic stress. Our data suggest that TQ-loaded liposomes have potential as a therapeutic agent in dry eye disease, improving the TQ efficacy.

14.
Adv Sci (Weinh) ; 10(13): e2206384, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808839

RESUMO

In infectious disease such as sepsis and COVID-19, blood vessel leakage treatment is critical to prevent fatal progression into multi-organ failure and ultimately death, but the existing effective therapeutic modalities that improve vascular barrier function are limited. Here, this study reports that osmolarity modulation can significantly improve vascular barrier function, even in an inflammatory condition. 3D human vascular microphysiological systems and automated permeability quantification processes for high-throughput analysis of vascular barrier function are utilized. Vascular barrier function is enhanced by >7-folds with 24-48 h hyperosmotic exposure (time window of emergency care; >500 mOsm L-1 ) but is disrupted after hypo-osmotic exposure (<200 mOsm L-1 ). By integrating genetic and protein level analysis, it is shown that hyperosmolarity upregulates vascular endothelial-cadherin, cortical F-actin, and cell-cell junction tension, indicating that hyperosmotic adaptation mechanically stabilizes the vascular barrier. Importantly, improved vascular barrier function following hyperosmotic exposure is maintained even after chronic exposure to proinflammatory cytokines and iso-osmotic recovery via Yes-associated protein signaling pathways. This study suggests that osmolarity modulation may be a unique therapeutic strategy to proactively prevent infectious disease progression into severe stages via vascular barrier function protection.


Assuntos
COVID-19 , Sistemas Microfisiológicos , Humanos , Concentração Osmolar , Transdução de Sinais , Citocinas
15.
Clin Exp Immunol ; 212(1): 39-51, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36759947

RESUMO

Salivary gland epithelial cells (SGECs) play an active role in primary Sjogren's syndrome (pSS) pathogenesis. Quantitative and qualitative abnormalities of saliva might expose SGECs to chronic hyperosmolarity. We aimed to decipher the links between hyperosmolar stimulation of SGECs and lymphocytic infiltration of the salivary glands (SG) observed in pSS. RNAseq was performed on NS-SV-AC cells stimulated with hyperosmolar media containing NaCl (100 mM) or sucrose (200 mM), or with iso-osmolar (Iso) medium. RNAseq was performed on primary cultured SGECs from pSS and controls, in the presence or not of B cells. Hyperosmolar stimulation of NS-SV-AC-cells identified an upregulation of interferon-induced (MX1, IFIT2) and MMPs genes. Enrichment analysis revealed an over-representation of fibrosis pathway. In parallel, RNAseq of SGECs comparing pSS to controls identified an over-representation of a pathway involving MMPs. Given the unexpected upregulation of collagen (COL3A1, COL1A2) and ADAMTS genes in pSS SGECs, we hypothesized that SGECs might undergo epithelial-mesenchymal transition. ZEB2 was upregulated and SLUG was down regulated in SGECs from pSS versus controls. MMP24 and ZEB2 were higher in SGECs from pSS with a focus score ≥1 versus <1. Lastly, SGECs cocultured with B cells expressed higher levels of COL1A2. These results suggest the existence of a vicious circle. Alteration of SGECs in pSS participates in the establishment of a hyperosmolar microenvironment, which in turn promotes SGECs transcriptomic modifications. These modifications include extracellular matrix remodeling and promote SG lymphocytic infiltration.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Glândulas Salivares/patologia , Células Epiteliais/metabolismo , Matriz Extracelular
16.
Front Med (Lausanne) ; 10: 1083769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817778

