Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.802
Filtrar
1.
J Thorac Dis ; 16(6): 3818-3827, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983157

RESUMO

Background: Radial endobronchial ultrasound (rEBUS) guide sheath (GS) transbronchial lung biopsy (TBLB) improves the diagnostic yield of peripheral lung lesions (PLL). However, its diagnostic yield is approximately 60%. We aimed to evaluate the diagnostic utility of adding rEBUS GS transbronchial needle aspiration (TBNA) using PeriView FLEX needle (Olympus, Tokyo, Japan) to rEBUS GS TBLB. Methods: In this retrospective study, we initially screened 124 PLLs in 123 patients who underwent rEBUS GS procedures for PLLs from December 2020 to August 2021. The analysis was performed on 74 PLLs in 73 patients who underwent both rEBUS GS TBLB and TBNA. Results: PLLs showed the following characteristics: lesion size [mean ± standard deviation (SD)], 24±12 mm; nature (solid vs. subsolid), 59 (79.7%) vs. 15 (20.3%); distance from the pleura (mean ± SD), 14±14 mm; rEBUS visualization type (probe within PLL vs. probe adjacent to PLL), 56 (75.7%) vs. 18 (24.3%). Among 74 PLLs, 47 (63.5%) were successfully diagnosed by rEBUS GS TBLB. In 27 PLLs not diagnosed by rEBUS GS TBLB, 5 (18.5%) were further diagnosed by rEBUS GS TBNA [overall diagnostic yield: 70.3% (52/74)]. EBUS visualization type of "probe adjacent to PLL" was a significant factor associated with the diagnostic yield of additional rEBUS GS TBNA. Conclusions: In rEBUS GS procedures for PLLs, the diagnostic yield might be improved by implementing TBNA in addition to TBLB. In particular, additional TBNA is preferable if the probe is adjacent to the lesion rather than within the lesion on rEBUS.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38973695

RESUMO

Background: Allostatic load (AL) is the accumulation of physiological dysregulation attributed to repeated activation of the stress response over a lifetime. We assessed the utility of AL as a prognostic measure for high-risk benign breast biopsy pathology results. Method: Eligible patients were women 18 years or older, with a false-positive outpatient breast biopsy between January and December 2022 at a tertiary academic health center. AL was calculated using 12 variables representing four physiological systems: cardiovascular (pulse rate, systolic and diastolic blood pressures, total cholesterol, high-density lipoprotein, and low-density lipoprotein); metabolic (body mass index, albumin, and hemoglobin A1C); renal (creatinine and estimated glomerular filtration rate); and immune (white blood cell count). Multivariable logistic regression was used to assess the association between AL before biopsy and breast biopsy outcomes controlling for patients' sociodemographics. Results: In total, 170 women were included (mean age, 54.1 ± 12.9 years): 89.4% had benign and 10.6% had high-risk pathologies (radial scar/complex sclerosing lesion, atypical ductal or lobular hyperplasia, flat epithelial atypia, intraductal papilloma, or lobular carcinoma in-situ). A total of 56.5% were White, 24.7% Asian, and 17.1% other races. A total of 32.5% identified as Hispanic. The mean breast cancer risk score using the Tyrer-Cuzick model was 11.9 ± 7.0. In multivariable analysis, with every one unit increase in AL, the probability of high-risk pathology increased by 37% (odds ratio, 1.37; 95% confidence interval, 1.03, 1.81; p = 0.03). No significant association was seen between high-risk pathology and age, ethnicity, breast cancer risk, or area deprivation index. Conclusion: Our findings support that increased AL, a biological marker of stress, is associated with high-risk pathology among patients with false-positive breast biopsy results.

3.
J Med Syst ; 48(1): 66, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976137

RESUMO

Three-dimensional (3D) printing has gained popularity across various domains but remains less integrated into medical surgery due to its complexity. Existing literature primarily discusses specific applications, with limited detailed guidance on the entire process. The methodological details of converting Computed Tomography (CT) images into 3D models are often found in amateur 3D printing forums rather than scientific literature. To address this gap, we present a comprehensive methodology for converting CT images of bone fractures into 3D-printed models. This involves transferring files in Digital Imaging and Communications in Medicine (DICOM) format to stereolithography format, processing the 3D model, and preparing it for printing. Our methodology outlines step-by-step guidelines, time estimates, and software recommendations, prioritizing free open-source tools. We also share our practical experience and outcomes, including the successful creation of 72 models for surgical planning, patient education, and teaching. Although there are challenges associated with utilizing 3D printing in surgery, such as the requirement for specialized expertise and equipment, the advantages in surgical planning, patient education, and improved outcomes are evident. Further studies are warranted to refine and standardize these methodologies for broader adoption in medical practice.


