Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Sci Rep ; 14(1): 15471, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969697

RESUMO

This study examines the effect of phycoerythrin (PE) from a cyanobacterial Nostoc strain encapsulated with alginate as a potential prebiotic to produce synbiotic ice cream products with Lactobacillus casei. It was found that the addition of the encapsulated PE affected, mostly favourably, the physicochemical properties, antioxidant activity, probiotic survival, volatile compound contents, and sensory acceptability of the synbiotic ice cream samples before and after aging at the freezing periods of one day to eight weeks. Thus, it confirms the prebiotic potential of PE for synbiotic ice creams with L. casei.


Assuntos
Alginatos , Sorvetes , Lacticaseibacillus casei , Ficoeritrina , Simbióticos , Lacticaseibacillus casei/metabolismo , Sorvetes/microbiologia , Alginatos/química , Ficoeritrina/química , Simbióticos/administração & dosagem , Antioxidantes/química , Nostoc/metabolismo , Probióticos
2.
Gels ; 10(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920943

RESUMO

The objective of this study was to develop candelilla wax oleogels with hemp seed oil and olive oil and use them as a fat source in the development of new plant-based ice cream assortments. Oleogels were structured with 3 and 9% candelilla wax and characterized by oil-binding capacity, peroxide value and color parameters. The oil-binding capacities of 9% wax oleogels were significantly higher than those of 3% wax oleogels, while peroxide values of oleogels decrease with increasing wax dosage. All oleogel samples are yellow-green due to the pigments present in the oils and candelilla wax. Physicochemical (pH, titratable acidity, soluble solids, fat, protein) and rheological (viscosity and viscoelastic modulus) parameters of plant-based ice cream mixes with oleogels were determined. Also, sensory attributes and texture parameters were investigated. The results showed that titratable acidity and fat content of plant-based ice cream samples increased with increasing wax percentage, while pH, soluble solids and protein values are more influenced by the type of plant milk used. The plant-based ice cream sample with spelt milk, hemp oil and 9% candelilla wax received the highest overall acceptability score. The hardness of the plant-based ice cream samples increased as the percentage of candelilla wax added increased.

3.
J Food Sci Technol ; 61(7): 1400-1410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910932

RESUMO

Ice cream is a multiphase frozen dessert that often melts during distribution and upon consumption. The meltdown phenomenon is one of the concerns in the quality preservation of ice cream for consumer convenience in the frozen food industry. In this context, X-ray tomography was used to visualise and quantify 3D ice crystal and air bubble evolution during the meltdown of ice cream. Two ice cream products, namely I and II, with varying air volume fractions, were evaluated for this study. The results indicated a small mean diameter of 66.43 ± 2.07 µm at 0 min and decreased to 45.74 ± 3.92 µm during 10 min of the meltdown of ice cream II. A large mean diameter of ice crystals of 75.02 ± 3.14 µm was found in ice cream I, at 0 min that decreased significantly (p < 0.05) to 54.30 ± 2.63 µm during 10 min of the meltdown. The air bubbles were also observed to decrease in mean diameter. The 3D datasets on the ice crystals and air bubbles described in this work provide more insight into the 3D microstructural evolution during the meltdown and are useful in controlling the sensory quality attributes of ice cream desserts.

4.
Food Chem ; 454: 139839, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810444

RESUMO

Probiotic lactic acid bacteria have been widely studied, but much less was focused on probiotic yeasts in food systems. In this study, probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 was employed to prepare ice cream added with and without inulin (1%, w/v). Metabolomics analysis on the effect of inulin showed 84 and 147 differentially expressed metabolites identified in the ice cream samples from day 1 and day 30 of storage (-18 °C), respectively. Various potential functional metabolites were found, including citric acid, ornithine, D-glucuronic acid, sennoside A, stachyose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cis-aconitic acid, gamma-aminobutyric acid, L-threonine, L-glutamic acid, tryptophan, benzoic acid, and trehalose. Higher expression of these metabolites suggested their possible roles through relevant metabolic pathways in improving survivability of the probiotic yeast and functionality of ice cream. This study provides further understanding on the metabolic characteristics of probiotic yeast that potentially affect the functionality of ice cream.


