Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.249
Filtrar
1.
J Immunother Cancer ; 12(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991727

RESUMO

The clinical research pipeline is critical to ensuring continued development of novel treatments that can offer patients with cancer safe and effective options. Unfortunately, progress has slowed since the COVID-19 pandemic due to uncovered, systemic inefficiencies across critical processes. Towards initiating discussion on how to reinvigorate clinical research, the Society for Immunotherapy of Cancer (SITC) hosted a virtual summit that characterized issues and formed potential solutions. This commentary serves to highlight the crisis facing clinical research as well as stimulate field-wide discussion on how to better serve patients into the future.


Assuntos
Pesquisa Biomédica , COVID-19 , Imunoterapia , Neoplasias , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Pandemias
2.
Cardiovasc Diabetol ; 23(1): 249, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992718

RESUMO

BACKGROUND: Previous studies have shown that peptides encoded by noncoding RNAs (ncRNAs) can be used as peptide drugs to alleviate diseases. We found that microRNA-31 (miR-31) is involved in the regulation of hypertension and that the peptide miPEP31, which is encoded by the primary transcript of miR-31 (pri-miR-31), can inhibit miR-31 expression. However, the role and mechanism of miPEP31 in hypertension have not been elucidated. METHODS: miPEP31 expression was determined by western blot analysis. miPEP31-deficient mice (miPEP31-/-) were used, and synthetic miPEP31 was injected into Ang II-induced hypertensive mice. Blood pressure was monitored through the tail-cuff method. Histological staining was used to evaluate renal damage. Regulatory T (Treg) cells were assessed by flow cytometry. Differentially expressed genes were analysed through RNA sequencing. The transcription factors were predicted by JASPAR. Luciferase reporter and electrophoretic mobility shift assays (EMSAs) were used to determine the effect of pri-miR-31 on the promoter activity of miPEP31. Images were taken to track the entry of miPEP31 into the cell. RESULTS: miPEP31 is endogenously expressed in target organs and cells related to hypertension. miPEP31 deficiency exacerbated but exogenous miPEP31 administration mitigated the Ang II-induced systolic blood pressure (SBP) elevation, renal impairment and Treg cell decreases in the kidney. Moreover, miPEP31 deletion increased the expression of genes related to Ang II-induced renal fibrosis. miPEP31 inhibited the transcription of miR-31 and promoted Treg differentiation by occupying the Cebpα binding site. The minimal functional domain of miPEP31 was identified and shown to regulate miR-31. CONCLUSION: miPEP31 was identified as a potential therapeutic peptide for treating hypertension by promoting Treg cell differentiation in vivo. Mechanistically, we found that miPEP31 acted as a transcriptional repressor to specifically inhibit miR-31 transcription by competitively occupying the Cebpα binding site in the pri-miR-31 promoter. Our study highlights the significant therapeutic effect of miPEP31 on hypertension and provides novel insight into the role and mechanism of miPEPs.


Assuntos
Angiotensina II , Pressão Sanguínea , Modelos Animais de Doenças , Hipertensão , Rim , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs , Regiões Promotoras Genéticas , Linfócitos T Reguladores , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/genética , Sítios de Ligação , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/imunologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Regulação da Expressão Gênica , Transdução de Sinais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Anti-Hipertensivos/farmacologia , Humanos
3.
J Food Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992877

RESUMO

Polygonatum sibiricum polysaccharide (PSP) was extracted and purified from raw material obtained from P. sibiricum. The structural features of PSP were investigated by Congo red, circular dichroism spectrum, high-performance gel permeation chromatography, scanning electron microscope, atomic force microscope, ultraviolet spectroscopy, and Fourier transform infrared spectroscopy analysis. In vitro simulations were conducted to investigate the kinetics of PSP enzyme inhibition. Moreover, a type II diabetes mouse model (T2DM) with streptozotocin-induced insulin resistance was established, and the indexes of lipid quadruple, insulin resistance index, oral glucose tolerance (OGTT), organ index, and pancreatic morphology of model mice were measured. The results showed that PSP mainly consists of monosaccharides, such as mannose, glucose, galactose, xylose, and arabinose. It also has a ß-glycosidic bond of a pyranose ring and an irregular reticulated aggregated structure with a triple helix. In vitro enzyme inhibition assays revealed that PSP acts as a reversible competitive inhibitor of α-glucosidase and α-amylase. Furthermore, PSP was found to reduce insulin resistance index, increase OGTT and serum insulin levels, decrease free fatty acid content to improve lipid metabolism, and lower glycated serum protein content to enhance glucose metabolism in T2DM mice, thereby leading to a reduction in blood glucose concentration. Additionally, PSP exhibited reparative effects on the damaged liver tissue cells and pancreatic tissue in T2DM mice. The experiment results provide a preliminary basis for the therapeutic mechanism of PSP about type II diabetes and a theoretical reference for application in food and pharmaceutical development.