Assuntos
Fraturas Ósseas , Impressão Tridimensional , Tomografia Computadorizada por Raios X , Humanos , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Traumatologia , Sistemas de Informação em Radiologia/organização & administração , Modelos Anatômicos
4.
Neurosurg Focus Video ; 11(1): V4, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957418

RESUMO

An accurate definition of the epileptogenic zone is critical to the success of epilepsy surgery. When noninvasive presurgical studies are insufficient, stereoelectroencephalography (SEEG) becomes indispensable. This study illustrates a systematic approach using an illustrative case of centroparietal epilepsy, detailing the stepwise workup, planning, and image-guided robot-assisted frameless stereotactic implantation of intracerebral electrodes. The video provides insights into technical aspects and a single-center experience. Demonstrating efficacy, safety, and feasibility, SEEG emerges as a valuable procedure for studying drug-resistant focal epilepsy. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID2427.

5.
Med Image Anal ; 97: 103254, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38968908

RESUMO

The present standard of care for unresectable liver cancer is transarterial chemoembolization (TACE), which involves using chemotherapeutic particles to selectively embolize the arteries supplying hepatic tumors. Accurate volumetric identification of intricate fine vascularity is crucial for selective embolization. Three-dimensional imaging, particularly cone-beam CT (CBCT), aids in visualization and targeting of small vessels in such highly variable anatomy, but long image acquisition time results in intra-scan patient motion, which distorts vascular structures and tissue boundaries. To improve clarity of vascular anatomy and intra-procedural utility, this work proposes a targeted motion estimation and compensation framework that removes the need for any prior information or external tracking and for user interaction. Motion estimation is performed in two stages: (i) a target identification stage that segments arteries and catheters in the projection domain using a multi-view convolutional neural network to construct a coarse 3D vascular mask; and (ii) a targeted motion estimation stage that iteratively solves for the time-varying motion field via optimization of a vessel-enhancing objective function computed over the target vascular mask. The vessel-enhancing objective is derived through eigenvalues of the local image Hessian to emphasize bright tubular structures. Motion compensation is achieved via spatial transformer operators that apply time-dependent deformations to partial angle reconstructions, allowing efficient minimization via gradient backpropagation. The framework was trained and evaluated in anatomically realistic simulated motion-corrupted CBCTs mimicking TACE of hepatic tumors, at intermediate (3.0 mm) and large (6.0 mm) motion magnitudes. Motion compensation substantially improved median vascular DICE score (from 0.30 to 0.59 for large motion), image SSIM (from 0.77 to 0.93 for large motion), and vessel sharpness (0.189 mm-1 to 0.233 mm-1 for large motion) in simulated cases. Motion compensation also demonstrated increased vessel sharpness (0.188 mm-1 before to 0.205 mm-1 after) and reconstructed vessel length (median increased from 37.37 to 41.00 mm) on a clinical interventional CBCT. The proposed anatomy-aware motion compensation framework presented a promising approach for improving the utility of CBCT for intra-procedural vascular imaging, facilitating selective embolization procedures.

6.
Cytopathology ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979853

RESUMO

Interventional pathology has emerged as a pivotal force in modern healthcare, heralding a paradigm shift from traditional diagnostic approaches to patient-centered care. This innovative field bridges the gap between pathology and cytopathology, empowering pathologists to streamline diagnoses and reduce waiting times for patients. Collaborative mentorship and knowledge sharing ensure a lasting legacy of diagnostic excellence for future generations. Interventional pathology stands as a symbol of innovation and patient empowerment, offering a unified approach to diagnostics and improved care in the era of personalized medicine. This narrative chronicles the evolution of interventional pathologists from behind-the-scenes diagnostic specialists to frontline innovators. This is the story of the rise of the interventional pathologist: a testament to innovation, dedication, and an unwavering commitment to patient well-being.