Assuntos
Sorvetes , Inulina , Metabolômica , Prebióticos , Probióticos , Saccharomyces cerevisiae , Simbióticos , Inulina/metabolismo , Probióticos/metabolismo , Simbióticos/análise , Prebióticos/análise , Saccharomyces cerevisiae/metabolismo , Sorvetes/análise , Sorvetes/microbiologia , Saccharomyces boulardii/metabolismo , Saccharomyces boulardii/química
5.
Foods ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790810

RESUMO

Unsaturated fat replacement should be used to reduce the use of saturated fat and trans fatty acids in the diet. In this study, pea protein micro-gels (PPMs) with different structures were prepared by microparticulation at pH 4.0-7.0 and named as PPM (pH 4.0), PPM (pH 4.5), PPM (pH 5.0), PPM (pH 5.5), PPM (pH 6.0), PPM (pH 6.5), and PPM (pH 7.0). Pea protein was used as a control to evaluate the structure and interfacial properties of PPMs by particle size distribution, Fourier transform infrared spectroscopy (FTIR), free sulfhydryl group content, and emulsifying property. PPM (pH 7.0) was suitable for application in O/W emulsion stabilization because of its proper particle size, more flexible structure, high emulsifying activity index (EAI) and emulsifying stability index (ESI). The Pickering emulsion stabilized by PPM (pH 7.0) had a uniform oil droplet distribution and similar rheological properties to cream, so it can be used as a saturated fat replacement in the manufacture of ice cream. Saturated fat was partially replaced at different levels of 0%, 20%, 40%, 60%, 80%, and 100%, which were respectively named as PR0, PR20, PR40, PR60, PR80, and PR100. The rheological properties, physicochemical indexes, and sensory properties of low-saturated fat ice cream show that PPM (pH 7.0)-stabilized emulsion can be used to substitute 60% cream to manufacture low-saturated fat ice cream that has high structural stability and similar melting properties, overrun, and sensory properties to PR0. The article shows that it is feasible to prepare low-saturated fat ice cream with PPM (pH 7.0)-stabilized Pickering emulsion, which can not only maintain the fatty acid profile of the corn oil used, but also possess a solid-like structure. Its application is of positive significance for the development of nutritious and healthy foods and the reduction of chronic disease incidence.

6.
Environ Sci Pollut Res Int ; 31(21): 31646-31655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38668945

RESUMO

The diversity of microalgae and bacteria allows them to form beneficial consortia for efficient wastewater treatment and nutrient recovery. This study aimed to evaluate the feasibility of a new microalgal-bacterial combination in the treatment of ice cream wastewater for biomass harvest. The bacterium Novosphingobium sp. ICW1 was natively isolated from ice cream wastewater and the microalga Vischeria sp. WL1 was a terrestrial oil-producing strain of Eustigmatophyceae. The ice cream wastewater was diluted 4 folds for co-cultivation, which was relatively less inhibitory for the growth of Vischeria sp. WL1. Four initial algal-bacterial combinations (v:v) of 150:0 (single algal cultivation), 150:1, 150:2, and 150:4 were assessed. During 24 days of co-cultivation, algal pigmentation was dynamically changed, particularly at the algal-bacterial combination of 150:4. Algal growth (in terms of cell number) was slightly promoted during the late phase of co-cultivation at the combinations of 150:2 and 150:4, while in the former the cellular oil yield was obviously elevated. Treated by these algal-bacterial combinations, total carbon was reduced by 67.5 ~ 74.5% and chemical oxygen demand was reduced by 55.0 ~ 60.4%. Although single bacterial treatment was still effective for removing organic nutrients, the removal efficiency was obviously enhanced at the algal-bacterial combination of 150:4. In addition, the harvested oils contained 87.1 ~ 88.3% monounsaturated fatty acids. In general, this study enriches the biotechnological solutions for the sustainable treatment of organic matter-rich food wastewater.