4.
Chem Asian J ; : e202400557, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993064

RESUMO

Herein, we have reported a new series of NNS-donor ligands coordinated Ni(II) complexes and utilized them as catalytic activator to synthesize N-alkylated aminesand 1,2-disubstituted benzimidazoles. The separate reaction of  [C9H6N-NH-C(O)-CH2-S-Ar] [Ar = C6H5 (L1); C6H4Cl-4 (L2);C6H4Me-4 (L3) and C6H4-OMe-4 (L4)] with Ni(OAc)2 in methanol at 80°C for 3 hours resulted in octahedral nickel complexes [(L1-H)2Ni] (C1), [(L2-H)2Ni] (C2), [(L3-H)2Ni] (C3), and [(L4-H)2Ni] (C4), respectively. All compounds have been characterized by micro and spectroscopic analysis. The molecular structure of complexes C1-C3 has also been determined by single crystal X-ray diffraction data. The utility of complexes C1-C4 were evaluated for the N-alkylation of aniline with benzyl alcohols, and for 1,2-disubstituted benzimidazoles synthesis. The obtained results indicate that complex C1 showed better catalytic activity in both N-alkylation of amines with benzyl alcohols [catalyst loading: 2.0 mol%; Yield up to 92%], and for 1,2-disubstituted benzimidazoles derivatives [catalyst loading: 2.0 mol%; Yield up to 94%)]. The mechanistic studies suggested that the reaction works through hydrogen borrowing from benzyl alcohol and its subsequent utilization for in situ reduction of imine. The experimentally observed catalytic reactivity patterns of complexes C1-C4 have found in good agreement with the HOMO-LUMO energy gaps obtained by DFT analysis of corresponding complexes.

5.
J Ethnopharmacol ; 334: 118516, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971341

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Calotropis gigantea (L.) Dryand. (C. gigantea) is a traditional medicinal plant, recognized for its effectiveness in managing diabetes, along with its notable antioxidant, anti-inflammatory, and anticancer properties. Type II diabetes mellitus (T2DM) is characterized by chronic metabolic disorders associated with an elevated risk of hepatocellular carcinoma (HCC) due to hyperglycemia and impaired insulin response. The scientific validation of C. gigantea's ethnopharmacological efficacy offers advantages in alleviating cancer progression in T2DM complications, enriching existing knowledge and potentially aiding future clinical cancer treatments. AIM: This study aimed to investigate the preventive potential of the dichloromethane fraction of C. gigantea stem bark extract (CGDCM) against diethylnitrosamine (DEN)-induced HCC in T2DM rats, aiming to reduce cancer incidence associated with diabetes while validating C. gigantea's ethnopharmacological efficacy. MATERIALS AND METHODS: Spontaneously Diabetic Torii (SDT) rats were administered DEN to induce HCC (SDT-DEN-VEH), followed by treatment with CGDCM. Metformin was used as a positive control (SDT-DEN-MET). All the treatments were administered for 10 weeks after the initial DEN injection. Diabetes-related parameters, including serum levels of glucose, insulin, and glycosylated hemoglobin (HbA1c), as well as liver function enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase), were quantified. Serum inflammation biomarkers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated. Liver tissue samples were analyzed for inflammation protein expression (IL-6, TNF-α, transforming growth factor-ß1 (TGF-ß1), and α-smooth muscle actin (α-SMA)). Histopathological evaluation was performed to assess hepatic necrosis, inflammation, and fibrosis. Liver cell proliferation was determined using immunohistochemistry for Ki-67 expression. RESULTS: Rats with SDT-DEN-induced HCC treated with CGDCM exhibited reduced serum glucose levels, elevated insulin levels, and decreased HbA1c levels. CGDCM treatment also reduced elevated hepatic IL-6, TNF-α, TGF-ß1, and α-SMA levels in SDT-DEN-VEH rats. Additionally, CGDCM treatment prevented hepatocyte damage, fibrosis, and cell proliferation. No adverse effects on normal organs were observed with CGDCM treatment, suggesting its safety for the treatment of HCC complications associated with diabetes. Additionally, the absence of adverse effects in SD rats treated with CGDCM at 2.5 mg/kg further supports the notion of its safe usage. CONCLUSIONS: These findings suggest that C. gigantea stem bark extract exerts preventive effects against the development of HCC complications in patients with T2DM, expanding the potential benefits of its ethnopharmacological advantages.

