Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Neurovirol ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949728

RESUMO

BACKGROUND: HIV-associated neurocognitive disorders (HAND) is hypothesized to be a result of myeloid cell-induced neuro-inflammation in the central nervous system that may be initiated in the periphery, but the contribution of peripheral T cells in HAND pathogenesis remains poorly understood. METHODS: We assessed markers of T cell activation (HLA-DR + CD38+), immunosenescence (CD57 + CD28-), and immune-exhaustion (TIM-3, PD-1 and TIGIT) as well as monocyte subsets (classical, intermediate, and non-classical) by flow cytometry in peripheral blood derived from individuals with HIV on long-term stable anti-retroviral therapy (ART). Additionally, normalized neuropsychological (NP) composite test z-scores were obtained and regional brain volumes were assessed by magnetic resonance imaging (MRI). Relationships between proportions of immune phenotypes (of T-cells and monocytes), NP z-scores, and brain volumes were analyzed using Pearson correlations and multiple linear regression models. RESULTS: Of N = 51 participants, 84.3% were male, 86.3% had undetectable HIV RNA < 50 copies/ml, median age was 52 [47, 57] years and median CD4 T cell count was 479 [376, 717] cells/uL. Higher CD4 T cells expressing PD-1 + and/or TIM-3 + were associated with lower executive function and working memory and higher CD8 T cells expressing PD-1+ and/or TIM-3+ were associated with reduced brain volumes in multiple regions (putamen, nucleus accumbens, cerebellar cortex, and subcortical gray matter). Furthermore, higher single or dual frequencies of PD-1 + and TIM-3 + expressing CD4 and CD8 T-cells correlated with higher CD16 + monocyte numbers. CONCLUSIONS: This study reinforces evidence that T cells, particularly those with immune exhaustion phenotypes, are associated with neurocognitive impairment and brain atrophy in people living with HIV on ART. Relationships revealed between T-cell immune exhaustion and inflammatory in CD16+ monocytes uncover interrelated cellular processes likely involved in the immunopathogenesis of HAND.

2.
Vaccines (Basel) ; 12(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932307

RESUMO

The yellow fever (YF) vaccine is one of the safest and most effective vaccines currently available. Still, its administration in people living with HIV (PLWH) is limited due to safety concerns and a lack of consensus regarding decreased immunogenicity and long-lasting protection for this population. The mechanisms associated with impaired YF vaccine immunogenicity in PLWH are not fully understood, but the general immune deregulation during HIV infection may play an important role. To assess if HIV infection impacts YF vaccine immunogenicity and if markers of immune deregulation could predict lower immunogenicity, we evaluated the association of YF neutralization antibody (NAb) titers with the pre-vaccination frequency of activated and exhausted T cells, levels of pro-inflammatory cytokines, and frequency of T cells, B cells, and monocyte subsets in PLWH and HIV-negative controls. We observed impaired YF vaccine immunogenicity in PLWH with lower titers of YF-NAbs 30 days after vaccination, mainly in individuals with CD4 count <350 cells/mm3. At the baseline, those individuals were characterized by having a higher frequency of activated and exhausted T cells and tissue-like memory B cells. Elevated levels of those markers were also observed in individuals with CD4 count between 500 and 350 cells/mm3. We observed a negative correlation between the pre-vaccination level of CD8+ T cell exhaustion and CD4+ T cell activation with YF-NAb titers at D365 and the pre-vaccination level of IP-10 with YF-NAb titers at D30 and D365. Our results emphasize the impact of immune activation, exhaustion, and inflammation in YF vaccine immunogenicity in PLWH.