7.
Radiography (Lond) ; 30(5): 1249-1257, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970885

RESUMO

METHOD: 2D/3D kV imaging and CBCT data using 6 degrees of freedom (6DoF) were compared to evaluate inter and intrafraction motion. RESULTS: Results showed that intrafraction errors were low and interfraction levels were within institutional protocols. CONCLUSION: Confidence was given to use low dose 2D/3D kV imaging to confirm daily patient set up errors, and to use pre-treatment CBCT only once weekly for additional imaging information. IMPLICATIONS FOR PRACTICE: Further research is necessary to assess other uncertainties, to enable the calculation of a margin and determining the feasibility of further reduction of this.

8.
Med Phys ; 51(7): 4554-4566, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38856158

RESUMO

BACKGROUND: Image-to-patient registration aligns preoperative images to intra-operative anatomical structures and it is a critical step in image-guided surgery (IGS). The accuracy and speed of this step significantly influence the performance of IGS systems. Rigid registration based on paired points has been widely used in IGS, but studies have shown its limitations in terms of cost, accuracy, and registration time. Therefore, rigid registration of point clouds representing the human anatomical surfaces has become an alternative way for image-to-patient registration in the IGS systems. PURPOSE: We propose a novel correspondence-based rigid point cloud registration method that can achieve global registration without the need for pose initialization. The proposed method is less sensitive to outliers compared to the widely used RANSAC-based registration methods and it achieves high accuracy at a high speed, which is particularly suitable for the image-to-patient registration in IGS. METHODS: We use the rotation axis and angle to represent the rigid spatial transformation between two coordinate systems. Given a set of correspondences between two point clouds in two coordinate systems, we first construct a 3D correspondence cloud (CC) from the inlier correspondences and prove that the CC distributes on a plane, whose normal is the rotation axis between the two point clouds. Thus, the rotation axis can be estimated by fitting the CP. Then, we further show that when projecting the normals of a pair of corresponding points onto the CP, the angle between the projected normal pairs is equal to the rotation angle. Therefore, the rotation angle can be estimated from the angle histogram. Besides, this two-stage estimation also produces a high-quality correspondence subset with high inlier rate. With the estimated rotation axis, rotation angle, and the correspondence subset, the spatial transformation can be computed directly, or be estimated using RANSAC in a fast and robust way within only 100 iterations. RESULTS: To validate the performance of the proposed registration method, we conducted experiments on the CT-Skull dataset. We first conducted a simulation experiment by controlling the initial inlier rate of the correspondence set, and the results showed that the proposed method can effectively obtain a correspondence subset with much higher inlier rate. We then compared our method with traditional approaches such as ICP, Go-ICP, and RANSAC, as well as recently proposed methods like TEASER, SC2-PCR, and MAC. Our method outperformed all traditional methods in terms of registration accuracy and speed. While achieving a registration accuracy comparable to the recently proposed methods, our method demonstrated superior speed, being almost three times faster than TEASER. CONCLUSIONS: Experiments on the CT-Skull dataset demonstrate that the proposed method can effectively obtain a high-quality correspondence subset with high inlier rate, and a tiny RANSAC with 100 iterations is sufficient to estimate the optimal transformation for point cloud registration. Our method achieves higher registration accuracy and faster speed than existing widely used methods, demonstrating great potential for the image-to-patient registration, where a rigid spatial transformation is needed to align preoperative images to intra-operative patient anatomy.


Assuntos
Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X
9.
Artigo em Inglês | MEDLINE | ID: mdl-38863654

RESUMO

Tracheal intubation is a crucial procedure performed in airway management to sustain life during various procedures. However, difficult airways can make intubation challenging, which is associated with increased mortality and morbidity. This is particularly important for children who undergo intubation where the situation is difficult. Improved airway management will decrease incidences of repeated attempts, decrease hypoxic injuries in patients, and decrease hospital stays, resulting in better clinical outcomes and reduced costs. Currently, 3D printed models based on CT scans and ultrasound-guided intubation are being used or tested for device fitting and procedure guidance to increase the success rate of intubation, but both have limitations. Maintaining a 3D printing facility can be logistically inconvenient, and it can be time consuming and expensive. Ultrasound-guided intubation can be hindered by operator dependence, limited two-dimensional visualization, and potential artifacts. In this study, we developed an augmented reality (AR) system that allows the overlay of intubation tools and internal airways, providing real-time guidance during the procedure. A child manikin was used to develop and test the AR system. Three-dimensional CT images were acquired from the manikin. Different tissues were segmented to generate the 3D models that were imported into Unity to build the holograms. Phantom experiments demonstrated the AR-guided system for potential applications in tracheal intubation guidance.

