Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Virulence ; 15(1): 2360133, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38803081

RESUMO

Norovirus (NV) infection causes acute gastroenteritis in children and adults. Upon infection with NV, specific CD8+ T cells, which play an important role in anti-infective immunity, are activated in the host. Owing to the NV's wide genotypic variability, it is challenging to develop vaccines with cross-protective abilities against infection. To aid effective vaccine development, we examined specific CD8+ T-cell responses towards viral-structural protein (VP) epitopes, which enable binding to host susceptibility receptors. We isolated peripheral blood mononuclear cells from 196 participants to screen and identify predominant core peptides towards NV main and small envelope proteins using ex vivo and in vitro intracellular cytokine staining assays. Human leukocyte antigen (HLA) restriction characteristics were detected using next-generation sequencing. Three conservative immunodominant VP-derived CD8+ T-cell epitopes, VP294-102 (TDAARGAIN), VP2153-161 (RGPSNKSSN), and VP1141-148 (FPHIIVDV), were identified and restrictively presented by HLA-Cw * 0102, HLA-Cw * 0702, and HLA-A *1101 alleles, separately. Our findings provide useful insights into the development of future vaccines and treatments for NV infection.


Assuntos
Linfócitos T CD8-Positivos , Infecções por Caliciviridae , Proteínas do Capsídeo , Epitopos de Linfócito T , Gastroenterite , Norovirus , Humanos , Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Norovirus/imunologia , Norovirus/genética , Adulto , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Masculino , Gastroenterite/virologia , Gastroenterite/imunologia , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Criança , Adolescente , Leucócitos Mononucleares/imunologia , Epitopos Imunodominantes/imunologia , Pré-Escolar , Idoso
2.
Viruses ; 16(4)2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38675890

RESUMO

The high genetic heterogeneity of small ruminant lentiviruses (SRLV) renders the genetic characterization of the circulating strains crucial for the epidemiological investigation and the designation of effective diagnostic tools. In Greece, research data regarding the genetic diversity of the circulating SRLV strains is scarce, hindering the implementation of efficient surveillance and control programs. The objective of the study was to genetically characterize SRLV strains isolated from intensive dairy sheep farms in Greece and evaluate the variability of the immunodominant regions of the capsid protein. For this reason, a total of 12 SRLV-infected animals from four intensive dairy sheep farms with purebred Chios and Lacaune ewes were used for the amplification and sequencing of an 800 bp gag-pol fragment. The phylogenetic analyses revealed a breed-related circulation of strains; Chios ewes were infected with strains belonging exclusively to a separate group of genotype A, whereas strains belonging to subtype B2 were isolated from Lacaune ewes. Immunodominant epitopes of capsid protein were quite conserved among the strains of the same genotype, except for the Major Homology Region which showed some unique mutations with potential effects on viral evolution. The present study contributes to the extension of the current knowledge regarding the genetic diversity of SRLV strains circulating in sheep in Greece. However, broader genetic characterization studies are warranted for the exploration of possible recombinant events and the more comprehensive classification of the circulating strains.


Assuntos
Variação Genética , Genótipo , Infecções por Lentivirus , Filogenia , Doenças dos Ovinos , Animais , Ovinos , Grécia , Doenças dos Ovinos/virologia , Infecções por Lentivirus/veterinária , Infecções por Lentivirus/virologia , Feminino , Proteínas do Capsídeo/genética , Lentivirus/genética , Lentivirus/isolamento & purificação , Lentivirus/classificação
3.
Food Chem ; 438: 137920, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000156

