Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Toxicol Environ Health A ; : 1-19, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940434

RESUMO

Occupational exposure to welding fumes constitutes a serious health concern. Although the effects of fumes on the respiratory tract have been investigated, few apparent reports were published on their effects on the skin. The purpose of this study was to investigate the effects of exposure to welding fumes on skin cells, focusing on interleukin-24 (IL-24), a cytokine involved in the pathophysiology of skin conditions, such as atopic dermatitis and psoriasis. Treatment with welding fumes increased IL-24 expression and production levels in human dermal microvascular endothelial cells (HDMEC) which were higher than that in normal human epidermal keratinocytes. IL-24 levels in Trolox and deferoxamine markedly suppressed welding fume-induced IL-24 expression in HDMEC, indicating that oxidative stress may be involved in this cytokine expression. IL-24 released from HDMEC protected keratinocytes from welding fume-induced damage and enhanced keratinocyte migration. Serum IL-24 was higher in welding workers than in general subjects and was positively correlated with elevated serum levels of 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. In summary, welding fumes enhanced IL-24 expression in HDMEC, stimulating keratinocyte survival and migration. IL-24 expression in endothelial cells may act as an adaptive response to welding-fume exposure in the skin.

2.
Int Immunopharmacol ; 136: 112305, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823178

RESUMO

The second-leading cause of death, cancer, poses a significant threat to human life. Innovations in cancer therapies are crucial due to limitations in traditional approaches. Newcastle disease virus (NDV), a nonpathogenic oncolytic virus, exhibits multifunctional anticancer properties by selectively infecting, replicating, and eliminating tumor cells. To enhance NDV's antitumor activity, four oncolytic NDV viruses were developed, incorporating IL24 and/or GM-CSF genes at different gene loci using reverse genetics. In vitro experiments revealed that oncolytic NDV virus augmented the antitumor efficacy of the parental virus rClone30, inhibiting tumor cell proliferation, inducing tumor cell fusion, and promoting apoptosis. Moreover, NDV carrying the IL24 gene inhibited microvessel formation in CAM experiments. Evaluation in a mouse model of liver cancer confirmed the therapeutic efficacy of oncolytic NDV viral therapy. Tumors in mice treated with oncolytic NDV virus significantly decreased in size, accompanied by tumor cell detachment and apoptosis evident in pathological sections. Furthermore, oncolytic NDV virus enhanced T cell and dendritic cell production and substantially improved the survival rate of mice with hepatocellular carcinoma, with rClone30-IL24(P/M) demonstrating significant therapeutic effects. This study establishes a basis for utilizing oncolytic NDV virus as an antitumor agent in clinical practice.


Assuntos
Interleucinas , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Humanos , Camundongos , Linhagem Celular Tumoral , Interleucinas/genética , Interleucinas/metabolismo , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Carcinoma Hepatocelular/terapia , Apoptose , Neovascularização Patológica/terapia , Proliferação de Células , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Dendríticas/imunologia , Linfócitos T/imunologia
3.
Cell Biol Int ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751041

RESUMO

Noninvasive and effective methods for early screening of non-small cell lung cancer (NSCLC) still need to be developed. At present, a reasonable conclusion is that a combination of tumor markers is a superior predictor of screening. Cytokines, as important regulators of cancer development, have great potential for the screening and prognosis of NSCLC. This study screened novel biomarkers related to the early screening and prognosis of NSCLC. In the present study, the biological significance and immunoregulation of interleukin-24 (IL-24) were analyzed based on The Cancer Genome Atlas data. Next, 150 serum samples from initially treated patients with NSCLC and 70 controls were collected, and we obtained pathological sections from 60 patients with NSCLC. The ELISA and immunohistochemistry results showed the differential expression of IL-24 and carbohydrate antigen 125 (CA125). The results show that IL-24 is an important tumor suppressor in NSCLC that helps to improve the poor prognosis of these patients. A significantly negative correlation between IL-24 and CA125 levels was also found. Notably, serum IL-24 levels were significantly negatively correlated with the TNM stage of patients with NSCLC, consistent with an important role for tumor suppressors in NSCLC. The receiver operating characteristic curve analysis showed that a combination of IL-24 and CA125 was an effective panel for discriminating patients with NSCLC from HD, and individuals with other lung diseases. Serum IL-24 and CA125 levels were identified as independent prognostic markers for NSCLC. The IL-24 and CA125 panel exhibited good performance in the screening of NSCLC.