10.
Mol Pharm ; 21(7): 3296-3309, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861020

RESUMO

Cetuximab (Cet)-IRDye800CW, among other antibody-IRDye800CW conjugates, is a potentially effective tool for delineating tumor margins during fluorescence image-guided surgery (IGS). However, residual disease often leads to recurrence. Photodynamic therapy (PDT) following IGS is proposed as an approach to eliminate residual disease but suffers from a lack of molecular specificity for cancer cells. Antibody-targeted PDT offers a potential solution for this specificity problem. In this study, we show, for the first time, that Cet-IRDye800CW is capable of antibody-targeted PDT in vitro when the payload of dye molecules is increased from 2 (clinical version) to 11 per antibody. Cet-IRDye800CW (1:11) produces singlet oxygen, hydroxyl radicals, and peroxynitrite upon activation with 810 nm light. In vitro assays on FaDu head and neck cancer cells confirm that Cet-IRDye800CW (1:11) maintains cancer cell binding specificity and is capable of inducing up to ∼90% phototoxicity in FaDu cancer cells. The phototoxicity of Cet-IRDye800CW conjugates using 810 nm light follows a dye payload-dependent trend. Cet-IRDye800CW (1:11) is also found to be more phototoxic to FaDu cancer cells and less toxic in the dark than the approved chromophore indocyanine green, which can also act as a PDT agent. We propose that antibody-targeted PDT using high-payload Cet-IRDye800CW (1:11) could hold potential for eliminating residual disease postoperatively when using sustained illumination devices, such as fiber optic patches and implantable surgical bed balloon applicators. This approach could also potentially be applicable to a wide variety of resectable cancers that are amenable to IGS-PDT, using their respective approved full-length antibodies as a template for high-payload IRDye800CW conjugation.


Assuntos
Cetuximab , Indóis , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Indóis/química , Cetuximab/química , Cetuximab/farmacologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Benzenossulfonatos
11.
J Clin Med ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892910

RESUMO

Background: Psoas muscle abscess (PMA) is an uncommon yet severe condition characterized by diagnostic and therapeutic challenges due to its varied etiology and nonspecific symptoms. This study aimed to evaluate the effectiveness and accuracy of various imaging techniques used in the image-guided percutaneous drainage (PD) of PMA. Methods: A systematic review was conducted following the PRISMA guidelines. We searched PubMed, Google Scholar, and Science Direct for studies published in English from 1998 onwards that reported on the use of PD in treating PMA, detailing outcomes and complications. Imaging modalities guiding PD were also examined. Results: We identified 1570 articles, selecting 39 for full review. Of these, 23 met the inclusion criteria; 19 were excluded due to unspecified PMA, absence of imaging guidance for PD, or inconclusive results. Eleven studies utilized computed tomography (CT) for PD, with six also using magnetic resonance imaging (MRI). Ten studies implemented ultrasound (US)-guided PD; variations in diagnostic imaging included combinations of US, CT, and MRI. A mixed approach using both CT and US was reported in two articles. Most studies using CT-guided PD showed complete success, while outcomes varied among those using US-guided PD. No studies employed MRI-guided PD. Conclusions: This review supports a multimodal approach for psoas abscess management, using MRI for diagnosis and CT for drainage guidance. We advocate for Cone Beam CT (CBCT)-MRI fusion techniques with navigation systems to enhance treatment precision and outcomes, particularly in complex cases with challenging abscess characteristics.