RESUMO

The digestion products of Penaeus vannamei still had sensitizing and eliciting capacity; however, the underlying mechanism has not been identified. This study analyzed the structural changes of shrimp proteins during digestion, predicted the linearmimotopepeptides and first validated the allergenicity of immunodominantepitopes with binding ability. The results showed that the shrimp proteins were gradually degraded into small peptides during digestion, which might lead to the destruction of linear epitopes. However, these peptides carried IgE epitopes that still trigger allergic reactions. Eighteen digestion-resistant epitopes were predicted by multiple immunoinformatics tools and digestomics. Five epitopes contained more critical amino acids and had strong molecular docking (P1: DSGVGIYAPDAEA, P2: EGELKGTYYPLTGM, P3: GRQGDPHGKFDLPPGV, P4: IFAWPHKDNNGIE, P5: KSTESSVTVPDVPSIHD), and these epitopes were identified as novel IgE binding immunodominantepitopes in Penaeus vannamei. These findings provide novel insight into allergenic epitopes, which might serve as key targets for reducing the allergenicity in shrimp.


Assuntos
Penaeidae , Animais , Sequência de Aminoácidos , Epitopos Imunodominantes , Alérgenos/química , Simulação de Acoplamento Molecular , Imunoglobulina E , Peptídeos , Epitopos/química , Digestão , Tropomiosina/química
4.
BMC Infect Dis ; 23(1): 687, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845608

RESUMO

BACKGROUND: Kidney transplant recipients receive maintenance immunosuppressive therapy to avoid allograft rejection resulting in increased risk of infections and infection-related morbidity and mortality. Approximately 98% of adults are infected with varicella zoster virus, which upon reactivation causes herpes zoster. The incidence of herpes zoster is higher in kidney transplant recipients than in immunocompetent individuals, and kidney transplant recipients are at increased risk of severe herpes zoster-associated disease. Vaccination with adjuvanted recombinant glycoprotein E subunit herpes zoster vaccine (RZV) prevents herpes zoster in older adults with excellent efficacy (90%), and vaccination of kidney transplant candidates is recommended in Danish and international guidelines. However, the robustness and duration of immune responses after RZV vaccination, as well as the optimal timing of vaccination in relation to transplantation remain unanswered questions. Thus, the aim of this study is to characterize the immune response to RZV vaccination in kidney transplant candidates and recipients at different timepoints before and after transplantation. METHODS: The Herpes Virus Infections in Kidney Transplant Patients (HINT) study is a prospective observational cohort study. The study will include kidney transplant candidates on the waiting list for transplantation (n = 375) and kidney transplant recipients transplanted since January 1, 2019 (n = 500) from all Danish kidney transplant centers who are offered a RZV vaccine as routine care. Participants are followed with repeated blood sampling until 12 months after inclusion. In the case of transplantation or herpes zoster disease, additional blood samples will be collected until 12 months after transplantation. The immune response will be characterized by immunophenotyping and functional characterization of varicella zoster virus-specific T cells, by detection of anti-glycoprotein E antibodies, and by measuring cytokine profiles. DISCUSSION: The study will provide new knowledge on the immune response to RZV vaccination in kidney transplant candidates and recipients and the robustness and duration of the response, potentially enhancing preventive strategies against herpes zoster in a population at increased risk. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05604911).


Assuntos
Vacina contra Herpes Zoster , Herpes Zoster , Transplante de Rim , Idoso , Humanos , Herpes Zoster/epidemiologia , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3 , Transplante de Rim/efeitos adversos , Estudos Prospectivos , Vacinas Sintéticas
5.
World Allergy Organ J ; 16(8): 100804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37577028

