Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39324648

RESUMO

CONTEXT: Defects in MKRN3, DLK1, KISS1, and KISS1R and some disorders, such as Temple syndrome (TS14), cause central precocious puberty (CPP). Recently, pathogenic variants (PVs) in MECP2 have been reported to be associated with CPP. OBJECTIVE: We aimed to clarify the contribution of (epi)genetic abnormalities to CPP and clinical and hormonal features in each etiology. SUBJECTS AND METHODS: We conducted targeted sequencing for MKRN3, DLK1, MECP2, KISS1, and KISS1R and methylation analysis for screening of imprinting disorders such as TS14 associated with CPP in 90 patients with CPP (no history of brain injuries and negative brain MRI) and collected their clinical and laboratory data. We measured serum DLK1 levels in three patients with TS14 and serum MKRN3 levels in two patients with MKRN3 genetic defects, together with some etiology-unknown patients with CPP and controls. RESULTS: We detected eight patients with TS14 (six, epimutation; one, mosaic maternal uniparental disomy chromosome 14; one, microdeletion) and three patients with MKRN3 genetic defects (one, PV; one, 13-bp deletion in the 5'-untranslated region (5'-UTR); one, microdeletion) with family histories of paternal early puberty. There were no patients with PVs identified in MECP2, KISS1, or KISS1R. We confirmed low serum MKRN3 level in the patient with a deletion in 5'-UTR. The median height at initial evaluation of TS14 patients was lower than that of all patients. Six patients with TS14 were born small for gestational age (SGA). CONCLUSION: (Epi)genetic causes were identified in 12.2% of patients with CPP at our center. For patients with CPP born SGA or together with family histories of paternal early puberty, (epi)genetic testing for TS14 and MKRN3 genetic defects should be considered. (271/250).

2.
Horm Res Paediatr ; : 1-8, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154638

RESUMO

INTRODUCTION: Pseudohypoparathyroidism, newly classified as inactivating PTH/PTHrP signaling disorder (iPPSD) type 2 or type 3, is a rare disease caused by defects in the GNAS imprinted gene that encodes Gsα. The most common phenotype comprises resistance to hormones binding to G protein-coupled receptors such as PTH, PTHrP, or TSH, subcutaneous ossifications, short stature, brachydactyly, and early onset obesity. Uncommon features have been described including sleep apnea, asthma, and resistance to calcitonin. At the national French reference center for rare calcium and phosphate metabolism diseases, a large cohort of patients with iPPSD type 2 and type 3 is followed. Interestingly, digestive manifestations and in particular intractable constipation were regularly reported by families of children with iPPSD type 2 or type 3. OBJECTIVE: The aim of our study was therefore to specify the frequency and characteristics of digestive manifestations in children followed up for iPPSD2 or iPPSD3 in our reference center. MATERIAL AND METHODS: Thirty-six patients aged between 2 and 18 years (32 followed up for iPPSD2 and 4 for iPPSD3) were included. Parents completed a specific questionnaire to assess any digestive disorders in their child. The diagnosis of constipation was established using the Bristol visual scale in the event of a score of less than 2 according to stool appearance. RESULTS: Parents reported constipation through the questionnaires in 22/36 (over 60%) of the children. It was the most frequently reported digestive disorder. Among these 22 children, 19 (87%) had a Bristol score for stool shape and texture between 1 and 2 on a scale of 7, confirming constipation. Dedicated treatment had been initiated for 10 (55%) of them, yet only 3 families (16%) considered this treatment effective. Neonatal vomiting and eating disorders, such as lack of satiety or food selectivity, were also noted in 18 (50%) of patients, as was gastroesophageal reflux present in the neonatal period in 14 (40%) of children. There were no significant differences according to the type of iPPSD or patient age. CONCLUSION: Our work shows for the first time that digestive manifestations, including constipation, occur frequently in children followed for iPPSD, suggesting a potential role of Gsα and G protein receptors in the digestive tract. It is well known that constipation and digestive symptoms alter quality of life. Early management is therefore essential to improve the quality of life of children followed for iPPSD. Our data need to be confirmed on a larger cohort.

3.
Cureus ; 16(6): e62095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989381

RESUMO

We present a case of a fetus acquiring two different balanced translocations from each parent and subsequent uniparental isodisomy from postzygotic loss of a paternal chromosome. Balanced chromosomal translocations occur in 0.14% of the population and increase the risk of other genetic abnormalities, such as uniparental disomy (UPD) and mosaicism. Preimplantation genetic testing (PGT) can identify some genetic abnormalities. Translocations t(6;21) and t(5;15) have been reported individually but never together in a viable fetus. A non-consanguineous couple who were known carriers of two different balanced translocations conceived via classic in vitro fertilization (IVF). They had a normal PGT completed. Chorionic villus sampling (CVS) revealed that the fetus had received t(6;21) from the mother and t(5;15) from the father. The probability of the fetus acquiring both translocations was 2.8%. CVS also revealed UPD of chromosome 14. Amniocentesis was performed, which was consistent with the CVS in detecting the balanced translocations but provided more information about the UPD, determining that it was a mosaic maternal uniparental isodisomy of chromosome 14 (UPD(14)mat). The couple underwent genetic counseling to discuss the above findings and ultimately decided on dilation and evacuation at 17 weeks of gestation. The likelihood of conception of this fetus and survival past the first trimester is extremely rare. These specific chromosomal translocations and (UPD(14)mat) have never been reported before. This case emphasizes the concomitant nature of imprinted genes, resulting in multiple genetically unique alterations. This report also highlights the limitations of PGT, CVS, and amniocentesis in being reproducibly consistent, which is important to discuss prior to IVF conception.

