Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.884
Filtrar
1.
Acta Biomater ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969077

RESUMO

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1ß, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70% in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1ß. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.

2.
Vavilovskii Zhurnal Genet Selektsii ; 28(3): 332-341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38988763

RESUMO

One of the primary theories regarding the development of schizophrenia revolves around genetics, indicating the involvement of hereditary factors in various processes, including inflammation. Research has demonstrated that inflammatory reactions occurring in microglia can impact the progression of the disease. It has also been established that genetically determined changes in IL-1 can contribute to schizophrenia, thereby confirming the role of the IL-1 gene cluster in disease susceptibility. The aim of this study is a computer-based assessment of the structural interactions of IL-1 proteins with their receptors in schizophrenia. The study utilized the DisGeNET database, enabling the assessment of the reliability of identified IL-1 polymorphisms. Polymorphisms were also sought using NCBI PubMed. The NCBI Protein service was employed to search for and analyze the position of the identified polymorphisms on the chromosome. Structures for modeling were extracted from the Protein Data Bank database. Protein modeling was conducted using the SWISS-MODEL server, and protein interaction modeling was performed using PRISM. Notably, this study represents the first prediction of the interactions of IL-1α, IL-1ß, and IL- 1RA proteins, taking into account the presence of single-nucleotide polymorphisms associated with schizophrenia in the sequence of the corresponding genes. The results indicate that the presence of SNP rs315952 in the IL-1RA protein gene, associated with schizophrenia, may lead to a weakening of the IL-1RA binding to receptors, potentially triggering the initiation of the IL-1 signaling pathway by disrupting or weakening the IL-1RA binding to receptors and facilitating the binding of IL-1 to them. Such alterations could potentially lead to a change in the immune response. The data obtained contribute theoretically to the development of ideas about the molecular mechanisms through which hereditary factors in schizophrenia influence the interactions of proteins of the IL-1 family, which play an important role in the processes of the immune system.

3.
Front Immunol ; 15: 1427100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983847

RESUMO

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Assuntos
Inflamação , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/imunologia , Inflamação/imunologia , Humanos , Interleucina-18/metabolismo , Interleucina-18/imunologia , Modelos Animais de Doenças , COVID-19/imunologia , Camundongos Endogâmicos C57BL , Síndrome de Ativação Macrofágica/imunologia , SARS-CoV-2/imunologia
4.
Eur J Pharmacol ; 978: 176773, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936453

RESUMO

The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.

5.
Cancer Lett ; : 217090, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945201

RESUMO

The tumor microenvironment (TME) of prostate cancer (PCa) is characterized by high levels of immunosuppressive molecules, including cytokines and chemokines. This creates a hostile immune landscape that impedes effective immune responses. The interleukin-1 (IL-1) receptor antagonist (IL1RN), a key anti-inflammatory molecule, plays a significant role in suppressing IL-1-related immune and inflammatory responses. Our research investigates the oncogenic role of IL1RN in PCa, particularly its interactions with muscarinic acetylcholine receptor 4 (CHRM4), and its involvement in driving immunosuppressive pathways and M2-like macrophage polarization within the PCa TME. We demonstrate that following androgen deprivation therapy (ADT), the IL1RN-CHRM4 interaction in PCa activates the MAPK/AKT signaling pathway. This activation upregulates the transcription factors E2F1 and MYCN, stimulating IL1RN production and creating a positive feedback loop that increases CHRM4 abundance in both PCa cells and M2-like macrophages. This ADT-driven IL1RN/CHRM4 axis significantly enhances immune checkpoint markers associated with neuroendocrine differentiation and treatment-resistant outcomes. Higher serum IL1RN levels are associated with increased disease aggressiveness and M2-like macrophage markers in advanced PCa patients. Additionally, elevated IL1RN levels correlate with better clinical outcomes following immunotherapy. Clinical correlations between IL1RN and CHRM4 expression in advanced PCa patients and neuroendocrine PCa organoid models highlight their potential as therapeutic targets. Our data suggest that targeting the IL1RN/CHRM4 signaling could be a promising strategy for managing PCa progression and enhancing treatment responses.