4.
Protein Cell ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752989

RESUMO

Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.

5.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780647

RESUMO

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Assuntos
Linfócitos B , Fator de Transcrição STAT6 , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator de Transcrição STAT6/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Antígenos CD/imunologia , Transdução de Sinais , Fosforilação , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/citologia , Apirase/metabolismo , Apirase/imunologia , Glicoproteínas de Membrana
6.
Biochem Genet ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436816

RESUMO

Multiple myeloma is a type of malignant neoplasia whose treatment has changed over the past decade. This study aimed to investigate the effects of combination of Adenovector-carrying interleukin-24 and herpes simplex virus 1 thymidine kinase/ganciclovir on tumor growth, autophagy, and unfolded protein response mechanisms in mouse model of multiple myeloma. Six groups of mice, including Ad-HSV-tk/GCV, Ad-IL-24, Ad-HSV-tk/IL-24, Ad-GFP, and positive and negative controls, were investigated, and each group was injected every 72 h. The tumor size was measured several times. The expression of LC3B evaluated through western blotting and ASK-1, CHOP, Caspase-3, and ATF-6 genes in the UPR and apoptosis pathways were also analyzed by the quantitative polymerase chain reaction (qPCR) method. The present results showed that the injection of Ad-HSV-tk/GCV, Ad-HSV-tk/IL-24, and metformin reduced the tumor size. The expression of LC3B was significantly higher in the treatment groups and positive control groups compared to the negative control group. The expression of CHOP, caspase-3, and ATF-6 genes was significantly higher in the Ad-IL-24 group compared to the other treatment groups. Besides, the ASK-1 expression was significantly lower in the Ad-IL-24 group as compared to the other groups. Overall, the results indicated that the presence of the HSV-tk gene in the adenovectors reduced the size of tumors and induced autophagy by triggering the expression of LC3B protein. The presence of the IL-24 might affect tumor growth but not as much the therapeutic effect of HSV-tk. Furthermore, the results indicated that co-administration of IL-24 and HSV-tk had no synergistic effect on tumor size control.

7.
Arab J Gastroenterol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395629

RESUMO

Interleukins are potential therapeutic targets that can alter the prognosis and progression of inflammatory bowel disease (IBD). The roles of IL-6, IL-10, IL-17, and IL-23 have been extensively studied, setting the stage for the development of novel treatments for patients with IBD. Other cytokines have been less extensively studied. Members of the IL-20 family, mainly IL-19 and IL-24, are involved in the pathogenesis of IBD, but their exact role remains unclear. Similarly, IL-33, a newly identified cytokine, has been shown to control the Th1 effector response and the action of colonic Tregs in animal models of colitis and patients with IBD. IL-21 is involved in the Th1, Th2, and Th17 responses. Data support a promising future use of these interleukins as biomarkers of severe diseases and as potential therapeutic targets for novel monoclonal antibodies. This review aims to summarize the existing studies involving animal models of colitis and patients with IBD to clarify their role in the intestinal mucosa.