3.
Pathogens ; 13(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921771

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) infection leads to chronic, persistent granulomatous enteritis, causing prolonged diarrhoea and emaciation. The disease is managed using medications such as antibiotics, live vaccines, mycobacteriophage therapies and other treatments; however, a notable proportion of affected animals do not show improvement with this approach. We hypothesise that immunoinhibitory receptors TIM-3 (T cell immunoglobulin mucin protein-3) and PD-1 (Programmed death receptor 1) may be upregulated on Peripheral blood mononuclear cells (PBMCs) of MAP-seropositive bovines, potentially contributing to immune exhaustion. Samples (blood and faeces) were collected from 32 diarrhoeic bovines suspected of MAP infection; eight apparently healthy buffaloes from the dairy farm at Hisar, Haryana and from 14 cows (suffering from chronic diarrhoea, weakness and emaciation) housed in stray cattle shed. MAP infection was estimated using indigenous ELISA (i-ELISA), faecal IS900 PCR, culture and acid-fast staining. TIM-3 and PD-1 gene expression on PBMCs were determined using qRT-PCR. TIM3 expression was relatively higher (~400-fold, 330-fold, 112-fold, 65-fold and 16-fold) in 5 chronically diarrhoeic PBMCs samples (MAP-seropositive), and higher PD-1 expression (around ~7-fold, 1.75-fold, 2.5-fold, 7.6-fold) was recorded in 4 diarrhoeic MAP-seropositive animals, compared to apparently healthy and other MAP-seronegative diarrhoeic animals. High co-expression of TIM-3 and PD-1 levels was also recorded in chronically diarrhoeic, emaciated stray cattle. Understanding immune responses in field conditions might aid in the therapeutic management of paratuberculosis.

4.
Res Sq ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798691

RESUMO

Background: Neoadjuvant therapy (NAT) is increasingly being used for pancreatic ductal adenocarcinoma (PDAC) treatment. However, its specific effects on carcinoma cells and the tumor microenvironment (TME) are not fully understood. This study aims to investigate how NAT differentially impacts PDAC's carcinoma cells and TME. Methods: Spatial transcriptomics was used to compare gene expression profiles in carcinoma cells and the TME between 23 NAT-treated and 13 NAT-naïve PDAC patients, correlating with their clinicopathologic features. Analysis of an online single-nucleus RNA sequencing (snRNA-seq) dataset was performed for validation of the specific cell types responsible for NAT-induced gene expression alterations. Results: NAT not only induces apoptosis and inhibits proliferation in carcinoma cells but also significantly remodels the TME. Notably, NAT induces a coordinated upregulation of multiple key complement genes (C3, C1S, C1R, C4B and C7) in the TME, making the complement pathway one of the most significantly affected pathways by NAT. Patients with higher TME complement expression following NAT exhibit improved overall survival. These patients also exhibit increased immunomodulatory and neurotrophic cancer-associated fibroblasts (CAFs); more CD4+ T cells, monocytes, and mast cells; and reduced immune exhaustion gene expression. snRNA-seq analysis demonstrates C3 complement was specifically upregulated in CAFs but not in other stroma cell types. Conclusions: NAT can enhance complement production and signaling within the TME, which is associated with reduced immunosuppression in PDAC. These findings suggest that local complement dynamics could serve as a novel biomarker for prognosis, evaluating treatment response and resistance, and guiding therapeutic strategies in NAT-treated PDAC patients.

5.
Front Immunol ; 15: 1396592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736874

RESUMO

Introduction: Osteomyelitis (OMS) is a bone infection causing bone pain and severe complications. A balanced immune response is critical to eradicate infection without harming the host, yet pathogens manipulate immunity to establish a chronic infection. Understanding OMS-driven inflammation is essential for disease management, but comprehensive data on immune profiles and immune cell activation during OMS are lacking. Methods: Using high-dimensional flow cytometry, we investigated the detailed innate and adaptive systemic immune cell populations in OMS and age- and sex-matched controls. Results: Our study revealed that OMS is associated with increased levels of immune regulatory cells, namely T regulatory cells, B regulatory cells, and T follicular regulatory cells. In addition, the expression of immune activation markers HLA-DR and CD86 was decreased in OMS, while the expression of immune exhaustion markers TIM-3, PD-1, PD-L1, and VISTA was increased. Members of the T follicular helper (Tfh) cell family as well as classical and typical memory B cells were significantly increased in OMS individuals. We also found a strong correlation between memory B cells and Tfh cells. Discussion: We conclude that OMS skews the host immune system towards the immunomodulatory arm and that the Tfh memory B cell axis is evident in OMS. Therefore, immune-directed therapies may be a promising alternative for eradication and recurrence of infection in OMS, particularly in individuals and areas where antibiotic resistance is a major concern.