6.
Sci Rep ; 14(1): 14892, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937503

RESUMO

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Assuntos
COVID-19 , Citocinas , Aprendizado de Máquina , Humanos , COVID-19/diagnóstico , Citocinas/sangue , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Programas de Rastreamento/métodos , Masculino , Feminino , Sensibilidade e Especificidade , Pessoa de Meia-Idade , Adulto , Idoso
7.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930852

RESUMO

Nutraceutical immune support offers potential for designing blends with complementary mechanisms of action for robust support of innate immune alertness. We documented enhanced immune activation when bovine colostrum peptides (BC-Pep) were added to an immune blend (IB) containing ß-glucans from yeast, shiitake, maitake, and botanical non-ß-glucan polysaccharides. Human peripheral blood mononuclear cells (PBMCs) were cultured with IB, BC-Pep, and IB + BC-Pep for 20 h, whereafter expression of the activation marker CD69 was evaluated on NK cells, NKT cells, and T cells. Cytokine levels were tested in culture supernatants. PBMCs were co-cultured with K562 target cells to evaluate T cell-mediated cytotoxicity. IB + BC-Pep triggered highly significant increases in IL-1ß, IL-6, and TNF-α, above that of cultures treated with matching doses of either IB or BC-Pep. NK cell and T cell activation was increased by IB + BC-Pep, reaching levels of CD69 expression several fold higher than either BC-Pep or IB alone. IB + BC-Pep significantly increased T cell-mediated cytotoxic killing of K562 target cells. This synergistic effect suggests unique amplification of signal transduction of NK cells and T cells due to modulation of IB-induced signaling pathways by BC-Pep and is of interest for further pre-clinical and clinical testing of immune defense activity against virally infected and transformed cells.


Assuntos
Colostro , Imunidade Inata , Peptídeos , beta-Glucanas , Animais , Bovinos , Humanos , Colostro/química , Colostro/imunologia , Imunidade Inata/efeitos dos fármacos , beta-Glucanas/farmacologia , beta-Glucanas/química , Peptídeos/farmacologia , Peptídeos/química , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Citocinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Agaricales/química , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células K562 , Antígenos CD/metabolismo , Lectinas Tipo C
8.
Cardiovasc Diabetol ; 23(1): 197, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849829

RESUMO

OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.


Assuntos
Compostos Benzidrílicos , Biomarcadores , Diabetes Mellitus Tipo 2 , Glucosídeos , Mediadores da Inflamação , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glucosídeos/uso terapêutico , Glucosídeos/efeitos adversos , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Fatores de Tempo , Anti-Inflamatórios/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico , Inflamação/sangue , Inflamação/diagnóstico , Método Duplo-Cego , Miocárdio/patologia , Miocárdio/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/sangue
9.
Diabetol Metab Syndr ; 16(1): 140, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918878

RESUMO

Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, is closely linked to persistent low-grade inflammation, significantly contributing to its development and progression. This review provides a comprehensive examination of the inflammatory mechanisms underlying T2DM, focusing on the role of the NLRP3 inflammasome and interleukin-1ß (IL-1ß) in mediating inflammatory responses. We discuss the therapeutic potential of IL-1 inhibitors and colchicine, highlighting their mechanisms in inhibiting the NLRP3 inflammasome and reducing IL-1ß production. Recent studies indicate that these agents could effectively mitigate inflammation, offering promising avenues for the prevention and management of T2DM. By exploring the intricate connections between metabolic disturbances and chronic inflammation, this review underscores the need for novel anti-inflammatory strategies to address T2DM and its complications.

10.
Mol Cell Biochem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941031

RESUMO

Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1ß, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1ß/NLRP3/Caspase-1 pathway.