12.
Cancers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893214

RESUMO

Microwave ablation (MWA) of liver tumors presents challenges like under- and over-ablation, potentially leading to inadequate tumor destruction and damage to healthy tissue. This study aims to develop personalized three-dimensional (3D) models to simulate MWA for liver tumors, incorporating patient-specific characteristics. The primary objective is to validate the predicted ablation zones compared to clinical outcomes, offering insights into MWA before therapy to facilitate accurate treatment planning. Contrast-enhanced CT images from three patients were used to create 3D models. The simulations used coupled electromagnetic wave propagation and bioheat transfer to estimate the temperature distribution, predicting tumor destruction and ablation margins. The findings indicate that prolonged ablation does not significantly improve tumor destruction once an adequate margin is achieved, although it increases tissue damage. There was a substantial overlap between the clinical ablation zones and the predicted ablation zones. For patient 1, the Dice score was 0.73, indicating high accuracy, with a sensitivity of 0.72 and a specificity of 0.76. For patient 2, the Dice score was 0.86, with a sensitivity of 0.79 and a specificity of 0.96. For patient 3, the Dice score was 0.8, with a sensitivity of 0.85 and a specificity of 0.74. Patient-specific 3D models demonstrate potential in accurately predicting ablation zones and optimizing MWA treatment strategies.

13.
Diagnostics (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893616

RESUMO

Computed tomography (CT)-guided lung biopsy is one of the oldest and most widely known minimally invasive percutaneous procedures. Despite being conceptually simple, this procedure needs to be performed rapidly and can be subject to meaningful complications that need to be managed properly. Therefore, knowledge of principles and techniques is required by every general or interventional radiologist who performs the procedure. This review aims to contain all the information that the operator needs to know before performing the procedure. The paper starts with the description of indications, devices, and types of percutaneous CT-guided lung biopsies, along with their reported results in the literature. Then, pre-procedural evaluation and the practical aspects to be considered during procedure (i.e., patient positioning and breathing) are discussed. The subsequent section is dedicated to complications, with their incidence, risk factors, and the evidence-based measures necessary to both prevent or manage them; special attention is given to pneumothorax and hemorrhage. After conventional CT, this review describes other available CT modalities, including CT fluoroscopy and cone-beam CT. At the end, more advanced techniques, which are already used in clinical practice, like fusion imaging, are included.

14.
Adv Mater ; : e2405275, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897213

RESUMO

The development of minimally invasive surgery has greatly advanced precision tumor surgery, but sometimes suffers from restricted visualization of the surgical field, especially during the removal of abdominal tumors. A 3-D inspection of tumors could be achieved by intravenously injecting tumor-selective fluorescent probes, whereas most of which are unable to instantly distinguish tumors via in situ spraying, which is urgently needed in the process of surgery in a convenient manner. In this study, we have designed an injectable and sprayable fluorescent nanoprobe, termed Poly-g-BAT, to realize rapid tumor imaging in freshly dissected human colorectal tumors and animal models. Mechanistically, the incorporation of γ-glutamyl group facilitates the rapid internalization of Poly-g-BAT, and these internalized nanoprobes can be subsequently activated by intracellular NAD(P)H: quinone oxidoreductase-1 to release near-infrared fluorophores. As a result, Poly-g-BAT can achieve a superior tumor-to-normal ratio (TNR) up to 12.3 and enable a fast visualization (3 min after in situ spraying) of tumor boundaries in the xenograft tumor models, Apcmin/+ mice models and fresh human tumor tissues. In addition, Poly-g-BAT is capable of identifying minimal premalignant lesions via intravenous injection. This article is protected by copyright. All rights reserved.