Assuntos
Biomassa , Microalgas , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo
7.
Food Chem ; 449: 139187, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604029

RESUMO

Pickering emulsions stabilized by protein particles are of great interest for use in real food systems. This study was to investigate the properties of microgel particles prepared from different plant proteins, i.e., soybean protein isolate (SPI), pea protein isolate (PPI), mung bean protein isolate (MPI), chia seed protein isolate (CSPI), and chickpea protein isolate (CPI). MPI protein particles had most desirable Pickering emulsion forming ability. The particles of SPI and PPI had similar particle size (316.23 nm and 294.80 nm) and surface hydrophobicity (2238.40 and 2001.13) and emulsion forming ability, while the CSPI and CPI particle stabilized emulsions had the least desirable properties. The MPI and PPI particle stabilized Pickering emulsions produced better quality ice cream than the one produced by SPI particle-stabilized emulsions. These findings provide insight into the properties of Pickering emulsions stabilized by different plant protein particles and help expand their application in emulsions and ice cream.


Assuntos
Emulsões , Tamanho da Partícula , Proteínas de Plantas , Emulsões/química , Proteínas de Plantas/química , Microgéis/química , Interações Hidrofóbicas e Hidrofílicas , Sorvetes/análise , Cicer/química , Vigna/química
8.
Food Sci Nutr ; 12(4): 2747-2759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628191

RESUMO

The effects of blueberry (BB) and jujube fruit (JF) on the quality parameters, functional, probiotic (Lactobacillus acidophilus DSM 20079) viability, and sensorial properties of probiotic ice cream were investigated. No statistical differences were discovered regarding titratable acidity and L. acidophilus DSM 20079 counts between all samples. However, the ice creams preserved the survivability of probiotic bacteria during the storage period. The probiotic ice creams had counts of viable L. acidophilus DSM 20079 ranging from 8.42 to 8.80 log CFU/g which met the minimum required to achieve probiotic effects after 60 days of storage. Probiotic ice cream with BB or JF had significantly lower L* values than the control, and the BB addition caused the greatest decrease. The addition of both fruits clearly enhanced the total phenolic content and antioxidative activity in ice cream. The incorporation of BB or JF into the ice creams did not statistically affect the overrun value, while the addition of both fruits dramatically affected the first dripping time and increased hardness. Overall, sensory attributes were not significantly altered by the fortification of either fruit relative to the control, so these fruits can be added at higher concentrations to ice cream formulations for further studies.

9.
J Food Sci Technol ; 61(5): 907-917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487276

RESUMO

"Aquafaba", defined as legume cooking water, has a feature that can be used in various formulations as an egg and milk alternative in vegan products and improves functional properties such as foaming, emulsifying and gelling. In this study, it was aimed to investigate the usability of aquafaba in ice cream type frozen desserts containing different fruit purees (strawberry, nectarine and banana) by using its foaming capacity. Rheological properties, microstructure, overrun, melting characteristics, color measurement, dry matter, and sensory properties were investigated in different fruit-based frozen dessert samples. The brix value, density, protein content, foaming capacity (FC) and foaming stability (FS), flow behavior index, consistency coefficient, and overrun of aquafaba were determined as 7.1 ± 0°Bx, 1.022 ± 0.011 g/ml, 1.51 ± 0.41%, 85 ± 0% FC and 81 ± 0.23% FS, between 0.28 and 0.64, between 8.68 and 41.30 Pa·sn, between 116.75 and 395.93%, respectively. The dry matter content of the strawberry, nectarine, and banana-based dessert samples ranged between 17 and 48%, 20-49%, 25-50%, and the first dropping times were determined between 348 and 1538 s, 369-1689 s and 435-1985 s, respectively. As a result, cooking liquid leftover aquafaba can be used as a suitable raw material in the production of an alternative ice cream type frozen dessert for individuals with milk allergy, lactose intolerance or who prefer a vegan diet. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05885-y.