11.
J Infect Dis ; 229(6): 1740-1749, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871359

RESUMO

BACKGROUND: We examined effects of single-nucleotide variants (SNVs) of IL1RN, the gene encoding the anti-inflammatory interleukin 1 receptor antagonist (IL-1Ra), on the cytokine release syndrome (CRS) and mortality in patients with acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: IL1RN CTA haplotypes formed from 3 SNVs (rs419598, rs315952, rs9005) and the individual SNVs were assessed for association with laboratory markers of inflammation and mortality. We studied 2589 patients hospitalized with SARS-CoV-2 between March 2020 and March 2021. RESULTS: Mortality was 15.3% and lower in women than men (13.1% vs 17.3%, P = .0003). Carriers of the CTA-1/2 IL1RN haplotypes exhibited decreased inflammatory markers and increased plasma IL-1Ra. Evaluation of the individual SNVs of the IL1RN, carriers of the rs419598 C/C SNV exhibited significantly reduced inflammatory biomarker levels and numerically lower mortality compared to the C/T-T/T genotype (10.0% vs 17.8%, P = .052) in men, with the most pronounced association observed in male patients ≤74 years old, whose mortality was reduced by 80% (3.1% vs 14.0%, P = .030). CONCLUSIONS: The IL1RN haplotype CTA and C/C variant of rs419598 are associated with attenuation of the CRS and decreased mortality in men with acute SARS-CoV-2 infection. The data suggest that the IL1RN pathway modulates the severity of coronavirus disease 2019 (COVID-19) via endogenous anti-inflammatory mechanisms.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Haplótipos , Proteína Antagonista do Receptor de Interleucina 1 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/sangue , COVID-19/mortalidade , COVID-19/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , SARS-CoV-2/genética , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/mortalidade , Adulto , Genótipo , Biomarcadores/sangue
12.
Biochem Soc Trans ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940747

RESUMO

Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.

13.
BMC Genom Data ; 25(1): 56, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858637

RESUMO

BACKGROUND: Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS: Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS: This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.


Assuntos
Biologia Computacional , Interleucina-1beta , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Biologia Computacional/métodos , Interleucina-1beta/genética , Mutação de Sentido Incorreto , Bases de Dados Genéticas
15.
Animal Model Exp Med ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860503

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC), which is so called because of the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) receptors on the cancer cells, accounts for 10%-15% of all breast cancers. The heterogeneity of the tumor microenvironment is high. However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood. METHODS: We analyzed single-cell RNA sequencing data from five HER2 positive, 12 ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry. RESULTS: Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2-integrin-aLb2 complex, and then release interleukin 1 beta (IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth. CONCLUSION: Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC.