RESUMO

Background: House dust mites (HDMs), including Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) species, represent a major source of inhalant allergens that induce IgE-mediated anaphylactic reactions. HDM allergen identification is important to the diagnosis and treatment of allergic diseases. Here, we report the identification of a novel HDM allergen, which we suggest naming Der f 40, and its immunodominant IgE epitopes. Methods: The recombinant protein Der f 40 was expressed using a pET prokaryotic expression system and purified with Ni-NTA resins. IgE binding activity was evaluated by IgE-western blot, dot-blot, and ELISA. Mast cell activation testing was performed to assess the cellular effects of IgE binding in mouse bone marrow derived mast cells (BMMCs) expressing human FcεRI. IgE binding assays were performed with truncated and hybrid Der f 40 protein molecules to find immunodominant IgE epitopes. Results: A 106-amino acid (aa) recombinant Der f Group 40 protein (rDer f 40) was obtained (GenBank accession No. XP_046915420.1) as thiredoxin-like protein. Der f 40 was shown to bind IgE from HDM allergic serum in vitro (9.68%; 12/124 in IgE-ELISA), and shown to promote the release of ß-hexosaminidase from BMMCs dose-dependently when administered with HDM allergic sera. The Der f Group 40 protein was named Der f 40 and listed in the World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-committee. IgE binding assays with Der f 40-based truncated and hybrid proteins indicated that IgE binding epitopes are likely located in the C-terminal region and dependent on conformational structure. The 76-106-aa region of C-terminus was identified as an immunodominant IgE epitope of Der f 40. Conclusion: A novel HDM allergen with robust IgE binding activity was identified and named Der f 40. An immunodominant IgE epitope of Der f 40 with conformational dependency was identified in the C-terminus (aa 76-106). These findings provide new information that may be useful in the development of diagnostic and therapeutic agents for HDM allergy.

6.
BMC Infect Dis ; 23(1): 214, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024811

RESUMO

BACKGROUND: Life-long immunosuppressive treatment after liver transplantation (LT) prevents graft rejection but predisposes the LT recipient to infections. Herpesvirus infections are associated with morbidity and mortality among LT recipients. Among those, especially cytomegalovirus (CMV) and varicella-zoster virus (VZV) pose challenges after LT. The aim of this study is to provide an in-depth characterization of the cellular immune response against CMV and VZV infections in LT recipients and identify potential risk factors for infection. METHODS: The Herpesvirus Infections in Solid Organ Transplant Recipients - Liver Transplant Study (HISTORY) consists of an epidemiological and immunological substudy. The epidemiological substudy is a retrospective observational cohort study that includes all patients who underwent LT in Denmark between 2010 and 2023 (N ≈ 500). Using data from nationwide hospital records and national health registries, the incidence of and clinical risk factors for CMV and VZV infections will be determined. The immunological substudy is an explorative prospective observational cohort study including patients enlisted for LT in Denmark during a 1.5-year period (N > 80). Participants will be followed with scheduled blood samples until 12 months after LT. CMV- and VZV-derived peptides will be predicted for their likelihood to be presented in participants based on their HLA type. Peptide-MHC complexes (pMHC) will be produced to isolate CMV- and VZV-specific T cells from peripheral blood mononuclear cells before and after CMV and VZV infection. Their frequency, T cell receptor sequences, and phenotypic characteristics will be examined, and in a subset of participants, CMV- and VZV-specific T cells will be expanded ex vivo. DISCUSSION: This study will provide novel insight into T cell immunity required for viral control of CMV and VZV and has the potential to develop a prediction model to identify LT recipients at high risk for infection based on a combination of clinical and immunological data. Furthermore, this study has the potential to provide proof-of-concept for adoptive T cell therapy against CMV and VZV. Combined, this study has the potential to reduce the burden and consequence of CMV and VZV infections and improve health and survival in LT recipients. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05532540), registered 8 September 2022.


Assuntos
Infecções por Citomegalovirus , Infecções por Herpesviridae , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Infecções por Citomegalovirus/epidemiologia , Infecções por Citomegalovirus/etiologia , Estudos Retrospectivos , Estudos Prospectivos , Leucócitos Mononucleares , Citomegalovirus , Simplexvirus , Herpesvirus Humano 3 , Transplantados
7.
Cureus ; 15(2): e34827, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36919074