10.
Heliyon ; 10(3): e25488, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352736

RESUMO

The peels are considered part of waste products, which are generally discarded. The use of persimmon peel is associated with its phenolic content, dietary fibers, minerals, and pectins. The main objective of this study was to evaluate changes in antioxidant activity, total phenolic contents (TPC), and color parameters of persimmon peels after freeze drying (-85 °C for 24h), vacuum oven drying (45 °C for 12h), oven drying (50 °C for 12h) and microwave oven drying treatment (900W for 10s). In the next step, the functional ice cream was prepared and studied by adding dried persimmon peel powder (DPPP). Various properties of the resulting ice cream at 4 levels of DPPP addition were investigated. The results showed that the highest value of L*,a*,and b* parameters were in the freeze-dried sample. There was a significant difference in the TPC of samples that dried by different methods (p < 0.05). The highest amount of TPC was observed in the freeze-dried sample (673 ± 2.0 mgGAE/100g) and the lowest one was observed in the oven-dried sample (352 ± 0.5 mgGAE/100g). The highest value for IC50 (concentration of the antioxidant compound that is necessary for the DPPH radical concentration to reach 50 % of the initial value) was in the sample dried in the oven, following the vacuum oven, microwave, and the lowest value was in the freeze-dried sample. DPPP produced by the freeze-drying method was applied in ice cream formulation at different levels (0-3 %wt.). By increasing the amount of DPPP from 0 to 3 %, the overrun and L* decreased and a*, b*, hardness, and melting resistance of ice cream increased significantly (p < 0.05). Based on our findings, DPPP has the potential to be applied as an added-value ingredient in the ice cream industry to improve the functional characteristics of its products.

11.
Foods ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201198

RESUMO

The use of liquid whey concentrates in the composition of ice cream, especially in combination with other powdered whey proteins, is limited due to their understudied properties. This article shows the main rheological and thermophysical characteristics of ice cream mixes, as well as color parameters, microstructure, analysis of ice crystals and quality indicators of ice cream during storage. The most significant freezing of free water (p ≤ 0.05) was observed in the temperature range from the cryoscopic temperature to -10 °C. The microscopy of experimental ice cream samples based on hydrolyzed whey concentrates indicates the formation of a homogeneous crystalline structure of ice crystals with an average diameter of 13.75-14.75 µm. Microstructural analysis confirms the expediency of using whey protein isolate in ice cream, which ensures uniform distribution of air bubbles in the product and sufficient overrun (71.98-76.55%). The combination of non-hydrolyzed whey concentrate and 3% whey protein isolate provides the highest stability to preserve the purity and color intensity of the ice cream during storage. The produced ice cream can be classified as probiotic (number of Lactobacillus acidophilus not lower than 6.2 log CFU/g) and protein-enriched (protein supply from 15.02-18.59%).

12.
Heliyon ; 10(1): e23894, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226243

RESUMO

This study investigated the effect of flavoured nanophytosomes loaded with vitamins A, E, D, B complex, folic acid, and C, as well as zinc on the immunosuppressive cyclosporin A (CsA)-induced liver and kidney injury in male rats. The vitamins flavoured nanophytosomes (VFnPs) were characterized in terms of particle size, zeta potential, encapsulation efficiency. Ice cream was flavoured with star anise volatile oil to mask the VFnPs' flavour and unacceptable taste. The study found that treatment with CsA alone resulted in increased (P > 0.05) levels of creatinine, urea, and MDA, as well as the activities of AST and ALT, while the levels of SOD, CAT, GST, proteins, CD4, INF-ᵧ, IL-6, IL-1ß, and TLR4 decreased (P > 0.05). However, the group that received CsA simultaneously with VFnPs showed a significant (P > 0.05) decrease in the levels of creatinine, urea, and MDA, as well as the activities of AST and ALT, and increased (P > 0.05) levels of SOD, CAT, GST, proteins, CD4, INF-ᵧ, IL-6, IL-1ß, and TLR4. The increase in the ratio of VFnPs had little effect on the physiochemical and sensory evaluation of the ice cream. Finally, the study suggests that VFnPs could potentially protect against CsA-induced liver and kidney injury and serve as a promising natural therapy for treating such conditions.