6.
Future Med Chem ; : 1-20, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949859

RESUMO

Aim: To synthesize new hybrid cinnamic acids (10a, 10b and 11) and ester derivatives (7, 8 and 9) and investigate their anti-breast cancer activities. Materials & methods: Compounds 7-11 were evaluated (in vitro) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted. Results: Several components were discovered to be active, mainly component 11, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9. Conclusion: The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.


[Box: see text].

7.
J Cancer ; 15(13): 4328-4344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947390

RESUMO

Purpose: Atractylodes macrocephala Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells. Atractylenolides-II (AT-II) belongs to the lactone compound that is derived from Atractylodes macrocephala Koidz with anti-cancer activity. However, whether AT-II combined with IFN-γ modulates CRC progression and the underlying mechanisms remain unclear. The present study aimed to elucidate the efficacy and pharmaceutical mechanism of action of AT-II combined with IFN-γ synergistically against CRC by regulating the NF-kB p65/PD-L1 signaling pathway. Methods: HT29 and HCT15 cells were treated with AT-II and IFN-γ alone or in combination and cell viability, migration, and invasion were then analyzed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Furthermore, the underlying mechanism was investigated through western blot assay. The role of AT-II combined with IFN-γ on tumor growth and lung metastases was estimated in vivo. Finally, the population of lymphocytes in tumor tissues of lung metastatic C57BL/6 mice and the plasma cytokine levels were confirmed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results: AT-II or the combination IFN-γ significantly inhibited the growth and migration abilities of CRC cells in vitro and in vivo. The biological mechanisms behind the beneficial effects of AT-II combined with IFN-γ were also measured and inhibition of p38 MAPK, FAK, Wnt/ß-catenin, Smad, and NF-kB p65/PD-L1 pathways was observed. Moreover, AT-II combined with IFN-γ significantly inhibited HCT15 xenograft tumor growth and lung metastases in C57BL/6 mice, which was accompanied by lymphocyte infiltration into the tumor tissues and inflammatory response inactivation. Conclusions: The results showed that the AT-II in combination with IFN-γ could be used as a potential strategy for tumor immunotherapy in CRC. More importantly, the mechanism by which AT-II suppressed CRC progressions was by inhibiting the NF-kB p65/PD-L1 signal pathway.

8.
Crit Care ; 28(1): 212, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956732

RESUMO

BACKGROUND: Vitamin K is essential for numerous physiological processes, including coagulation, bone metabolism, tissue calcification, and antioxidant activity. Deficiency, prevalent in critically ill ICU patients, impacts coagulation and increases the risk of bleeding and other complications. This review aims to elucidate the metabolism of vitamin K in the context of critical illness and identify a potential therapeutic approach. METHODS: In December 2023, a scoping review was conducted using the PRISMA Extension for Scoping Reviews. Literature was searched in PubMed, Embase, and Cochrane databases without restrictions. Inclusion criteria were studies on adult ICU patients discussing vitamin K deficiency and/or supplementation. RESULTS: A total of 1712 articles were screened, and 13 met the inclusion criteria. Vitamin K deficiency in ICU patients is linked to malnutrition, impaired absorption, antibiotic use, increased turnover, and genetic factors. Observational studies show higher PIVKA-II levels in ICU patients, indicating reduced vitamin K status. Risk factors include inadequate intake, disrupted absorption, and increased physiological demands. Supplementation studies suggest vitamin K can improve status but not normalize it completely. Vitamin K deficiency may correlate with prolonged ICU stays, mechanical ventilation, and increased mortality. Factors such as genetic polymorphisms and disrupted microbiomes also contribute to deficiency, underscoring the need for individualized nutritional strategies and further research on optimal supplementation dosages and administration routes. CONCLUSIONS: Addressing vitamin K deficiency in ICU patients is crucial for mitigating risks associated with critical illness, yet optimal management strategies require further investigation. IMPACT RESEARCH: To the best of our knowledge, this review is the first to address the prevalence and progression of vitamin K deficiency in critically ill patients. It guides clinicians in diagnosing and managing vitamin K deficiency in intensive care and suggests practical strategies for supplementing vitamin K in critically ill patients. This review provides a comprehensive overview of the existing literature, and serves as a valuable resource for clinicians, researchers, and policymakers in critical care medicine.