RESUMO

Background The nucleocapsid protein (N protein) of SARS-CoV-2 is undeniably a potent target for the development of diagnostic tools due to its abundant expression and lower immune evasion pressure compared to spike (S) protein. Methods Blood samples of active COVID-19 infections (n=71) and post-COVID-19 (n=11) were collected from a tertiary care hospital in India; pre-COVID-19 (n=12) sera samples served as controls. Real-time reverse transcriptase-PCR (rRT-PCR) confirmed pooled sera samples (n=5) were used with PEPperCHIP® SARS-CoV-2 Proteome Microarray (PEPperPRINT GmbH, Germany) to screen immunodominant epitopes of SARS-CoV-2. Highly immunodominant epitopes were then commercially synthesized and further validated for their immunoreactivity by dot-blot and ELISA. Results The lowest detectable concentration (LDC) of the N1 peptide in the dot-blot assay was 12.5 µg demonstrating it to be fairly immunoreactive compared to control sera. IgG titers against the contiguous peptide (N2: 156AIVLQLPQGTTLPKGFYAEGS176) was found to be significantly higher (p=0.018) in post-COVID-19 compared to pre-COVID-19 control sera. These results suggested that N2-specific IgG titers buildup over time as expected in post-COVID-19 sera samples, while a non-significant immunoreactivity of the N2 peptide was also observed in active-COVID-19 sera samples. However, there were no significant differences in the total IgG titers between active COVID-19 infections, post-COVID-19 and pre-COVID-19 controls. Conclusion The N2-specific IgG titers in post-COVID-19 samples demonstrated the potential of N protein as an exposure biomarker, particularly in sero-surveillance studies.

8.
Helicobacter ; 28(3): e12959, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36828665

RESUMO

BACKGROUND AND AIMS: Although Helicobacter pylori is recognized as an extracellular infection bacterium, it can lead to an increase in the number of CD8+ T cells after infection. At present, the characteristics of H. pylori antigen-specific CD8+ T cells and the epitope response have not been elucidated. This study was focused on putative protective antigen UreB to detect specific CD8+ T-cell responses in vitro and screen for predominant response epitopes. METHODS: The PBMCs collected from H. pylori-infected individuals were stimulated by UreB peptide pools in vitro to identify the immunodominant CD8+ T-cell epitopes. Furthermore, their HLA restriction characteristics were detected accordingly by NGS. Finally, the relationship between immunodominant responses and appearance of gastric symptoms after H. pylori infection was conducted. RESULTS: UreB-specific CD8+ T-cell responses were detected in H. pylori-infected individuals. Three of UreB dominant epitopes (A-2 (UreB443-451 : GVKPNMIIK), B-4 (UreB420-428 : SEYVGSVEV), and C-1 (UreB5-13 : SRKEYVSMY)) were firstly identified and mainly presented by HLA-A*1101, HLA-B*4001 and HLA-C*0702 alleles, respectively. C-1 responses were mostly occurred in H. pylori-infected subjects without gastric symptoms and may alleviate the degree of gastric inflammation. CONCLUSIONS: The UreB dominant epitope-specific CD8+ T-cell response was closely related to the gastric symptoms after H. pylori infection, and the C-1 (UreB5-13 ) dominant peptides may be protective epitopes.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Epitopos Imunodominantes , Urease , Linfócitos T CD8-Positivos , Epitopos , Antígenos de Bactérias
9.
Front Immunol ; 13: 1055936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311774

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.973762.].