13.
Food Sci Nutr ; 12(1): 192-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268905

RESUMO

This study investigated the changes in the physicochemical, microbiological, textural, and nutritional values of ice cream produced by various methods with the addition of different lactic acid bacteria. Adding lactic acid bacteria to the ice cream mix caused a decrease in firmness, consistency, cohesiveness, index of viscosity, pH, aw, first drop, complete melting, and overrun values (p < .05). These decreases were more pronounced in the samples to which lactic acid bacteria were added before mix maturation (p < .05). Firmness and consistency values varied between 15.11-16.26 (g) and 374.58-404.91 (g s), respectively, in the samples to which lactic acid bacteria were added before maturation. No significant effect of the addition of lactic acid bacteria to the ice cream mix on the L*, a*, and b* values of the bacteria before or after mix maturation was detected (p > .05). The L* values of the samples varied between 88.91 and 83.36, a* values between 0.76 and 1.32, and b* values between 6.57 and 8.38. An increase was detected in the amount of organic acid (excluding formic acid) in the samples produced with the addition of different lactic acid bacteria (p < .05). The number of fatty acids in the samples varied depending on the lactic acid addition and the production method; the rate of this change was generally higher in the samples with added lactic acid bacteria after mix maturation (p < .05). In particular, the amounts of short- and medium-chain fatty acids increased in the samples with lactic acid bacteria added after mix ripening, compared to the control sample.

14.
J Dairy Sci ; 107(6): 3468-3477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246535

RESUMO

Ice cream manufacture commonly results in the accumulation of wasted product that contains valuable food-grade quality components, including fat, carbohydrates, and protein. Methods have been developed for recovering the fat from this waste stream, but this results in the generation of a co-product rich in fermentable carbohydrates. This study aimed to investigate the potential for using this co-product as a fermentation substrate for production of antimicrobial peptides, called bacteriocins, by dairy starter cultures. Results showed that Streptococcus thermophilus B59671 and Lactococcus lactis 11454 produced the broad-spectrum bacteriocins thermophilin 110 and nisin, respectively, when the fermentation substrate was melted ice cream, or a co-product generated by a modified butter churning technique. Bacteriocin production varied depending on the brand and variety of vanilla ice cream used in this study. When an alternate enzyme-assisted fat extraction technique was used, S. thermophilus metabolism was impaired within the resulting co-product, and thermophilin 110 production was not observed. Lactococcus lactis was still able to grow in this co-product, but antimicrobial activity was not observed. Results from this study suggest the co-product generated when using the churning technique is a better choice to use as a base medium for future studies to optimize bacteriocin production.


Assuntos
Bacteriocinas , Fermentação , Sorvetes , Lactobacillales , Bacteriocinas/metabolismo , Bacteriocinas/biossíntese , Lactobacillales/metabolismo , Streptococcus thermophilus/metabolismo , Lactococcus lactis/metabolismo
15.
Int J Biol Macromol ; 257(Pt 1): 128183, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977455

RESUMO

Pickering emulsions are of great interest to the food industry and their freeze-thaw stability important when used in frozen foods. Particles of soybean isolate (SPI) were heat treated and then crosslinked with transglutaminase (TG) enzyme to produce Pickering emulsions. The protein particles produced using unheated and uncrosslinked SPI (NSPI) was used as the benchmark. The mean particle size, absolute zeta potential, and surface hydrophobicity of protein particles produced using heat treatment and TG crosslinking (at 40 U/g) SPI (HSPI-TG-40) were the highest and substantially higher than those produced using NSPI. The thermal treatment of protein particles followed by crosslinking with TG enzyme improved the freeze-thaw stability of Pickering emulsions stabilized by them. The Pickering emulsions produced using HSPI-TG-40 had the lowest temperature for ice crystal formation and they had better freeze-thaw stability. The plant-based ice cream prepared by HSPI-TG-40 particle-stabilized Pickering emulsions had suitable texture and freeze-thaw stability compared to the ice cream produced using NSPI. The Pickering particles produced using heat treatment of SPI followed by crosslinking with TG (at 40 U/g) produced the most freeze-thaw stable Pickering emulsions. These Pickering particles and Pickering emulsions could be used in frozen foods such as ice cream.