8.
Exp Neurol ; 372: 114643, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38056582

RESUMO

Neuroinflammation is critically involved in nerve injury-induced neuropathic pain, characterized by local and systemic increased levels of proinflammatory cytokines. Interleukin-24 (IL-24), a key member of the IL-10 family, has been extensively studied for its therapeutic potential in various diseases, including cancer, autoimmune disorders, and bacterial infections, but whether it is involved in the regulation of neuropathic pain caused by peripheral nerve injury (PNI) has not been well established. In this study, we reported that spared nerve injury (SNI) induced a significant upregulation of IL-24 in fibroblasts, neurons, and oligodendrocyte precursor cells (OPCs, also called NG2-glia) in the affected spinal dorsal horns (SDHs), as well as dorsal root ganglions (DRGs). We also found that tumor necrosis factor α (TNF-α) induced the transcriptional expression of IL-24 in cultured fibroblasts, neurons, and NG2-glia; in addition, astrocytes, microglia, and NG2-glia treated with TNF-α exhibited a prominent increase in interleukin-20 receptor 2 (IL-20R2) expression. Furthermore, we evaluated the ability of IL-24 and IL-20R2 to attenuate pain in preclinical models of neuropathic pain. Intrathecal (i.t.) injection of IL-24 neutralizing antibody or IL-20R2 neutralizing antibody could effectively alleviate mechanical allodynia and thermal hyperalgesia after PNI. Similarly, intrathecal injection of IL-24 siRNA or IL-20R2 siRNA also alleviated mechanical allodynia after SNI. The inhibition of IL-24 reduced SNI-induced proinflammatory cytokine (IL-1ß and TNF-α) production and increased anti-inflammatory cytokine (IL-10) production. Meanwhile, the inhibition of IL-20R2 also decreased IL-1ß mRNA expression after SNI. Collectively, our findings revealed that IL-24/IL-20R might contribute to neuropathic pain through inflammatory response. Therefore, targeting IL-24 could be a promising strategy for treating neuropathic pain induced by PNI.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Interleucina-10 , Hiperalgesia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Medula Espinal/patologia , Neuralgia/metabolismo , Citocinas/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , RNA Interferente Pequeno/farmacologia
9.
Acta Pharmacol Sin ; 45(2): 405-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814123

RESUMO

Gastric cancer stem cells (GCSCs) contribute to the refractory features of gastric cancer (GC) and are responsible for metastasis, relapse, and drug resistance. The key factors drive GCSC function and affect the clinical outcome of GC patients remain poorly understood. PRSS23 is a novel serine protease that is significantly up-regulated in several types of cancers and cancer stem cells, and related to tumor progression and drug resistance. In this study, we investigated the role of PRSS23 in GCSCs as well as the mechanism by which PRSS23 regulated the GCSC functions. We demonstrated that PRSS23 was critical for sustaining GCSC survival. By screening a collection of human immunodeficiency virus (HIV) protease inhibitors (PIs), we identified tipranavir as a PRSS23-targeting drug, which effectively killed both GCSC and GC cell lines (its IC50 values were 4.7 and 6.4 µM in GCSC1 cells and GCSC2 cells, respectively). Administration of tipranavir (25 mg·kg-1·d-1, i.p., for 8 days) in GCSC-derived xenograft mice markedly inhibited the growth of subcutaneous GCSC tumors without apparent toxicity. In contrast, combined treatment with 5-FU plus cisplatin did not affect the tumor growth but causing significant weight loss. Furthermore, we revealed that tipranavir induced GCSC cell apoptosis by suppressing PRSS23 expression, releasing MKK3 from the PRSS23/MKK3 complex to activate p38 MAPK, and thereby activating the IL24-mediated Bax/Bak mitochondrial apoptotic pathway. In addition, tipranavir was found to kill other types of cancer cell lines and drug-resistant cell lines. Collectively, this study demonstrates that by targeting both GCSCs and GC cells, tipranavir is a promising anti-cancer drug, and the clinical development of tipranavir or other drugs specifically targeting the PRSS23/MKK3/p38MAPK-IL24 mitochondrial apoptotic pathway may offer an effective approach to combat gastric and other cancers.


Assuntos
Piridinas , Pironas , Neoplasias Gástricas , Sulfonamidas , Humanos , Animais , Camundongos , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas , Apoptose , Serina Endopeptidases/metabolismo
10.
J Neuroinflammation ; 20(1): 200, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660072