RESUMO

Background: While many factors that are associated with increased mortality in septic shock patients have been identified, the effects of serum osmolarity on the outcomes of ICU patients with septic shock have not yet been studied. Methods: The present study was designed to examine the association of serum osmolarity with ICU 28-day mortality in ICU patients with septic shock. Adult patients diagnosed with septic shock from the MIMIC-IV database were selected in this study. The serum osmolarity was calculated synchronously according to the serum concentrations of Na+, K+, glucose, and urea nitrogen. Results: In the present study, a significant difference was observed between the 28-day mortality of septic shock patients with hypo-osmolarity, hyper-osmolarity, and normal osmolarity (30.8%, 34.9%, and 23.0%, respectively, p < 0.001), which were detected at ICU admission. After propensity score matching (PSM) for basic characteristics, the relatively higher mortality was still observed in the hypo-osmolarity and hyper-osmolarity groups, compared to normal osmolarity group (30.6%, 30.0% vs. 21.7%, p = 0.009). Furthermore, we found that transforming the hyper-osmolarity into normal osmolarity by fluid therapy on day 2 and 3 decreased this mortality. Conclusion: The serum osmolarity disorder is markedly associated with increased 28-day mortality in septic shock patients.

17.
Gene ; 859: 147188, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36632912

RESUMO

BACKGROUND: Mesenchymal stem cells (MSC) are a type of multipotent stem cell whose differentiation into cartilage cells has been considered in recent years. Platelet-rich plasma (PRP) may impair cartilage differentiation due to its richness in growth factors and hyperosmolarity due to its proximity to the required cartilage environment. OBJECTIVES: The main purpose of this study was to treat human adipose tissue-derived MSCs concurrently with PRP and hyperosmolarity to investigate the expression profile of micro-RNA (miRNA) involved in the cartilage process differentiation. We examined the effect of PRP and the increase in osmolarity on the expression of miR-27, miR-101, miR-140, miR-145, miR-146, and miR-199. METHODS: Mesenchymal stem cells were extracted from human adipose tissue and differentiated into chondrocytes and the effect of baseline cultures (diff), PRP (prp), hyperosmolarity (os), base plus hyperosmolarity (diff + os), PRP plus hyperosmolarity (prp + os) next to the control group were studied in cartilage differentiation using specific stains such as Alcian blue, hematoxylin and eosin, and collagen type 2 and 10 immunohistochemistry. In addition, the expression of miR-27, miR-140, miR-199, miR-146, miR-101, and miR-145 was evaluated using real-time PCR. CONCLUSION: Human adipose tissue-derived MSCs with the ability to differentiate into adipocytes and osteocytes showed the properties of chondrocytes in all differentiation groups. Alkaline phosphatase (ALP) enzyme activity and calcium deposition were lower in the diff + os group than in other groups. Therefore, the diff + os group may be a more suitable environment for cartilage differentiation. Furthermore, 5% PRP concentration and hyperosmolarity showed a positive effect on miR-140, miR-199, miR-27, and, miR-146 and a negative effect on miR-101 and miR-145 on cartilage differentiation.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/metabolismo , Cartilagem , Células-Tronco Mesenquimais/metabolismo , Condrócitos/metabolismo , Diferenciação Celular/genética
18.
J Liposome Res ; 33(2): 117-128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706400

RESUMO

Dry eye disease (DED) is a worldwide, multifactorial disease mainly caused by a deficit in tear production or increased tear evaporation with an increase in tear osmolarity and inflammation. This causes discomfort and there is a therapeutic need to restore the homeostasis of the ocular surface. The aim of the present work was to develop a biodegradable and biocompatible liposomal formulation from the synthetic phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) that is able to reduce the effects of hypertonic stress by helping to restore the lipid layer of the tear film. Liposomes were made using the lipid film hydration method with synthetic phospholipids (10 mg/mL) with and without 0.2% HPMC. They were characterised in terms of size, osmolarity, pH, surface tension, and viscosity. Additionally, the in vitro toxicity of the formulation at 1 and 4 h in human corneal epithelial cells (hTERT-HCECs) and human conjunctival cells (IM-HConEpiC) was determined. Furthermore, osmoprotective activity was tested in a corneal model of hyperosmolar stress. In vivo acute tolerance testing was also carried out in albino New Zealand rabbits by topical application of the ophthalmic formulations every 30 min for 6 h. All the assayed formulations showed suitable physicochemical characteristics for ocular surface administration. The liposomal formulations were well-tolerated in cell cultures and showed osmoprotective activity in a hyperosmolar model. No alterations or discomfort were reported when they were topically administered in rabbits. According to the results, the osmoprotective liposomal formulations developed in this work are promising candidates for the treatment of DED.