16.
Dokl Biochem Biophys ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38861148

RESUMO

The objectives of the study were to present the experience of diagnosis, management, and therapy with IL-1 inhibitors in patients with Schnitzler's syndrome (SchS) according to a multicenter Russian cohort. An observational retrospective study for a 10-year period (2012-2022) involved 17 patients with SchS who were admitted to the hospital or were observed on an outpatient basis (eight women and nine men). The diagnosis of all of them corresponded to the Strasbourg diagnostic criteria. The age of patients ranged from 25 to 81 years (Me 53[46; 56]). The age at the time of the onset of the disease ranged from 20 to 72 years (Me 46[39; 54]), the duration of the disease before diagnosis ranged from 1 to 35 years (Me 6.5[3; 6]), in three patients it exceeded 10 years, in the rest it ranged from 1 to 8 years. Infectious and lymphoproliferative diseases, monogenic AIDs (CAPS, TRAPS, and HIDS) were excluded from all patients at the prehospital stage. The referral diagnosis for all of them was Still 's disease in adults. Clinical manifestations of the disease in all patients included fatigue, lethargy, fatigue, rash, and fever. In all patients, skin elements were urticular and were accompanied by itching in 6 (37.5%) patients. Bone pain was observed in 12 (70.6%) patients; arthralgias, in 16 (94.1%); arthritis, in 9 (52.9%); myalgia, in 7 (41.2%); and weight loss, in 4 (23.5%). Lymphadenopathy was detected in 6 (35.3%) patients; enlarged liver, in 6 (35.3%); pericarditis, in 4 (23.5%); angioedema, in 6 (35.3); redness and dryness in the eyes, in 3 (17.6%); sore throat, in 2 (11.8%); abdominal pain, in 1 (5.9%), distal polyneuropathy, in 2 (11.8%); paraesthesia, in 1 (5.9%); and chondritis of the auricles, in 1 (5.9%). Monoclonal gammopathy was detected in all patients with a secretion level of 2.9-15.1 g/L: IgMk (n = 10, 64.7%), less often IgMλ (n = 2), IgGk (n = 2), IgGλ (n = 1), and IgAλ (n = 1). Ben-Jones protein was not detected in any of them. All patients had an increased level of ESR and CRP. Before inclusion in the study, 16 patients received GCs (94.1%) with a temporary effect that disappeared with dose reduction or cancellation. Seven patients received cDMARDs, including methotrexate (5), hydroxychloroquine (2), and cyclophosphamide (1). All patients received NSAIDs and antihistamines, as well as biologics, including the anti-B-cell drug rituximab (1), monoclonal ABs to IgE omalizumab (2, 1 without effect and 1 with partial effect), IL-1i canakinumab (n = 10, 58.8%) subcutaneously once every 8 weeks, and anakinra (n = 4, 23.5%) subcutaneously daily. The duration of taking anakinra, which was prescribed in the test mode, ranged from 1 week to 2.5 months with a further switch to canakinumab in 3 patients. The duration of taking canakinumab at the time of analysis ranged from 7 months to 8 years. Against the background of treatment with IL-1i, 10 out of 11 (90.9%) patients received a complete response in terms of the clinical manifestations of the disease and a decrease in the level of ESR and CRP within a few days. In one patient, a partial response to the administration of anakinra was detected; however, after switching to canakinumab, the effect of treatment was finally lost. One patient received IL-6i for 8 months with an incomplete effect and a positive dynamics after switching to anakinra. Thus, anakinra was initially prescribed to four patients and changed to canakinumab in two of them; canakinumab was started as the first drug in seven patients. Treatment with anakinra was continued in two patients; with canakinumab, in nine patients. In one patient, due to the persistent absence of relapses, the interval between canakinumab injections was increased to 5 months without signs of reactivation; however, subsequently, against the background of stress and relapses of the disease, the intervals were reduced to 4 months. A healthy child was born by the same patient on the background of treatment. The tolerability of therapy was satisfactory in all patients, no SAEs were noted. SchS is a rare multifactorial/non-monogenic AID that should be differentiated from a number of rheumatic diseases and other AIDs. The onset in adulthood, the presence of recurrent urticarial rashes in combination with fever and other manifestations of a systemic inflammatory response are indications for examination for monoclonal secretion. The use of short- or long-acting IL-1i is a highly effective and safe option in the treatment of such patients.

17.
Open Med (Wars) ; 19(1): 20240972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859879

RESUMO

Community-acquired pneumonia (CAP) is a common respiratory disease in children. This prospective cohort study of 110 children with CAP and 100 healthy children investigated the relationship between the levels of vitamin A, D and E and inflammatory markers, such as tumour necrosis factor (TNF-a), interleukin-1 (IL-1), interleukin-10 (IL-10), neutrophils (NE) and C-reactive protein (CRP), in CAP. The haemoglobin, leukocyte concentration, NE, monocytes and CRP concentration in the CAP group showed significant differences (P < 0.05). The levels of vitamin A, D and E in the CAP group were lower than those in the control group, while the levels of TNF-a and IL-1 were higher than in the control group; the differences were statistically significant (P < 0.05). The IL-10 levels showed no significant differences (P > 0.05). Pearson analysis revealed that the vitamin A, D and E levels were all correlated with the TNF-a, IL-10 and CRP levels (P < 0.05). The vitamin A, D and E levels of the CAP children were lower than those of the healthy children. Thus, the content of fat-soluble vitamins is correlated with the secretion of TNF-a and IL-10. The research provides a new direction for the prevention, diagnosis and treatment of CAP.