10.
Front Immunol ; 13: 973762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189228

RESUMO

The major histocompatibility complex (MHC) haplotype is one of the major determinants of genetic resistance and susceptibility of chickens to Marek's disease (MD) which is caused by an oncogenic herpesvirus; Marek's disease virus (MDV). To determine differential functional abilities of T cells associated with resistance and susceptibility to MD, we identified immunodominant CD4+TCRvß1 T cell epitopes within the pp38 antigen of MDV in B19 and B21 MHC haplotype chickens using an ex vivo ELISPOT assay for chicken IFN-gamma. These novel pp38 peptides were used to characterize differential functional abilities of T cells as associated with resistance and susceptibility to MD. The results demonstrated an upregulation of cytokines (IL-2, IL-4, IL-10) and lymphocyte lysis-related genes (perforin and granzyme B) in an antigen specific manner using RT-PCR. In the MD-resistant chickens (B21 MHC haplotype), antigen-specific and non-specific response was highly skewed towards Th2 response as defined by higher levels of IL-4 expression as well as lymphocyte lysis-related genes compared to that in the MD-susceptible chicken line (B19 MHC haplotype). Using CD107a degranulation assay, the results showed that MDV infection impairs cytotoxic function of T cells regardless of their genetic background. Taken together, the data demonstrate an association between type of T cell response to pp38 and resistance to the disease and will shed light on our understanding of immune response to this oncogenic herpesvirus and failure to induce sterile immunity.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Antivirais , Galinhas , Citocinas , Epitopos de Linfócito T , Granzimas , Interleucina-10 , Interleucina-2 , Interleucina-4/genética , Perforina
11.
Braz J Infect Dis ; 25(5): 101619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34562387

RESUMO

The interaction of HIV-1, human leukocyte antigen (HLA), and elite controllers (EC) compose a still intricate triad. Elite controllers maintain a very low viral load and a normal CD4 count, even without antiretrovirals. There is a lot of diversity in HIV subtypes and HLA alleles. The most common subtype in each country varies depending on its localization and epidemiological history. As we know EC appears to maintain an effective CD8 response against HIV. In this phenomenon, some alleles of HLAs are associated with a slow progression of HIV infection, others with a rapid progression. This relationship also depends on the virus subtype. Epitopes of Gag protein-restricted by HLA-B*57 generated a considerable immune response in EC. However, some mutations allow HIV to escape the CD8 response, while others do not. HLA protective alleles, like HLA-B*27, HLA-B*57 and HLA-B*58:01, that are common in Caucasians infected with HIV-1 Clade B, do not show the same protection in sub-Saharan Africans infected by HIV-1 Clade C. Endogenous pathway of antigen processing and presentation is used to present intracellular synthesized cellular peptides as well as viral protein fragments via the MHC class I molecule to the cytotoxic T-lymphocytes (CTLs). Some epitopes are immunodominant, which means that they drive the immune reaction to some virus. Mutation on an anchor residue of epitope necessary for binding on MHC class I is used by HIV to escape the immune system. Mutations inside or flanking an epitope may lead to T cell lack of recognition and CTL escape. Studying how immunodominance at epitopes drives the EC in a geographically dependent way with genetics and immunological elements orchestrating it may help future research on vaccines or immunotherapy for HIV.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD8-Positivos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , HIV-1/genética , Humanos , Linfócitos T Citotóxicos , Carga Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana
12.
Front Immunol ; 12: 679841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421894

RESUMO

Understanding the course of the antibody response directed to individual epitopes of SARS-CoV-2 proteins is crucial for serological assays and establishment of vaccines. Twenty-one synthetic peptides were synthesized that have ten amino acids overlap and cover the complete membrane (M) protein. Plasma samples from 32 patients having acute disease and 30 patients from the convalescent phase were studied. Only peptide M01 (aa 1-20) and to a lesser extent peptide M21 (aa 201-222) showed specific reactivity as compared to historical control plasma samples. Peptide M01 was recognized by IgM- (71.9%) and IgG-specific antibodies (43.8%) during the acute phase as early as day 8 PIO. In a longitudinal analysis, a higher reactivity was observed for the IgM response directed to peptide M01 following day 20 PIO as compared to earlier time points of the acute phase. In the convalescent phase, antibody reactivity to the two M-specific peptides was significantly lower (<30% seropositivity). A fusion protein encoding major parts of RBD also showed higher rates of recognition during acute (50.0%) and lower rates in the convalescent phase (23.3%). Taken together, our results suggest that during the acute phase of COVID-19 antibodies are raised to two linear epitopes of the SARS-CoV-2 M protein, located at the very N- and C-termini, showing almost similar levels of reactivity as immunodominant linear epitopes derived from the spike and nucleocapsid protein. Anti-M is also present in the convalescent phase of COVID-19 patients, however at lower levels, with the N-terminus of the M protein as a preferred target.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Proteínas da Matriz Viral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/biossíntese , Convalescença , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/genética
13.
Cell Rep Med ; 2(6): 100312, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34056627