Assuntos
Síndromes do Olho Seco , Lipossomos , Humanos , Coelhos , Animais , Fosfolipídeos , Síndromes do Olho Seco/tratamento farmacológico , Lágrimas , Fenômenos Químicos
19.
J Crit Care ; 73: 154179, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368178

RESUMO

BACKGROUND: Previous studies suggested that hypernatremia or hyperosmolarity may have protective effects in lung injury. We hypothesized that hypernatremia and/or hyperosmolarity would prevent ARDS. DESIGN: Retrospective cohort study of all admissions at medical, surgical, and multidisciplinary intensive care units in Mayo Clinic, Rochester from the year of 2009 to 2019. The occurrence of ARDS was identified using a validated computerized search strategy. The association between serum sodium/osmolarity and the occurrence of ARDS was analyzed using a multivariable logistic regression model. The relationship between serum sodium/osmolarity and outcomes of ARDS was analyzed using linear and logistic regression models. RESULTS: Among 50,498 patients, the serum sodium level on admission did not have a significant association with the occurrence of ARDS, with an adjusted odds ratio of 0.95 [95% CI (0.86, 1.05)]. There was no significant association between calculated serum osmolarity and the occurrence of ARDS, with an adjusted odds ratio of 1.03 [95% CI (1.00, 1.07)]. 1560 patients developed ARDS during the ICU stay. Their serum sodium level and osmolarity level did not have a significant association with their outcomes. CONCLUSIONS: Admission serum sodium or serum osmolarity were not associated with the occurrence or outcomes of ARDS in ICU.


Assuntos
Hipernatremia , Síndrome do Desconforto Respiratório , Humanos , Estado Terminal , Hipernatremia/epidemiologia , Estudos Retrospectivos , Síndrome do Desconforto Respiratório/epidemiologia , Unidades de Terapia Intensiva , Concentração Osmolar , Sódio
20.
Ocul Surf ; 26: 234-243, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36208723

RESUMO

PURPOSE: To explore novel role and molecular mechanism of a natural anti-inflammatory cytokine interleukin (IL) 37 in preventing corneal epithelial barrier disruption from hyperosmolar stress as can occur in dry eye disease. METHODS: Primary human corneal epithelial cells (HCECs) were cultured from fresh donor limbal explants. An in vitro dry eye model with hyperosmolar stress was established by switching HCECs from isosmolar (312mOsM) to hyperosmolar medium (350-500 mOsM), and some cells were treated with rhIL-37 or rhTNF-α, for different periods (2-48 h). The expression of cytokines and cathepsin S, and barrier protein integrity were evaluated by RT-qPCR, ELISA, and immunofluorescent staining with confocal microscopy. RESULTS: The integrity of epithelial barrier was significantly disrupted in HCECs exposed to hyperosmolar medium, as shown by immunofluorescent images of tight junction (TJ, ZO-1, occludin and claudin-1) and adheren junction (E-cadherin) proteins. TNF-α accentuated hyperosmolar-induced disruption of TJ barrier functional integrity whereas exposure to IL-37 blunted or even reversed these changes. Cathepsin S, encoded by CTSS gene, was found to directly disrupt epithelial barrier integrity. Interestingly, CTSS expression was significantly induced by TNF-α and hyperosmolarity, while exogenous rhIL-37 inhibited TNF-α and CTSS expression at mRNA and protein levels following hyperosmolar stress. Furthermore, rhIL-37 restored barrier protein integrity, observed in 2D and 3D confocal immunofluorescent images, in HCECs under hyperosmolar stress. CONCLUSION: Our findings demonstrate a novel signaling pathway by which anti-inflammatory cytokine IL-37 prevents corneal epithelial barrier disruption under hyperosmotic stress via suppressing TNF-α and CTSS expression. This study provides new insight into mechanisms protecting corneal barrier in dry eye disease.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Interleucina-1 , Humanos , Catepsinas/metabolismo , Células Cultivadas , Citocinas/metabolismo , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...