RESUMO

BACKGROUND: Peripheral nerve injury to dorsal root ganglion (DRG) neurons develops intractable neuropathic pain via induction of neuroinflammation. However, neuropathic pain is rare in the early life of rodents. Here, we aimed to identify a novel therapeutic target for neuropathic pain in adults by comprehensively analyzing the difference of gene expression changes between infant and adult rats after nerve injury. METHODS: A neuropathic pain model was produced in neonatal and young adult rats by spared nerve injury. Nerve injury-induced gene expression changes in the dorsal root ganglion (DRG) were examined using RNA sequencing. Thymic stromal lymphopoietin (TSLP) and its siRNA were intrathecally injected. T cells were examined using immunofluorescence and were reduced by systemic administration of FTY720. RESULTS: Differences in changes in the transcriptome in injured DRG between infant and adult rats were most associated with immunological functions. Notably, TSLP was markedly upregulated in DRG neurons in adult rats, but not in infant rats. TSLP caused mechanical allodynia in adult rats, whereas TSLP knockdown suppressed the development of neuropathic pain. TSLP promoted the infiltration of T cells into the injured DRG and organized the expressions of multiple factors that regulate T cells. Accordingly, TSLP caused mechanical allodynia through T cells in the DRG. CONCLUSION: This study demonstrated that TSLP is causally involved in the development of neuropathic pain through T cell recruitment.


Assuntos
Neuralgia , Linfopoietina do Estroma do Timo , Ratos , Animais , Gânglios Espinais , Hiperalgesia/etiologia , Linfócitos T , Citocinas , Neurônios
11.
Nutrients ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447201

RESUMO

Intervertebral disc (IVD) degeneration is a common cause of low back pain in diabetes mellitus type 2 (T2DM) patients. Its pathogenesis and the vitamin (vit.) K2 influence on this disease remain unclear. Lumbar motion segments of male Zucker Diabetes Fatty (ZDF) rats (non-diabetic [control] and diabetic; fed without or with vit. K2) were used. Femur lengths and vertebral epiphyseal cross-section areas were measured. IVDs were histopathologically examined. Protein synthesis and gene expression of isolated IVD fibrochondrocytes were analyzed. T2DM rats showed histopathological IVD degeneration. Femur lengths and epiphyseal areas were smaller in T2DM rats regardless of vit. K2 feeding. Fibrochondrocytes synthesized interleukin (IL)-24 and IL-10 with no major differences between groups. Alpha smooth muscle actin (αSMA) was strongly expressed, especially in cells of vit. K2-treated animals. Gene expression of aggrecan was low, and that of collagen type 2 was high in IVD cells of diabetic animals, whether treated with vit. K2 or not. Suppressor of cytokine signaling (Socs)3 and heme oxygenase (Hmox)1 gene expression was highest in the cells of diabetic animals treated with vit. K2. Vit. K2 influenced the expression of some stress-associated markers in IVD cells of diabetic rats, but not that of IL-10 and IL-24.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Masculino , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Vitamina K 2/metabolismo , Interleucina-10/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ratos Zucker , Diabetes Mellitus Tipo 2/metabolismo
12.
BMC Cancer ; 23(1): 519, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280571

RESUMO

BACKGROUND: Melanoma differentiation-associated gene 7 (Mda-7) encodes IL-24, which can induce apoptosis in cancer cells. A novel gene therapy approach to treat deadly brain tumors, recombinant mda-7 adenovirus (Ad/mda-7) efficiently kills glioma cells. In this study, we investigated the factors affecting cell survival and apoptosis and autophagy mechanisms that destroy glioma cells by Ad/IL-24. METHODS: Human glioblastoma U87 cell line was exposed to a multiplicity of infections of Ad/IL-24. Antitumor activities of Ad/IL-24 were assessed by cell proliferation (MTT) and lactate dehydrogenase (LDH) release analysis. Using flow cytometry, cell cycle arrest and apoptosis were investigated. Using the ELISA method, the tumor necrosis factor (TNF-α) level was determined as an apoptosis-promoting factor and Survivin level as an anti-apoptotic factor. The expression levels of TNF-related apoptosis inducing ligand(TRAIL) and P38 MAPK genes were assessed by the Reverse transcription-quantitative polymerase chain reaction(RT­qPCR) method. The expression levels of caspase-3 and protein light chain 3-II (LC3-II) proteins were analyzed by flow cytometry as intervening factors in the processes of apoptosis and autophagy in the cell death signaling pathway, respectively. RESULTS: The present findings demonstrated that transduction of IL-24 inhibited cell proliferation and induced cell cycle arrest and cell apoptosis in glioblastoma. Compared with cells of the control groups, Ad/IL24-infected U87 cells exhibited significantly increased elevated caspase-3, and TNF-α levels, while the survivin expression was decreased. TRAIL was shown to be upregulated in tumor cells after Ad/IL-24 infection and studies of the apoptotic cascade regulators indicate that Ad/IL-24 could further enhance the activation of apoptosis through the TNF family of death receptors. In the current study, we demonstrate that P38 MAPK is significantly activated by IL-24 expression. In addition, the overexpression of mda-7/IL-24 in GBM cells induced autophagy, which was triggered by the upregulation of LC3-II. CONCLUSIONS: Our study demonstrates the antitumor effect of IL-24 on glioblastoma and may be a promising therapeutic approach for GBM cancer gene therapy.