Assuntos
Sorvetes , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Congelamento , Temperatura Baixa , Tamanho da Partícula
16.
Microbiol Spectr ; 12(1): e0116723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38038456

RESUMO

IMPORTANCE: Antilisterial LAB strains have been proposed as biological control agents for application in food processing environments. However, the effect of resident food processing environment microbiota on the performance on antilisterial LAB strains is poorly understood. Our study shows that the presence of microbiota collected from ice cream processing facilities' environmental surfaces can affect the attachment and inhibitory effect of LAB strains against L. monocytogenes. Further studies are therefore needed to assess whether individual microbial taxa affect antilisterial properties of LAB strains and to characterize the underlying mechanisms.


Assuntos
Sorvetes , Lactobacillales , Listeria monocytogenes , Microbiota , Manipulação de Alimentos , Microbiologia de Alimentos
17.
Foods ; 12(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137285

RESUMO

Ice cream is a popular frozen food consumed worldwide throughout the year. However, as a thermally unstable product, it requires proper cold chain management. Thermal fluctuations alter the physicochemical properties of ice cream and reduce its quality. This study was conducted to evaluate the physicochemical and sensory properties of ice cream containing different amounts (0.5; 0.8; 1.0%) of a multimineral preparation from Atlantic red algae. The effect of thermal shock on the quality of ice cream after preparation and 90 days of frozen storage was studied. The addition of a multimineral component slightly increased the freezing and glass transition temperatures of the ice cream. The overrun of the ice cream ranged from 48.55 to 52.78% and decreased with the frozen storage time, but the samples with 0.8 and 1.0% mineral content had the most stable overrun in terms of storage time and thermal fluctuations. Ice cream stored for both 7 and 90 days showed a similar melting behavior, although a shift in the melting curves was observed after long frozen storage. The samples exposed to the thermal treatment had lower melting rates by 39.2-59.9% and 55.2-65.4% for 7-day and 90-day stored ice cream, respectively. The hardness parameters of the ice cream did not change significantly under the conditions applied, so the fragility of the ice cream and its fluffiness did not seem to be affected. The organoleptic evaluation showed that ice cream with a mineral content of 0.8% was the most acceptable in terms of taste, texture, and overall acceptability. The applied mineral and sucrose content ratios did not alter the main physicochemical and organoleptic parameters, but significantly affected the nutrient density of the ice cream.

18.
Food Technol Biotechnol ; 61(3): 350-356, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38022888

RESUMO

Research background: Various sectors of the food industry demand the enrichment of food with functional compounds. Probiotic products with valuable nutritional and therapeutic properties have attracted great attention in the fields of industry, nutrition and medicine. The aim of the present study is to investigate the sensory and physicochemical properties of probiotic ice cream containing fig syrup and to evaluate the survival of Bacillus coagulans after 90 days of storage at -18 °C. Experimental approach: In this study, four experimental groups of ice cream were produced as follows: plain dairy ice cream (without additives), ice cream containing 109 CFU/g B. coagulans, ice cream containing 25 % fig syrup as sugar substitute and ice cream containing 25 % fig syrup as sugar substitute and 109 CFU/g B. coagulans. They were stored at -18 °C for 3 months. Texture, pH, acidity and viscosity were analysed and microbial counts were determined after 1, 30, 60 and 90 days of storage. The organoleptic evaluation was carried out on days 1 and 90. Results and conclusions: The results showed that during the initial freezing process and the transformation of the mixture into ice cream, the number of B. coagulans decreased from 109 to 107 CFU/g, without significant changes observed over the 90-day period. No significant changes were found in the sensory and textural properties of the samples either. Replacement of 25 % sugar with fig syrup reduced the pH, increased the acidity of the ice cream and improved their viscosity. In conclusion, the production of functional ice cream using fig syrup and B. coagulans is recommended for their health benefits. Novelty and scientific contribution: The results of this study can be used to prepare functional and healthy foods. Our results suggest that fig syrup has the potential to be used as a natural sweetener or sugar substitute in various products.