Assuntos
Osteomielite , Humanos , Osteomielite/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Linfócitos T Reguladores/imunologia , Idoso , Ativação Linfocitária , Biomarcadores , Imunidade Inata , Células B de Memória/imunologia , Células T Auxiliares Foliculares/imunologia , Exaustão do Sistema Imunitário
6.
Br J Pharmacol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325330

RESUMO

Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.

7.
Cureus ; 15(12): e50456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094879

RESUMO

A solitary pulmonary mass is commonly associated with malignancy; however, the possibility of co-existence with a pulmonary infection is rarely considered. Here, we present an extraordinary case, underscoring the importance of considering the possibility of concurrent lung cancer even when a bronchoscopy examination and bronchial lavage yield a positive mycobacterium culture result.

8.
Front Immunol ; 14: 1270881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130714

RESUMO

The immune system of people living with HIV (PLWH) is persistently exposed to antigens leading to systemic inflammation despite combination antiretroviral treatment (cART). This inflammatory milieu promotes T-cell activation and exhaustion. Furthermore, it produces diminished effector functions including loss of cytokine production, cytotoxicity, and proliferation, leading to disease progression. Exhausted T cells show overexpression of immune checkpoint molecules (ICs) on the cell surface, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), and lymphocyte activation gene-3 (LAG-3). The ICs also play a crucial role in T-cell exhaustion by reducing the immune response to cancer antigens. Immunotherapy based on immune checkpoint inhibitors (ICIs) has changed the management of a diversity of cancers. Additionally, the interest in exploring this approach in the setting of HIV infection has increased, including AIDS-defining cancers and non-AIDS-defining cancers in PLWH. To date, research on this topic suggests that ICI-based therapies in PLWH could be a safe and effective approach. In this review, we provide an overview of the current literature on the potential role of ICI-based immunotherapy not only in cancer remission in PLWH but also as a therapeutic intervention to restore immune response against HIV, revert HIV latency, and attain a functional cure for HIV infection.


Assuntos
Infecções por HIV , HIV-1 , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Exaustão das Células T , Neoplasias/tratamento farmacológico , Imunoglobulinas/uso terapêutico
9.
Am J Cancer Res ; 13(10): 4931-4943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970362

RESUMO

Recurrence and metastasis are resistant to multimodal treatments, and are the major causes of death in breast cancer. Accumulating evidence suggests that the IL17RB signaling pathway plays a key role in progression and metastasis of breast cancer. Clinical significance of the IL17RB positivity in tumor tissues has been also reported as a poor prognostic factor in breast cancer. However, the molecular mechanisms underlying the poor prognosis of patients with IL17RB+ breast cancer, particularly the immunological aspects, remain to be fully elucidated, and elimination of the IL17RB+ tumors has not been practically achieved in clinical settings. In this study, we identified a distinct molecular mechanism underlying the intractability of the IL17RB+ tumors through tumor biological and immunological investigation using mouse and human breast cancer cells transduced with il17rb gene. IL17RB overexpression in tumor cells confers cancer stemness, including high invasive and self-renewal abilities, and high resistance to CDK4/6 inhibitors that have been considered as a promising agent for treating breast cancer despite the limited efficacy. In the mice implanted with the IL17RB+ tumors, IL25+ macrophages (Møs) are expanded locally in tumor tissues and systemically in spleen, and promote the IL17RB+ tumor progression directly by intensifying the tumor functions, and indirectly via impairment of anti-tumor effector CTLs and NK cells utilizing the secreted IL25. Blocking IL25 with the specific mAb, however, interferes the adverse events, and successfully elicits significant anti-tumor efficacy in combination with CDK4/6 inhibitors providing better survival in murine mammary tumor models. These results suggest that the IL25+ Mø is a key determinant of building the solid treatment resistance of the IL17RB+ breast cancer. Targeting the IL17RB-IL25 axis may be a promising strategy to improve clinical outcomes in the treatment of breast cancer patients, particularly with IL17RB+ tumors.