Assuntos
Glioblastoma , Humanos , Survivina/genética , Glioblastoma/patologia , Caspase 3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Regulação para Cima , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
13.
Arerugi ; 72(4): 393-394, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37316244
14.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233291

RESUMO

IL-24 is a multifunctional cytokine that regulates both immune cells and epithelial cells. Although its elevation is associated with a number of autoimmune diseases, its tolerogenic properties against autoreactive T cells have recently been revealed in an animal model of central nervous system (CNS) autoimmunity by inhibiting the pathogenic Th17 response. To explore the potential of IL-24 as a therapeutic agent in CNS autoimmunity, we induced experimental autoimmune uveitis (EAU) in wildtype mice and intravitreally injected IL-24 into the inflamed eye after disease onset. We found that the progression of ocular inflammation was significantly inhibited in the IL-24-treated eye when compared to the control eye. More importantly, IL-24 treatment suppressed cytokine production from ocular-infiltrating, pathogenic Th1 and Th17 cells. In vitro experiments confirmed that IL-24 suppressed both Th1 and Th17 differentiation by regulating their master transcription factors T-bet and RORγt, respectively. In addition, we found that intravitreal injection of IL-24 suppressed the production of proinflammatory cytokines and chemokines from the retinas of the EAU-inflamed eyes. This observation appears to be applicable in humans, as IL-24 similarly inhibits human retinal pigment epithelium cells ARPE-19. In conclusion, we report here that IL-24, as a multifunctional cytokine, is capable of resolving ocular inflammation in EAU mice by targeting both uveitogenic T cells and RPE cells. This study sheds new light on IL-24 as a potential therapeutic candidate for autoimmune uveitis.


Assuntos
Doenças Autoimunes , Uveíte , Animais , Autoimunidade , Citocinas/uso terapêutico , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Interleucinas , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Retina/patologia , Células Th1 , Células Th17 , Uveíte/patologia
15.
Ecotoxicol Environ Saf ; 244: 114039, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049333

RESUMO

BACKGROUND: Evidence suggests that exposure to PM2.5 increased hospitalization and mortality rates of respiratory diseases. However, the potential biomarkers and targets associated with PM2.5-induced lung dysfunction are not fully discovered. METHODS: Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and HALLMARK enrichment analysis of the RNA-seq data (Beas-2B cells treated with PM2.5) were applied. Gene set enrichment analysis (GSEA) was performed to identify the biological processes correlated with autophagy. Three gene expression profile datasets (GSE158954, GSE155616 and GSE182199) were downloaded from the Gene Expression Omnibus (GEO) database to identify the potential targets. PM2.5-exposed mice were constructed. Real-time qPCR, siRNA transfection, western blot, immunofluorescence, and pathological staining were applied for validation both in vitro and in vivo studies. RESULTS: GO, KEGG and HALLMARK enrichment based on RNA-seq data showed that the differentially expressed genes (DEGs) were associated with autophagy like lysosome and macroautophagy. GSEA analysis revealed that PM2.5 was positively correlated with autophagy-related biological processes compared with control group. Venn diagrams identified IL24 was upregulated in our data as well as in these three datasets (GSE158954, GSE155616 and GSE182199) after PM2.5 exposure. Consistent with the analysis, activation of autophagy by PM2.5 was validated in vivo and in vitro. In PM2.5-exposed mice, lung pathological changes were observed, including airway inflammation and mucus secretion. The mRNA and protein levels of the key gene, IL24, were significantly increased. Moreover, Bafilomycin A1, the inhibitor of autophagy, inhibited the autophagy and ameliorated lung injury induced by PM2.5. Furthermore, downregulation of IL24 decreased autophagy activity. Meanwhile, IL24 was regulated by mTOR signaling. CONCLUSIONS: In summary, we discovered a potential relationship between IL24 and autophagy during PM2.5 exposure. IL24 might be a novel potential biomarker or therapeutic target in PM2.5 caused lung dysfunction through regulation of autophagy.