18.
Folia Biol (Praha) ; 70(1): 74-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38830125

RESUMO

Chlamydia psittaci pneumonia (CPP) is a lung disease caused by the infection with the Chla-mydia psittaci bacterium, which can lead to severe acute respiratory distress syndrome and systemic symptoms. This study explored the specific mechanisms underlying the impact of reactive oxygen species (ROS) on the Th17/Treg balance in CPP. The levels of ROS and the differentiation ratio of Th17/Treg in the peripheral blood of healthy individuals and CPP patients were measured using ELISA and flow cytometry, respectively. The association between the ROS levels and Th17/Treg was assessed using Pearson correlation analysis. The ROS levels and the Th17/Treg ratio were measured in CD4+ T cells following H2O2 treatment and NLRP3 inhibition. The effects of H2O2 treatment and NLRP3 inhibition on the NLRP3/IL-1ß/caspase-1 pathway were observed using immunoblotting. Compared to the healthy group, the CPP group exhibited increased levels of ROS in the peripheral blood, an elevated ratio of Th17 differentiation, and a decreased ratio of Treg differentiation. ROS levels were positively correlated with the Th17 cell proportion but negatively correlated with the Treg cell proportion. The ROS levels and NLRP3/IL-1ß/caspase-1 expression were up-regulated in CD4+ T cells after H2O2 treatment. Furthermore, there was an increase in Th17 differentiation and a decrease in Treg differentiation. Conversely, the NLRP3/IL-1ß/caspase-1 pathway inhibition reversed the effects of H2O2 treatment, with no significant change in the ROS levels. ROS regulates the Th17/Treg balance in CPP, possibly through the NLRP3/IL-1ß/caspase-1 pathway. This study provides a new perspective on the development of immunotherapy for CPP.


Assuntos
Caspase 1 , Diferenciação Celular , Chlamydophila psittaci , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Linfócitos T Reguladores , Células Th17 , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Reguladores/imunologia , Caspase 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Interleucina-1beta/metabolismo , Transdução de Sinais , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Peróxido de Hidrogênio/metabolismo , Psitacose
19.
J Pharm Bioallied Sci ; 16(Suppl 2): S1120-S1128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882732

RESUMO

Alzheimer's disease (AD) is a neurological condition that is much more common as people get older. It may start out early or late. Increased levels of pro-inflammatory cytokines and microglial activation, both of which contribute to the central nervous system's inflammatory state, are characteristics of AD. As opposed to this, periodontitis is a widespread oral infection brought on by Gram-negative anaerobic bacteria. By releasing pro-inflammatory cytokines into the systemic circulation, periodontitis can be classified as a "low-grade systemic disease." Periodontitis and AD are linked by inflammation, which is recognized to play a crucial part in both the disease processes. The current review sought to highlight the effects of pro-inflammatory cytokines, which are released during periodontal and Alzheimer's diseases in the pathophysiology of both conditions. It also addresses the puzzling relationship between AD and periodontitis, highlighting the etiology and potential ramifications.

20.
J Pharm Bioallied Sci ; 16(Suppl 2): S1110-S1119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882867

RESUMO

Inflammatory chemicals are released by the immune system in response to any perceived danger, including irritants and pathogenic organisms. The caspase activation and the response of inflammation are governed by inflammasomes, which are sensors and transmitters of the innate immune system. They have always been linked to swelling and pain. Research has mainly concentrated on the NOD-like protein transmitter 3 (NLRP3) inflammasome. Interleukin (IL)-1 and IL-18 are pro-inflammatory cytokines that are activated by the NOD-like antibody protein receptor 3 (NLRP3), which controls innate immune responses. The NLRP3 inflammasome has been associated with gum disease and other autoimmune inflammatory diseases in several studies. Scientists' discovery of IL-1's central role in the pathophysiology of numerous autoimmune disorders has increased public awareness of these conditions. The first disease to be connected with aberrant inflammasome activation was the autoinflammatory cryopyrin-associated periodic syndrome (CAPS). Targeted therapeutics against IL-1 have been delayed in development because their underlying reasons are poorly understood. The NLRP3 inflammasome has recently been related to higher production and activation in periodontitis. Multiple periodontal cell types are controlled by the NLRP3 inflammasome. To promote osteoclast genesis, the NLRP3 inflammasome either increases receptor-activator of nuclear factor kappa beta ligand (RANKL) synthesis or decreases osteoclast-promoting gene (OPG) levels. By boosting cytokines that promote inflammation in the periodontal ligament fibroblasts and triggering apoptosis in osteoblasts, the NLRP3 inflammasome regulates immune cell activity. These findings support further investigation into the NLRP3 inflammasome as a therapeutic target for the medical treatment of periodontitis. This article provides a short overview of the NLRP3 inflammatory proteins and discusses their role in the onset of autoinflammatory disorders (AIDs) and periodontitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...