10.
Cancer Drug Resist ; 6(3): 642-655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842239

RESUMO

The introduction of immune checkpoint inhibitor (ICI) has revolutionized the treatment of metastatic renal cell carcinoma (mRCC) and has dramatically improved the outcomes of patients. The use of monotherapy or combinations of ICIs targeting PD-1/PD-L1 and CTLA-4, as well as the addition of ICIs with tyrosine kinase inhibitors, has significantly enhanced the overall survival of mRCC patients. Despite these promising results, there remains a subset of patients who either do not respond to treatment (primary resistance) or develop resistance to therapy over time (acquired resistance). Understanding the mechanisms underlying the development of resistance to ICI treatment is crucial in the management of mRCC, as they can be used to identify new targets for innovative therapeutic strategies. Currently, there is an unmet need to develop new predictive and prognostic biomarkers that can aid in the development of personalized treatment options for mRCC patients. In this review, we summarize several mechanisms of ICI resistance in RCC, including alterations in tumor microenvironment, upregulation of alternative immune checkpoint pathways, and genetic and epigenetic changes. Additionally, we highlight potential strategies that can be used to overcome resistance, such as combination therapy, targeted therapy, and immune modulation.

11.
Front Immunol ; 14: 1257192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671156

RESUMO

In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.


Assuntos
Modelos Biológicos , Pirimetamina , Humanos , Sulfadiazina
12.
Immun Ageing ; 20(1): 18, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131271

RESUMO

BACKGROUND: Aging is associated with progressive declines in immune responses leading to increased risk of severe infection and diminished vaccination responses. Influenza (flu) is a leading killer of older adults despite availability of seasonal vaccines. Geroscience-guided interventions targeting biological aging could offer transformational approaches to reverse broad declines in immune responses with aging. Here, we evaluated effects of metformin, an FDA approved diabetes drug and candidate anti-aging drug, on flu vaccination responses and markers of immunological resilience in a pilot and feasibility double-blinded placebo-controlled study. RESULTS: Healthy older adults (non-diabetic/non-prediabetic, age: 74.4 ± 1.7 years) were randomized to metformin (n = 8, 1500 mg extended release/daily) or placebo (n = 7) treatment for 20 weeks and were vaccinated with high-dose flu vaccine after 10 weeks of treatment. Peripheral blood mononuclear cells (PBMCs), serum, and plasma were collected prior to treatment, immediately prior to vaccination, and 1, 5, and 10 weeks post vaccination. Increased serum antibody titers were observed post vaccination with no significant differences between groups. Metformin treatment led to trending increases in circulating T follicular helper cells post-vaccination. Furthermore, 20 weeks of metformin treatment reduced expression of exhaustion marker CD57 in circulating CD4 T cells. CONCLUSIONS: Pre-vaccination metformin treatment improved some components of flu vaccine responses and reduced some markers of T cell exhaustion without serious adverse events in nondiabetic older adults. Thus, our findings highlight the potential utility of metformin to improve flu vaccine responses and reduce age-related immune exhaustion in older adults, providing improved immunological resilience in nondiabetic older adults.

13.
J Clin Med ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240647

RESUMO

INTRODUCTION: Severe COVID-19 can result in a significant and irreversible impact on long-term recovery and subsequent immune protection. Understanding the complex immune reactions may be useful for establishing clinically relevant monitoring. METHODS: Hospitalized adults with SARS-CoV-2 between March/October 2020 (n = 64) were selected. Cryopreserved peripheral blood mononuclear cells (PBMCs) and plasma samples were obtained at hospitalization (baseline) and 6 months after recovery. Immunological components' phenotyping and SARS-CoV-2-specific T-cell response were studied in PBMCs by flow cytometry. Up to 25 plasma pro/anti-inflammatory cytokines/chemokines were assessed by LEGENDplex immunoassays. The SARS-CoV-2 group was compared to matched healthy donors. RESULTS: Biochemical altered parameters during infection were normalized at a follow-up time point in the SARS-CoV-2 group. Most of the cytokine/chemokine levels were increased at baseline in the SARS-CoV-2 group. This group showed increased Natural Killer cells (NK) activation and decreased CD16high NK subset, which normalized six months later. They also presented a higher intermediate and patrolling monocyte proportion at baseline. T cells showed an increased terminally differentiated (TemRA) and effector memory (EM) subsets distribution in the SARS-CoV-2 group at baseline and continued to increase six months later. Interestingly, T-cell activation (CD38) in this group decreased at the follow-up time point, contrary to exhaustion markers (TIM3/PD1). In addition, we observed the highest SARS-CoV-2-specific T-cell magnitude response in TemRA CD4 T-cell and EM CD8 T-cell subsets at the six-months time point. CONCLUSIONS: The immunological activation in the SARS-CoV-2 group during hospitalization is reversed at the follow-up time point. However, the marked exhaustion pattern remains over time. This dysregulation could constitute a risk factor for reinfection and the development of other pathologies. Additionally, high SARS-CoV-2-specific T-cells response levels appear to be associated with infection severity.