Assuntos
Estado Terminal , Deficiência de Vitamina K , Vitamina K , Humanos , Estado Terminal/terapia , Vitamina K/uso terapêutico , Deficiência de Vitamina K/tratamento farmacológico , Unidades de Terapia Intensiva/organização & administração
9.
Toxicol Appl Pharmacol ; 490: 117021, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971382

RESUMO

Prostate cancer is a common type of cancer in men with high incidence and mortality. Our aim was to investigate the effects of oxalipalladium (ox-Pd) on metastatic human prostate cancer PC3 cells and compare them with the effects of oxaliplatin (ox-Pt) (as an approved cancer drug). We synthesized ox-Pd through a new chemical method and used FT-IR, 1H NMR, 13C NMR, and MS analyzes to characterize it. The effects of ox-Pd on PC3 cells viability, apoptosis, cell cycle, migration, and gene expression were examined. Inhibition of topoisomerase IIα activity was investigated by pHOT1 plasmid relaxation and kDNA decatenation assays. Chemical tests showed ox-Pd with the correct composition and structure. For the first time, the exact fragmentation pathway of ox-Pd and its difference with ox-Pt was obtained by MS analysis. Ox-Pd significantly decreased PC3 cell viability with less/no toxicity effect on MHFB-1 normal skin fibroblasts. Wound scratch assay confirmed the strong anti-migratory activity of ox-Pd. According to flow cytometry analysis, this drug increased the number of PC3 cells in late apoptosis and decreased DNA replication and mitosis. Furthermore, pHOT1 plasmid relaxation and kDNA decatenation assays showed that ox-Pd strongly inhibited the catalytic activity of topoisomerase IIα. The expression of topoisomerase IIα, Bcl-2, P21, and survivin was decreased while the expression of Bax and p53 was increased under ox-Pd treatment. We provide the first evidence that ox-Pd exhibits more selective anticancer effects on PC3 cells compared to ox-Pt. Taken together, these data strongly suggest a therapeutic window for ox-Pd in cancer.

10.
Sci Total Environ ; : 174513, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972404

RESUMO

The paper discusses the concept of a proprietary decision-making model that allows for determining whether the planned development in areas not protected by flood embankments and at risk of flooding can be shaped in a safe manner. The model was used to evaluate the possibility of shaping the development in flood-risk areas on the example of one of the types of Oleder villages - a dispersed village located in the floodplains of the Warta River (western Poland). So far, there has been no comprehensive evaluation method supporting proper spatial planning for flood-risk areas. The use of multi-criteria analysis methods enabled to specify the key criteria of this evaluation, which form the basis of the decision-making support system. Additionally, the elaborated method enables to determine whether the localities under study can retain their current functional nature and if there is a potential for further spatial development based on the characteristics of an Oleder village. The presented methodology can be easily adapted to other cultural areas located in countries with different levels of development, traditions, landscape or climate.

11.
Angew Chem Int Ed Engl ; : e202408874, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972844

RESUMO

Overcoming tumor apoptosis resistance is a major challenge in enhancing cancer therapy. Pyroptosis, a lytic form of programmed cell death (PCD) involving inflammasomes, Gasdermin family proteins, and cysteine proteases, offers potential in cancer treatment. While photodynamic therapy (PDT) can induce pyroptosis by generating reactive oxygen species (ROS) through the activation of photosensitizers (PSs), many PSs lack specific subcellular targets and are limited to the first near-infrared window, potentially reducing treatment effectiveness. Therefore, developing effective, deep-penetrating, organelle-targeted pyroptosis-mediated phototherapy is essential for cancer treatment strategies. Here, we synthesized four molecules with varying benzene ring numbers in thiopyrylium structures to preliminarily explore their photodynamic properties. The near-infrared-II (NIR-II) PS Z1, with a higher benzene ring count, exhibited superior ROS generation and mitochondria-targeting abilities, and a large Stokes shift. Through nano-precipitation method, Z1 nanoparticles (NPs) also demonstrated high ROS generation (especially type-I ROS) upon 808 nm laser irradiation, leading to efficient mitochondria dysfunction and combined pyroptosis and apoptosis. Moreover, they exhibited exceptional tumor-targeting ability via NIR-II fluorescence imaging (NIR-II FI) and photoacoustic imaging (PAI). Furthermore, Z1 NPs-mediated phototherapy effectively inhibited tumor growth with minimal adverse effects. Our findings offer a promising strategy for cancer therapy, warranting further preclinical investigations in PDT.