19.
Food Sci Nutr ; 11(10): 6571-6581, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823143

RESUMO

There is an increasing challenge in probiotic viability and stability during food product formulation, processing, and storage. However, synbiotic functional foods have promising potential to deliver the targeted benefits. This study aimed to isolate the okara from soybean residue, and obtained okara flour was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Synbiotic ice cream was developed by fortification with Lactobacillus rhamnosus GG and okara at different concentrations (1-3%). Additionally, the synbiotic ice cream was subjected to physicochemical and sensory attributes over 60 days of storage. High viability of L. rhamnosus GG (8.17 log CFU/mL) was observed during storage at 3% okara. Moreover, adding okara at 2% or higher improved viscosity, reduced overrun, and maintained probiotic viability. When compared to the control (ice cream without okara), synbiotic ice cream exhibited a higher protein content and a lower fat level. The synergistic combination of probiotics and okara in ice cream is a potentially novel approach for developing functional ice cream. The addition of okara is not only helpful in increasing the nutritional value of the ice cream but will also be a way forward to minimize agricultural waste. Synbiotic ice cream developed in this study may be considered a potential functional food rich in protein and low in fat.

20.
Foods ; 12(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37893753

RESUMO

Yogurt acid whey (YAW), a by-product of strained yogurt production, is a strong environmental pollutant because of its high organic load. Hence, efforts are made for its utilization to minimize its disposal in the environment. This study deals with the incorporation of YAW in yogurt ice cream (YIC) by partial replacement of yogurt with simultaneous lactose hydrolysis (LH) of the formulated YIC mix. Six YIC mix formulations were made, two without YAW (non-LH- and LH-control samples, A and AH), two with 12.5% YAW (samples B and BH), and two with 18.75% YAW (samples C and CH). The results showed that the partial replacement of yogurt with YAW decreased significantly (p < 0.05) the total solids of B, BH, C, and CH products (31.72 ± 0.14%, 31.92 ± 0.21%, 30.94 ± 0.14%, and 31.27 ± 0.10%, respectively) compared to the total solids of control products A and AH (33.30 ± 0.36% and 33.74 ± 0.06%, respectively). In contrast, the overruns increased (51.50 ± 2.36%, 58.26 ± 0.09%, 56.86 ± 1.92%, and 65.52 ± 1.30% for the B, BH, C, and CH products, respectively) compared to control samples (42.02 ± 2.62% and 49.53 ± 2.12% for A and AH, respectively). LH significantly decreased the freezing point and the viscosity of the YIC mixes but increased the overruns of the products as shown previously. YAW significantly decreased the hardness of the B and C products (56.30 ± 2.11 N and 43.43 ± 3.91 N, respectively) compared to control A (81.14 ± 9.34 N), and LH decreased it even more, leading to a rather soft scoop YIC. AH, BH, and CH YICs exhibited better melting properties despite the lack of fat destabilization in all samples. After 60 days of storage, counts of yogurt starter microorganisms were still >107 cfu/g and DPPH radical scavenging activity had increased in all products. In the sensory evaluation test, lactose-hydrolyzed samples AH, BH, and CH had less intense sandiness and, as expected, more intense sweetness. In conclusion, in the framework of the circular economy, it is possible for the YAW to be used as a resource material at a ratio of 12.5% to produce a YIC product without leaving behind any new waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...