14.
Cell Rep ; 42(4): 112364, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043352

RESUMO

The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Camundongos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/patologia , Imunoterapia/métodos , Transdução de Sinais , Inflamação/tratamento farmacológico , Microambiente Tumoral
15.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768154

RESUMO

Because of endotoxemia during sepsis (a severe life-threatening infection), lipopolysaccharide (LPS) tolerance (the reduced responses to the repeated LPS stimulation) might be one of the causes of sepsis-induced immune exhaustion (the increased susceptibility to secondary infection and/or viral reactivation). In LPS tolerance macrophage (twice-stimulated LPS, LPS/LPS) compared with a single LPS stimulation (N/LPS), there was (i) reduced energy of the cell in both glycolysis and mitochondrial activities (extracellular flux analysis), (ii) decreased abundance of the following proteins (proteomic analysis): (a) complex I and II of the mitochondrial electron transport chain, (b) most of the glycolysis enzymes, (c) anti-viral responses with Myxovirus resistance protein 1 (Mx1) and Ubiquitin-like protein ISG15 (Isg15), (d) antigen presentation pathways, and (iii) the down-regulated anti-viral genes, such as Mx1 and Isg15 (polymerase chain reaction). To test the correlation between LPS tolerance and viral reactivation, asymptomatic mice with and without murine norovirus (MNV) infection as determined in feces were tested. In MNV-positive mice, MNV abundance in the cecum, but not in feces, of LPS/LPS mice was higher than that in N/LPS and control groups, while MNV abundance of N/LPS and control were similar. Additionally, the down-regulated Mx1 and Isg15 were also demonstrated in the cecum, liver, and spleen in LPS/LPS-activated mice, regardless of MNV infection, while N/LPS more prominently upregulated these genes in the cecum of MNV-positive mice compared with the MNV-negative group. In conclusion, defects in anti-viral responses after LPS tolerance, perhaps through the reduced energy status of macrophages, might partly be responsible for the viral reactivation. More studies on patients are of interest.


Assuntos
Lipopolissacarídeos , Norovirus , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Norovirus/genética , Proteômica , Macrófagos/metabolismo , Fígado
16.
J Viral Hepat ; 30(1): 64-72, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302162

RESUMO

Individuals who spontaneously clear hepatitis C virus (HCV) infection have demonstrated evidence of partial protective immunity, whereas treatment-induced clearance provides little or no protection against reinfection. We aimed to investigate whether treatment of acute HCV infection with direct-acting antivirals (DAA) prevents establishment of, or reverses, T-cell exhaustion, leading to a virus-specific T-cell immune profile more similar to that seen in spontaneous clearance. The magnitude and breadth of HCV-specific T-cell responses before and after DAA or interferon-based therapy in acute or chronic HCV were compared to those of participants with spontaneous clearance of infection, using Enzyme-linked Immunospot (ELISPOT). PBMCs were available for 55 patients comprising 4 groups: spontaneous clearance (n = 17), acute interferon (n = 14), acute DAA (n = 13) and chronic DAA (n = 11). After controlling for sex, the magnitude of post-treatment HCV-specific responses after acute DAA treatment was greater than after chronic DAA or acute IFN treatment and similar to those found in spontaneous clearers. However, spontaneous clearers responded to more HCV peptide pools indicating greater breadth of response. In conclusion, early treatment with DAAs may prevent or reverse some degree of immune exhaustion and result in stronger HCV-specific responses post-treatment. However, individuals with spontaneous clearance had broader HCV-specific responses.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus , Antivirais/uso terapêutico , Antivirais/farmacologia , Hepatite C Crônica/tratamento farmacológico , Interferons/uso terapêutico , Imunidade
17.
Autophagy Rep ; 2(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38435700