RESUMO

Knowledge of the epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targeted by T cells in recovered (convalescent) individuals is important for understanding T cell immunity against coronavirus disease 2019 (COVID-19). This information can aid development and assessment of COVID-19 vaccines and inform novel diagnostic technologies. Here, we provide a unified description and meta-analysis of SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of individuals recovered from COVID-19 (852 individuals in total). Our analysis demonstrates the broad diversity of T cell epitopes that have been recorded for SARS-CoV-2. A large majority are seemingly unaffected by current variants of concern. We identify a set of 20 immunoprevalent epitopes that induced T cell responses in multiple cohorts and in a large fraction of tested individuals. The landscape of SARS-CoV-2 T cell epitopes we describe can help guide immunological studies, including those related to vaccines and diagnostics. A web-based platform has been developed to help complement these efforts.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/metabolismo , Sequência de Aminoácidos , COVID-19/patologia , COVID-19/virologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígenos HLA/genética , Humanos , Imunidade , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Braz. j. infect. dis ; 25(5): 101619, 2021.
Artigo em Inglês | LILACS | ID: biblio-1350324

RESUMO

The interaction of HIV-1, human leukocyte antigen (HLA), and elite controllers (EC) compose a still intricate triad. Elite controllers maintain a very low viral load and a normal CD4 count, even without antiretrovirals. There is a lot of diversity in HIV subtypes and HLA alleles. The most common subtype in each country varies depending on its localization and epidemiological history. As we know EC appears to maintain an effective CD8 response against HIV. In this phenomenon, some alleles of HLAs are associated with a slow progression of HIV infection, others with a rapid progression. This relationship also depends on the virus subtype. Epitopes of Gag protein-restricted by HLA-B*57 generated a considerable immune response in EC. However, some mutations allow HIV to escape the CD8 response, while others do not. HLA protective alleles, like HLA-B*27, HLA-B*57 and HLA-B*58:01, that are common in Caucasians infected with HIV-1 Clade B, do not show the same protection in sub-Saharan Africans infected by HIV-1 Clade C. Endogenous pathway of antigen processing and presentation is used to present intracellular synthesized cellular peptides as well as viral protein fragments via the MHC class I molecule to the cytotoxic T-lymphocytes (CTLs). Some epitopes are immunodominant, which means that they drive the immune reaction to some virus. Mutation on an anchor residue of epitope necessary for binding on MHC class I is used by HIV to escape the immune system. Mutations inside or flanking an epitope may lead to T cell lack of recognition and CTL escape. Studying how immunodominance at epitopes drives the EC in a geographically dependent way with genetics and immunological elements orchestrating it may help future research on vaccines or immunotherapy for HIV. 2021 Sociedade Brasileira de Infectologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license


Assuntos
Infecções por HIV/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Linfócitos T Citotóxicos , Linfócitos T CD8-Positivos , Carga Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana
15.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33128877

RESUMO

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Betacoronavirus/isolamento & purificação , COVID-19 , Convalescença , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Mapeamento de Epitopos , Epitopos de Linfócito T , Feminino , Humanos , Epitopos Imunodominantes , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/diagnóstico , Poliproteínas , SARS-CoV-2 , Proteínas Virais/imunologia , Adulto Jovem
16.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580384