Assuntos
Citocinas/metabolismo , Perfilação da Expressão Gênica , Material Particulado , Animais , Autofagia/genética , Pulmão , Camundongos , Material Particulado/toxicidade , RNA Mensageiro , RNA Interferente Pequeno , Serina-Treonina Quinases TOR , Transcriptoma
16.
Protein Expr Purif ; 199: 106154, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970490

RESUMO

Interleukin-24 (IL-24) displays tumor cell-specific proliferation inhibition in vitro and in vivo. Recombinant human IL-24 (rhIL-24) has significantly higher activity, yet significantly lower expression level in mammalian cells than in bacteria. To further realize therapeutic potential of IL-24, we enhanced rhIL-24 expression in mammalian cell systems by adapting engineered Flp-InTMCHO/IL-24 (FCHO/IL-24) cells (adherent cultured in Ham's F12 medium with 10% serum) to serum-free suspension culture. First, MTT assay showed that among four different media (F12, DMEM/F12, 1640 and DMEM), DMEM/F12 medium was the most suitable media for lower-serum adherent culture. Then, cells were adherently cultured in DMEM/F12 with serum concentration reduced from 10% to 0.5% in a gradient manner. Compared to cells in 10% serum, cells in 0.5% serum displayed significantly lower relative cell viability by 40%, increased G0/G1 phase arrest (8.5 ± 2.4%, p < 0.05), decreased supernatant rhIL-24 concentration by 73%, and altered metabolite profiles, such as glucose, lactate and ammonia concentration. Next, the cells were directly adapted to 0.5% serum suspension culture in 125 mL shake flask at 119 rpm with the optimal cell seeding density of 5 × 105 cells/mL (3.3 times higher than that of adherent culture), under which the concentration of rhIL-24 in culture medium was stable at 3.5 ng/mL. Finally, cells adapted to 0.5% serum proliferated better in serum-free medium Eden™-B300S with higher rhIL-24 expression level compared to CDM4CHO. The successful adaptation of engineered cells FCHO/IL-24 laid foundation for adapting cells from adherent culture to suspension serum-free culture to mass produce rhIL-24 protein for therapeutic purposes.


Assuntos
Interleucinas , Mamíferos , Animais , Divisão Celular , Linhagem Celular , Sobrevivência Celular , Meios de Cultura/farmacologia , Humanos , Interleucinas/genética
17.
Virol J ; 19(1): 106, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752792