12.
Adv Sci (Weinh) ; : e2404886, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973161

RESUMO

Immune checkpoint blockade (ICB) immunotherapy remains hampered by insufficient immunogenicity and a high-lactate immunosuppressive tumor microenvironment (TME). Herein, a nanobody-engineered NIR-II nanoadjuvant with targeting metabolic reprogramming capability is constructed for potentiating NIR-II photothermal-ferroptosis immunotherapy. Specifically, the nanoadjuvant (2DG@FS-Nb) is prepared by metallic iron ion-mediated coordination self-assembly of D-A-D type NIR-II molecules and loading of glycolysis inhibitor, 2-deoxy-D-glucose (2DG), followed by modification with aPD-L1 nanobody (Nb), which can effectively target the immunosuppressive TME and trigger in situ immune checkpoint blockade. The nanoadjuvants responsively release therapeutic components in the acidic TME, enabling the precise tumor location by NIR-II fluorescence/photoacoustic imaging while initiating NIR-II photothermal-ferroptosis therapy. The remarkable NIR-II photothermal efficiency and elevated glutathione (GSH) depletion further sensitize ferroptosis to induce severe lipid peroxidation, provoking robust immunogenic cell death (ICD) to trigger anti-tumor immune response. Importantly, the released 2DG markedly inhibits lactate generation through glycolysis obstruction. Decreased lactate efflux remodels the immunosuppressive TME by suppressing M2 macrophage proliferation and downregulating regulatory T cell levels. This work provides a new paradigm for the integration of NIR-II phototheranostics and lactate metabolism regulation into a single nanoplatform for amplified anti-tumor immunotherapy combined with ICB therapy.

13.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973534

RESUMO

Cytometry plays a crucial role in characterizing cell properties, but its restricted optical window (400-850 nm) limits the number of stained fluorophores that can be detected simultaneously and hampers the study and utilization of short-wave infrared (SWIR; 900-1700 nm) fluorophores in cells. Here we introduce two SWIR-based methods to address these limitations: SWIR flow cytometry and SWIR image cytometry. We develop a quantification protocol for deducing cellular fluorophore mass. Both systems achieve a limit of detection of ∼0.1 fg cell-1 within a 30 min experimental time frame, using individualized, high-purity (6,5) single-wall carbon nanotubes as a model fluorophore and macrophage-like RAW264.7 as a model cell line. This high-sensitivity feature reveals that low-dose (6,5) serves as an antioxidant, and cell morphology and oxidative stress dose-dependently correlate with (6,5) uptake. Our SWIR cytometry holds immediate applicability for existing SWIR fluorophores and offers a solution to the issue of spectral overlapping in conventional cytometry.

14.
J Cell Sci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973735

RESUMO

Transmembrane domains (TMDs) contain information targeting membrane proteins to various compartments of the secretory pathway. In previous studies, short or hydrophilic TMDs have been shown to target membrane proteins either to the endoplasmic reticulum (ER), or to the Golgi apparatus. The basis for differential sorting to the ER and to the Golgi apparatus remained however unclear. To clarify this point, we analyzed quantitatively the intracellular targeting of a collection of proteins exhibiting a single TMD. Our results reveal that membrane topology is a major targeting element in the early secretory pathway: type I proteins with a short transmembrane domain are targeted to the ER, and type II proteins to the Golgi apparatus. A combination of three features accounts for the sorting of simple membrane proteins in the secretory pathway: membrane topology, length and hydrophilicity of the TMD, and size of the cytosolic domain. By clarifying the rules governing sorting to the ER and to the Golgi apparatus, our study may revive the search for sorting mechanisms in the early secretory pathway.