RESUMO

Of the 24 known measles genotypes, only D8 and B3 are responsible for outbreaks in the last years in Europe, Asia, and America. In this study the H gene of 92 strains circulating between 2015 and 2019 in Lombardy, Northern Italy, and 1273 H sequences available in GenBank were analyzed in order to evaluate the genetic variability and to assess the conservation of the immunodominant sites. Overall, in Lombardy we observed the presence of four different B3 and three different D8 clusters, each one of them including sequences derived from viruses found in both vaccinated and unvaccinated subjects. Worldwide, the residue 400 within the H protein, a position located within the main immune epitope, is mutated in all circulating strains that belong to the two globally endemic genotypes, B3 and D8. Our data demonstrate the usefulness of measles virus (MV) H gene sequencing. Indeed, the monitoring the H protein epitopes of circulating strains could be included in the measles laboratory surveillance activities in order to improve and optimize strategies for measles control, as countries go towards elimination phase.


Assuntos
Variação Genética , Hemaglutininas/genética , Vírus do Sarampo/genética , Sarampo/epidemiologia , Epidemiologia Molecular , Filogenia , Proteínas Virais/genética , Sequência de Aminoácidos , Genótipo , Hemaglutininas/imunologia , Humanos , Itália/epidemiologia , Sarampo/prevenção & controle , Sarampo/virologia , Vírus do Sarampo/classificação , Vírus do Sarampo/imunologia , Análise de Sequência de DNA , Homologia de Sequência , Vacinas Virais/administração & dosagem
17.
J Autoimmun ; 106: 102306, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383567

RESUMO

BACKGROUND: Treatment of autoimmune diseases has relied on broad immunosuppression. Knowledge of specific interactions between human leukocyte antigen (HLA), the autoantigen, and effector immune cells, provides the foundation for antigen-specific therapies. These studies investigated the role of HLA, specific myeloperoxidase (MPO) epitopes, CD4+ T cells, and ANCA specificity in shaping the immune response in patients with anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis. METHODS: HLA sequence-based typing identified enriched alleles in our patient population (HLA-DPB1*04:01 and HLA-DRB4*01:01), while in silico and in vitro binding studies confirmed binding between HLA and specific MPO epitopes. Class II tetramers with MPO peptides were utilized to detect autoreactive CD4+ T cells. TCR sequencing was performed to determine the clonality of T cell populations. Longitudinal peptide ELISAs assessed the temporal nature of anti-MPO447-461 antibodies. Solvent accessibility combined with chemical modification determined the buried regions of MPO. RESULTS: We identified a restricted region of MPO that was recognized by both CD4+ T cells and ANCA. The autoreactive T cell population contained CD4+CD25intermediateCD45RO+ memory T cells and secreted IL-17A. T cell receptor (TCR) sequencing demonstrated that autoreactive CD4+ T cells had significantly less TCR diversity when compared to naïve and memory T cells, indicating clonal expansion. The anti-MPO447-461 autoantibody response was detectable at onset of disease in some patients and correlated with disease activity in others. This region of MPO that is targeted by both T cells and antibodies is not accessible to solvent or chemical modification, indicating these epitopes are buried. CONCLUSIONS: These observations reveal interactions between restricted MPO epitopes and the adaptive immune system within ANCA vasculitis that may inform new antigen-specific therapies in autoimmune disease while providing insight into immunopathogenesis.


Assuntos
Imunidade Adaptativa/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Epitopos/imunologia , Peroxidase/imunologia , Vasculite/imunologia , Sequência de Aminoácidos , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Humanos , Leucócitos Mononucleares/imunologia , Estudos Longitudinais , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia
18.
Med Chem ; 14(2): 120-128, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28875859