15.
Med Dosim ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38902140

RESUMO

Rectal toxicity is a significant concern in cervical cancer radiotherapy. Despite advancements in image-guided brachytherapy (IGBT), rectal morbidity remains a challenge. Injectable hydrogel showed promise in creating a space between the vagina and rectum, reducing rectal radiation dose; however, the traditional ultrasound-guided injection revealed some problems, such as the inadequate separation of the upper edge of the cervix, which can be mitigated through adopting CT-guided injection. This case report presents the successful use of computed tomography (CT)-guided hydrogel injection to limit rectal doses and improve treatment outcomes. A forty-year-old female with stage IIIC1r cervical cancer received external-beam radiotherapy and concurrent chemotherapy. Due to the proximity of the tumor to the rectum, a CT-guided hydrogel injection was performed to increase the distance between the cervix and rectum. Post-injection, magnetic resonance imaging (MRI) demonstrated increased distances between the cervix and rectum. Subsequent MRI-based IGBT achieved high clinical target volume doses while limiting rectal doses. During the six-month follow-up, the patient reported only mild adverse effects. CT-guided hydrogel injection offers advantages over ultrasound-guided injection in cervical cancer radiotherapy. The technique allows for better puncture position adjustment, reduced reliance on specialized ultrasound expertise, and shorter puncture distances. This case report highlights the potential of hydrogel injection as a viable method to reduce rectal morbidity and improve treatment outcomes in a broader range of cervical cancer patients. Further studies are warranted to validate these findings and explore its applicability in larger cohorts.

16.
Phys Med ; 123: 103407, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906046

RESUMO

PURPOSE: To investigate the current practice patterns in image-guided particle therapy (IGPT) for cranio-spinal irradiation (CSI). METHODS: A multi-institutional survey was distributed to European particle therapy centres to analyse all aspects of IGPT. Based on the survey results, a Delphi consensus analysis was developed to define minimum requirements and optimal workflow for clinical practice. The centres participating in the institutional survey were invited to join the Delphi process. RESULTS: Eleven centres participated in the survey. Imaging for treatment planning was rather similar among the centres with Computed Tomography (CT) being the main modality. For positioning verification, 2D IGPT was more commonly used than 3D IGPT. Two centres performed routinely imaging for plan adaptation, by the rest ad hoc. Eight centres participated in the Delphi consensus analysis. The full consensus was reached on the use of CT imaging without contrast for treatment planning and the role of magnetic resonance imaging (MRI) in target and organs-at-risk delineation. There was an agreement on the necessity to perform patient position verification and correction before each isocentre. The most important outcome was the clear need for standardization and harmonization of the workflow. CONCLUSION: There were differences in CSI IGPT clinical practice among the European particle therapy centres. Moreover, the optimal workflow as identified by experts was not yet reached. There is a strong need for consensus guidelines. The state-of-the-art imaging technology and protocols need to be implemented into clinical practice to improve the quality of IGPT for CSI.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38900308

RESUMO

To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.

18.
Radiat Oncol ; 19(1): 80, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918828

RESUMO

INTRODUCTION: Magnetic resonance guided radiotherapy (MRgRT) allows daily adaptation of treatment plans to compensate for positional changes of target volumes and organs at risk (OARs). However, current adaptation times are relatively long and organ movement occurring during the adaptation process might offset the benefit gained by adaptation. The aim of this study was to evaluate the dosimetric impact of these intrafractional changes. Additionally, a method to predict the extent of organ movement before the first treatment was evaluated in order to have the possibility to compensate for them, for example by adding additional margins to OARs. MATERIALS & METHODS: Twenty patients receiving adaptive MRgRT for treatment of abdominal lesions were retrospectively analyzed. Magnetic resonance (MR) images acquired at the start of adaptation and immediately before irradiation were used to calculate adapted and pre-irradiation dose in OARs directly next to the planning target volume. The extent of organ movement was determined on MR images acquired during simulation sessions and adaptive treatments, and their agreement was evaluated. Correlation between the magnitude of organ movement during simulation and the duration of simulation session was analyzed in order to assess whether organ movement might be relevant even if the adaptation process could be accelerated in the future. RESULTS: A significant increase in dose constraint violations was observed from adapted (6.9%) to pre-irradiation (30.2%) dose distributions. Overall, OAR dose increased significantly by 4.3% due to intrafractional organ movement. Median changes in organ position of 7.5 mm (range 1.5-10.5 mm) were detected within a median time of 17.1 min (range 1.6-28.7 min). Good agreement was found between the range of organ movement during simulation and adaptation (66.8%), especially if simulation sessions were longer and multiple MR images were acquired. No correlation was determined between duration of simulation sessions and magnitude of organ movement. CONCLUSION: Intrafractional organ movement can impact dose distributions and lead to violations of OAR tolerance doses, which impairs the benefit of daily on-table plan adaptation. By application of simulation images, the extent of intrafractional organ movement can be predicted, which possibly allows to compensate for them.