15.
Ann Hematol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976007

RESUMO

BACKGROUND: Vitamin B12 is primarily transported from plasma to cells by Transcobalamin. Deficiency of Transcobalamin is a rare autosomal recessive disorder that results in unavailability of cobalamin in cells and accumulation of homocysteine and methylmalonic acid. CASE REPORT: We report a case of a 2-year-old male child with persistent pancytopenia, recurrent infections, and megaloblastic anemia. Next-generation sequencing identified a novel variant in exon 8 of TCN2 gene. Substantial improvement has been observed following administration of high doses of parenteral methylcobalamin. CONCLUSION: In patients with unresolved pancytopenia and megaloblastic anemia, Transcobalamin deficiency should be investigated and treated promptly to prevent any irreversible and harmful outcome.

16.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963241

RESUMO

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Assuntos
Angiotensina II , Cardiomegalia , Fibrose , Interleucina-5 , Macrófagos , Camundongos Knockout , Fator de Transcrição STAT3 , Transdução de Sinais , Remodelação Ventricular , Animais , Angiotensina II/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Remodelação Ventricular/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-5/metabolismo , Interleucina-5/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Cardiomegalia/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Diferenciação Celular , Miocárdio/metabolismo , Miocárdio/patologia
18.
Toxicol Lett ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969027

RESUMO

2-Methyl-4-nitroaniline (MNA), an intermediate in the synthesis of azo dyes, is widely distributed in various environmental media and organisms. Although there is speculation regarding MNA's potential to be hepatotoxic, the underlying mechanisms of its hepatotoxicity and its definitive diagnostic process remain largely unexplored. In this research. In the present study, we initially predicted the toxicity and possible toxic effect pathways of MNA using ProTox-II, and found that MNA binds to the PPARγ receptor (binding energy -6.118kcal/mol) with a potential PPARγ agonist effect. Subsequently, in vivo exposure evaluation was conducted on Wistar rats to assess the impact of MNA after a 90-day exposure period, by detecting serum biochemical indexes, hematological indexes, urinary indexes, inflammatory factors, liver histopathological observations and liver tissue PPARγ mRNA expression. The results showed that MNA causes liver function abnormalities, liver histopathological changes and inflammatory response, along with a pronounced increase in PPARγ mRNA levels. This study suggests that the hepatotoxic mechanism of MNA may be related to its possible upregulation of PPARγ expression, increased liver dysfunction and inflammatory responses. Based on these results, the benchmark dose lower limit (BMDL) of 1.503mg/kg for male Wistar rats was also established, providing a vital benchmark for determining the safety threshold of MNA. Our data highlight the hepatotoxic mechanism of MNA and contribute to a better understanding of its potential etiological diagnosis.

19.
Plant J ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969341

RESUMO

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.

20.
Front Pharmacol ; 15: 1309540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948470

RESUMO

Background: Few studies have analysed oxaliplatin-induced adverse events (ADEs) in the immune system and skin and subcutaneous tissues through pharmacovigilance. We used this approach to analyse the risk of such ADEs when oxaliplatin combined with immune checkpoint inhibitors (ICIs). Methods: We evaluated the association between oxaliplatin and ADEs in the immune system and skin and subcutaneous tissues using the reporting odd ratio (ROR) for mining the ADE report signals in the FDA Adverse Event Reporting System database. Risk factors were analyzed using a binary logistic regression analysis using the sex and age of the patients. Results: There were 40,474 reports of oxaliplatin as primary suspect drug or second suspect drug. The signal intensities of ADEs such as type II hypersensitivity, type I hypersensitivity, type III immune complex-mediated reaction, anaphylactoid shock and cytokine release syndrome were high in PTs classified by SOC as immune system disorders; in the PTs classified as skin and subcutaneous tissue disorders by SOC, the signal intensities of ADEs such as skin toxicity, skin reaction, rash maculo-papular and skin fissures were higher. In the risk assessment between the two groups, rash showed an increased risk in the oxaliplatin-ICI group, with an OR of 1.96. Nivolumab in combination with oxaliplatin had an OR of 2.196 and an adjusted OR of 2.231. Combined with pembrolizumab, OR was 2.762 and the adjusted OR was 2.678. Conclusion: Type II hypersensitivity shows a stronger pharmacovigilance signal. Oxaliplatin in combination with nivolumab or pembrolizumab has been shown to increase the risk of rash.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...