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG) is located on the external surface of myelin, a membranous component of the central nervous system (CNS) that forms the insulating lipid layer around neurons. The major MOG splicing variant (a1 transcript) encodes a transmembrane protein with an extracellular domain of an Ig variable (IgV) fold. MOG IgV domains from the same or different cells dimerize and contribute to the organization and maintenance of the myelin sheath in neurons. The encepalitogenic T cells recognize MOG and its immunodominant epitopes (epitopes 1-22, 35-55 and 92-106 located at the dimer interface) as foreign antigens and cause the destruction of myelin (demyelination) leading to the clinical condition known as multiple sclerosis (MS). Recognition of the antigen takes place in the context of the trimolecular complex formed by HLA, MOGpeptides and TCR. OBJECTIVE: Understanding the role of MOG in MS. METHOD/RESULTS: We have reviewed herein, the genomic organization of the human MOG gene, the structural characteristics of the MOG protein, the involvement of MOG in MS and clinical studies for the treatment of MS based on MOG peptide analogues. CONCLUSION: Conjugates of antigenic MOG peptides to mannan and combinations of antigenic MOG and other peptides chemically linked to cells of the immune system may modify the immune response, alleviating in some cases the symptoms of MS.


Assuntos
Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Animais , Humanos , Glicoproteína Mielina-Oligodendrócito/química
19.
J. Bras. Patol. Med. Lab. (Online) ; 53(5): 305-308, Sept.-Oct. 2017.
Artigo em Inglês | LILACS | ID: biblio-1040203

RESUMO

ABSTRACT Among the cardiovascular diseases (CVD), acute myocardial infarction (AMI) is currently considered the most common cause of death and disability worldwide. Several laboratory tests have been developed for the detection of cardiac injury, including troponins that are considered the gold standard marker (surrogate biomarker) of myocardial injury. The high specificity of troponin for cardiomyocyte necrosis is related to a single unique peptide sequence present in troponin at the cardiac muscle. As a result, studies are currently focused on the development of troponin (hs-cTnI) determination tests with high diagnostic sensitivity value. These diagnostic tests aim to detect increasingly lower serum concentrations of cTnI biomarkers, from the detection of peptide fragments that are released after structural biochemical changes. This article discusses the differences between troponin fragments immunoreactivity to the development of cTnI determination tests, such as the high-sensitivity tests, which arise with the proposal of guaranteeing greater efficiency in the AMI associated diagnosis.


RESUMO Entre as doenças cardiovasculares (DCV), o infarto agudo do miocárdio (IAM) atualmente é considerado a causa mais comum de morte e incapacidade em todo o mundo. Vários testes laboratoriais vêm sendo desenvolvidos para a detecção de lesões cardíacas, entre eles, as troponinas, consideradas marcador (biomarcador sugestivo) padrão-ouro de lesão miocárdica. A alta especificidade da troponina para a necrose dos cardiomiócitos está relacionada com a sequência peptídica única presente na troponina do músculo cardíaco. Em função disso, estudos estão voltados para o desenvolvimento de conjuntos diagnósticos de alta sensibilidade para a determinação das troponinas I (hs-cTnI). Esses conjuntos diagnósticos surgem com o objetivo de detectar concentrações séricas cada vez menores desses biomarcadores a partir da detecção de fragmentos peptídicos que são liberados após modificações bioquímicas estruturais. O presente artigo discorre sobre as diferenças de imunorreatividade dos fragmentos de troponina no desenvolvimento de nossos testes para a determinação da cTnI, a exemplo dos testes de alta sensibilidade, que surgem com a proposta de garantir maior eficiência no diagnóstico associado do IAM.

20.
Acta Virol ; 61(1): 97-104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28161964

RESUMO

Human cytomegalovirus (HCMV) establishes severe disease in fetus, newborn and immunocompromised individuals. Polytope DNA vaccine strategy allows us to choose conserved and immunodominant epitopes from different antigens that can stimulate cellular and humoral immune responses simultaneously. In this study, a synthetic chimeric gene fragment was subcloned in to DNA vaccine vector pcDNA3.1+. The recombinant vector was transferred in to suitable eukaryotic cell line HEK 293T and the expression level of polytope construct from HEK 293T-infected cells was determined by western blot. These results show that there was no mutantion in target segment and recombinant vector showed significant levels of expression. Base on these results, using a proper procedure for design can cause expression and stability of polytope peptide.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Clonagem Molecular , DNA Viral/imunologia , Células HEK293 , Humanos , Plasmídeos , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...