RESUMO

Chronic immune activation and inflammation are hallmarks of Human Immunodeficiency Virus-1 (HIV-1) pathogenesis. Therefore, approaches to safely reduce systematic inflammation are essential to improve immune responses and thus slow or prevent HIV progression. Autophagy is a cellular mechanism for the disposal of damaged organelles and elimination of intracellular pathogens. It is not only vital for energy homeostasis, but also plays a critical role in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Our study demonstrated that impairment of autophagy leads to spontaneous type I-Interferons (IFN-I) signaling, while autophagy induction reduces IFN-I signaling in macrophages. Importantly, we demonstrated that in vivo treatment of autophagy inducer rapamycin in chronically HIV infected humanized mice decreased chronic IFN-I signaling, improved exhausted anti-viral T cell function, and reduced viral loads. Taken together, our study supports the therapeutic potential of rapamycin and potentially other autophagy inducers in alleviating HIV-1 immunopathogenesis and improving anti-viral T cell responses.

18.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422780

RESUMO

ABSTRACT Immune exhaustion and senescence are scarcely studied in HIV-pediatric patients. We studied the circulatory CD8 T cells activation/exhaustion and senescent phenotype of children and adolescents vertically infected with HIV or uninfected controls based on the expression of human leukocyte antigen (HLA-DR), CD38, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), programmed death 1 (PD-1) and CD57 by flow cytometry, during approximately one year. Eleven HIV-infected (HI) and nine HIV-uninfected (HU) children/adolescents who received two doses or one dose of meningococcal C conjugate vaccine (MenC), respectively, were involved in this study. Blood samples were collected before the immunization (T0), 1-2 months after the first dose (T1), and 1-2 months after the second dose (T2), which was administered approximately one year after the first one. HI patients not receiving combined antiretroviral therapy (cART) showed a higher frequency of CD8 T cells TIGIT+, PD-1+ or CD57+, as well as a higher frequency of CD8 T cells co-expressing CD38/HLA-DR/TIGIT or CD38/HLA-DR/PD-1 when compared to HI treated or HU individuals, at all times that they were assessed. CD8 T cells co-expressing CD38/DR/TIGIT were inversely correlated with the CD4/CD8 ratio but positively associated with viral load. The co-expression of CD38/DR/TIGIT or CD38/DR/PD-1 on CD8 T cells was also inversely associated with the CD4 T cells expressing co-stimulatory molecules CD127/CD28. The results showed a higher expression of exhaustion/senescence markers on CD8 T cells of untreated HI children/adolescents and its correlations with viral load.

19.
Oncoimmunology ; 11(1): 2010894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524206

RESUMO

Hepatocellular carcinoma (HCC) is associated with a high mortality rate and presents a major challenge for human health. Activation of multiple oncogenes has been reported to be strongly associated with the progression of HCC. Moreover, the immunosuppressive tumor microenvironment (TME) and the host immune system are also implicated in the development of malignant HCC tumors. Glypican-3 (GPC-3), a proteoglycan involved in the regulation of cell proliferation and apoptosis, is aberrantly expressed in HCC. We synthesized a short 5'-triphosphate (3p) RNA targeting GPC-3, 3p-GPC-3 siRNA, and found that it effectively inhibited subcutaneous HCC growth by raising type I IFN levels in tumor cells and serum and promoting tumor cell apoptosis. Moreover, 3p-GPC-3 siRNA was able to enhance the activation of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells while reducing the proportion of regulatory T cells (Tregs) in the TME. Most intriguingly, a blocking anti-PD-1 antibody improved the anti-tumor effect of 3p-GPC-3 siRNA, predominantly by activating the immune response, reversing immune exhaustion, and improving immune memory. Our study suggests that the combination of 3p-GPC-3 siRNA administration and PD-1 blockade may represent a promising therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Glipicanas , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linfócitos T CD8-Positivos , Glipicanas/genética , Glipicanas/uso terapêutico , Memória Imunológica/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
20.
J Transl Med ; 20(1): 587, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510222

RESUMO

BACKGROUND: SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). METHODS: Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. RESULTS: After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly "perturbed," characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. CONCLUSIONS: Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.


Assuntos
COVID-19 , Humanos , Anticorpos Antivirais , Citocinas , Imunização Passiva , RNA Viral , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...