Assuntos
Imageamento por Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Órgãos em Risco/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Neoplasias Abdominais/radioterapia , Neoplasias Abdominais/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Radioterapia de Intensidade Modulada/métodos , Movimento , Fracionamento da Dose de Radiação
19.
Biosensors (Basel) ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38920586

RESUMO

Second near-infrared (NIR-II) fluorescence imaging is the most advanced imaging fidelity method with extraordinary penetration depth, signal-to-background ratio, biocompatibility, and targeting ability. It is currently booming in the medical realm to diagnose tumors and is being widely applied for fluorescence-imaging-guided tumor surgery. To efficiently execute this modern imaging modality, scientists have designed various probes capable of showing fluorescence in the NIR-II window. Here, we update the state-of-the-art NIR-II fluorescent probes in the most recent literature, including indocyanine green, NIR-II emissive cyanine dyes, BODIPY probes, aggregation-induced emission fluorophores, conjugated polymers, donor-acceptor-donor dyes, carbon nanotubes, and quantum dots for imaging-guided tumor surgery. Furthermore, we point out that the new materials with fluorescence in NIR-III and higher wavelength range to further optimize the imaging results in the medical realm are a new challenge for the scientific world. In general, we hope this review will serve as a handbook for researchers and students who have an interest in developing and applying fluorescent probes for NIR-II fluorescence-imaging-guided surgery and that it will expedite the clinical translation of the probes from bench to bedside.


Assuntos
Corantes Fluorescentes , Neoplasias , Imagem Óptica , Humanos , Neoplasias/cirurgia , Neoplasias/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Verde de Indocianina , Cirurgia Assistida por Computador , Pontos Quânticos , Nanotubos de Carbono/química , Animais
20.
Radiol Imaging Cancer ; 6(4): e230186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847615

RESUMO

Purpose To develop a molecular breast imaging (MBI)-guided biopsy system using dual-detector MBI and to perform initial testing in participants. Materials and Methods The Stereo Navigator MBI Accessory biopsy system comprises a lower detector, upper fenestrated compression paddle, and upper detector. The upper detector retracts, allowing craniocaudal, oblique, or medial or lateral biopsy approaches. The compression paddle allows insertion of a needle guide and needle. Lesion depth is calculated by triangulation of lesion location on the upper detector at 0° and 15° and relative lesion activity on upper and lower detectors. In a prospective study (July 2022-June 2023), participants with Breast Imaging Reporting and Data System category 2, 3, 4, or 5 breast lesions underwent MBI-guided biopsy. After injection of 740 MBq technetium 99m sestamibi, craniocaudal and mediolateral oblique MBI (2-minute acquisition per view) confirmed lesion visualization. A region of interest over the lesion permitted depth calculation in the system software. Upper detector retraction allowed biopsy device placement. Specimen images were obtained on the retracted upper detector, confirming sampling of the target. Results Of 21 participants enrolled (mean age, 50.6 years ± 10.1 [SD]; 21 [100%] women), 17 underwent MBI-guided biopsy with concordant pathology. No lesion was observed at the time of biopsy in four participants. Average lesion size was 17 mm (range, 6-38 mm). Average procedure time, including preprocedure imaging, was 55 minutes ± 13 (range, 38-90 minutes). Pathology results included invasive ductal carcinoma (n = 1), fibroadenoma (n = 4), pseudoangiomatous stromal hyperplasia (n = 6), and fibrocystic changes (n = 6). Conclusion MBI-guided biopsy using a dual-head system with retractable upper detector head was feasible, well tolerated, and efficient. Keywords: Breast Biopsy, Molecular Breast Imaging, Image-guided Biopsy, Molecular Breast Imaging-guided Biopsy, Breast Cancer Clinical trial registration no. NCT06058650 © RSNA, 2024.


Assuntos
Neoplasias da Mama , Biópsia Guiada por Imagem , Imagem Molecular , Tecnécio Tc 99m Sestamibi , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Estudos Prospectivos , Biópsia Guiada por Imagem/métodos , Biópsia Guiada por Imagem/instrumentação , Adulto , Imagem Molecular/métodos , Imagem Molecular/instrumentação , Idoso , Compostos Radiofarmacêuticos , Mama/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...