RESUMO

BACKGROUND: MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer. However, the restricted immunogenicity has limited their clinical applications individually. To address this deficiency, we investigated whether combining the E7 DNA vaccine with MDA-7/IL-24 as an adjuvant would elicit efficient antitumor responses in tumor-bearing mouse models. Next, we evaluated how suppression of immunosuppressive IL-10 cytokine would enhance the outcome of our candidate adjuvant vaccine. METHODS: For this purpose, tumor-bearing mice received either E7 DNA vaccine, MDA-7/IL-24 cytokine or combination of E7 vaccine with MDA-7/IL-24 adjuvant one week after tumor challenge and boosted two times with one-week interval. IL-10 blockade was performed by injection of anti-IL-10 mAb before each immunization. One week after the last immunization, mice were sacrificed and the treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, the condition of tumors was monitored every two days for six weeks intervals from week 2 on, and the tumor volume was measured and compared within different groups. RESULTS: A highly significant synergistic relationship was observed between the E7 DNA vaccine and the MDA-7/IL-24 cytokine against HPV-16+ cervical cancer models. An increase in proliferation of lymphocytes, cytotoxicity of CD8+ T cells, the level of Th1 cytokines (IFN-γ, TNF-α) and IL-4, the level of apoptotic markers (TRAIL and caspase-9), and a decrease in the level of immunosuppressive IL-10 cytokine, together with the control of tumor growth and the induction of tumor regression, all prove the efficacy of adjuvant E7&IL-24 vaccine when compared to their individual administration. Surprisingly, vaccination with the DNA E7&IL-24 significantly reduced the population of Regulatory T cells (Treg) in the spleen of immunized mice compared to sole administration and control groups. Moreover, IL-10 blockade enhanced the effect of the co-administration by eliciting higher levels of IFN-γ and caspase-9, reducing Il-10 secretion and provoking the regression of tumor size. CONCLUSION: The synergy between the E7 DNA vaccine and MDA-7/IL-24 suggests that DNA vaccines' low immunogenicity can be effectively addressed by coupling them with an immunoregulatory agent. Moreover, IL-10 blockade can be considered a complementary treatment to improve the outcome of conventional or novel cancer therapies.


Assuntos
Vacinas Anticâncer , Interleucinas/imunologia , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos , Vacinas Anticâncer/genética , Caspase 9 , Citocinas/metabolismo , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/genética
18.
Environ Pollut ; 308: 119607, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718042

RESUMO

Fine particulate matter 2.5 (PM2.5) exposure leads to the progress of pulmonary disease. It has been reported that N6-methyladenosine (m6A) modification was involved in various biological processes and diseases. However, the critical role of m6A modification in pulmonary disease during PM2.5 exposure remains elusive. Here, we revealed that lung inflammation and mucus production caused by PM2.5 were associated with m6A modification. Both in vivo and in vitro assays demonstrated that PM2.5 exposure elevated the total level of m6A modification as well as the methyltransferase like 3 (METTL3) expression. Integration analysis of m6A RNA immunoprecipitation-seq (meRIP-seq) and RNA-seq discovered that METTL3 up-regulated the expression level and the m6A modification of Interleukin 24 (IL24). Importantly, we explored that the stability of IL24 mRNA was enhanced due to the increased m6A modification. Moreover, the data from qRT-PCR showed that PM2.5 also increased YTH N6-Methyladenosine RNA Binding Protein 1 (YTHDF1) expression, and the up-regulated YTHDF1 augmented IL24 mRNA translation efficiency. Down-regulation of Mettl3 reduced Il24 expression and ameliorated the pulmonary inflammation and mucus secretion in mice exposed to PM2.5. Taken together, our finding provided a comprehensive insight for revealing the significant role of m6A regulators in the lung injury via METTL3/YTHDF1-coupled epitranscriptomal regulation of IL24.


Assuntos
Citocinas , Lesão Pulmonar , Metiltransferases , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Material Particulado/toxicidade , Estabilidade de RNA , Regulação para Cima
19.
Front Oncol ; 12: 812560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402258

RESUMO

melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.

20.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054813

RESUMO

Interleukin (IL)-24 belongs to the IL-10 family and signals through two receptor complexes, i.e., IL-20RA/IL-20RB and IL-20RB/IL22RA1. It is a multifunctional cytokine that can regulate immune response, tissue homeostasis, host defense, and oncogenesis. Elevation of IL-24 is associated with chronic inflammation and autoimmune diseases, such as psoriasis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). Its pathogenicity has been confirmed by inducing inflammation and immune cell infiltration for tissue damage. However, recent studies also revealed their suppressive functions in regulating immune cells, including T cells, B cells, natural killer (NK) cells, and macrophages. The tolerogenic properties of IL-24 were reported in various animal models of autoimmune diseases, suggesting the complex functions of IL-24 in regulating autoimmunity. In this review, we discuss the immunoregulatory functions of IL-24 and its roles in autoimmune diseases.


Assuntos
Inflamação/imunologia , Interleucinas/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Humanos , Inflamação/terapia , Modelos Biológicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...