4.
Trends Genet ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955588

RESUMO

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.

5.
Fertil Steril ; 122(4): 706-714, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38825304

RESUMO

OBJECTIVE: To assess whether the use of assisted reproductive technology (ART) therapy for conception is associated with imprinting disorders in children and the impact of parental factors related to infertility. DESIGN: A nationwide register-based cohort study. SETTING: Swedish national registers and nationwide quality IVF register. PATIENT(S): All liveborn singletons in Sweden (N = 2,084,127) between 1997 and 2017 with follow-up to December 31, 2018. INTERVENTION(S): The use of specific methods implemented in ART. MAIN OUTCOME MEASURE(S): The International Classification of Diseases version 10 was used to identify three distinct imprinting disorder groups: Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS), and Silver-Russell syndrome (SRS), as well as central precocious puberty. The Cox model combined with inverse probability treatment weights was used to estimate the weighted hazard ratio (wHR) with a 95% confidence interval (CI), accounting for multiple confounders. RESULT(S): A total of 1,044 children were diagnosed with the disorders of interest, and 52 of them were conceived using ART therapy. The overall risk of being diagnosed with any of the studied imprinting disorders was elevated in children conceived using ART therapy compared with all other children (HR, 1.84; 95% CI, 1.38-2.45). After adjusting for parental background factors, the association was partially attenuated (wHR, 1.50; 95% CI, 0.97-2.32), but remained in the weighted comparison restricted to children of couples with known infertility (wHR, 1.52; 95% CI, 1.05-2.21). For the specific diagnoses of PWS/SRS, and BWS compared with children of couples with known infertility, children conceived with ART therapy showed a small excess risk, which could not be distinguished from the null (wHR, 1.56; 95% CI, 0.93-2.62 and 1.80; 95% CI, 0.99-3.28, respectively). Further subgroup analysis showed that the combined use of intracytoplasmic sperm injection and cryopreserved embryos was associated with a higher risk of both PWS/SRS (wHR, 4.60; 95% CI, 1.72-12.28) and BWS (wHR, 6.69; 95% CI, 2.09-21.45). The number of central precocious puberty cases in children conceived using ART therapy was too small (N = 3) to make any meaningful inference. CONCLUSION(S): The combined use of intracytoplasmic sperm injection and cryopreserved embryos was associated with small elevated risks of PWS/SRS, and BWS in children, independent of parental factors related to infertility.


Assuntos
Síndrome de Beckwith-Wiedemann , Impressão Genômica , Sistema de Registros , Técnicas de Reprodução Assistida , Síndrome de Silver-Russell , Humanos , Suécia/epidemiologia , Feminino , Masculino , Técnicas de Reprodução Assistida/efeitos adversos , Síndrome de Beckwith-Wiedemann/epidemiologia , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Silver-Russell/epidemiologia , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Criança , Síndrome de Prader-Willi/epidemiologia , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/terapia , Pré-Escolar , Adulto , Fatores de Risco , Infertilidade/terapia , Infertilidade/epidemiologia , Infertilidade/diagnóstico , Infertilidade/fisiopatologia , Lactente , Gravidez , Recém-Nascido , Adolescente , Transtornos da Impressão Genômica
6.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453481

RESUMO

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Assuntos
Oócitos , Zigoto , Animais , Criança , Feminino , Humanos , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Citoplasma/genética , Citoplasma/metabolismo , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Impressão Genômica/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Hum Fertil (Camb) ; 26(4): 864-878, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37929309

RESUMO

With the increasing maturity and widespread application of assisted reproductive technology (ART), more attention has been paid to the health outcomes of offspring following ART. It is well established that children born from ART treatment are at an increased risk of imprinting errors and imprinting disorders. The disturbances of genetic imprinting are attributed to the overlap of ART procedures and important epigenetic reprogramming events during the development of gametes and early embryos, but the detailed mechanisms are hitherto obscure. In this review, we summarized the DNA methylation-dependent and independent mechanisms that control the dynamic epigenetic regulation of imprinted genes throughout the life cycle of a mammal, including erasure, establishment, and maintenance. In addition, we systematically described the dysregulation of imprinted genes in embryos conceived through ART and discussed the corresponding underlying mechanisms according to findings in animal models. This work is conducive to evaluating and improving the safety of ART.


Assuntos
Epigênese Genética , Impressão Genômica , Animais , Criança , Humanos , Metilação de DNA , Técnicas de Reprodução Assistida/efeitos adversos , Fertilização , Mamíferos
8.
Ital J Pediatr ; 49(1): 127, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749604

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS, OMIM #130,650) is a pediatric overgrowth disorder involving a predisposition to tumor development. Although the clinical management of affected patients is well established, it is less clear how to handle with the cases of siblings of affected patients, since the prevalence of the condition in twins (1:1000) is ten times higher than in singletones (1:10000). CASE PRESENTATION: We report the case of a premature twin patient who during her follow-up develops a clinical phenotype compatible with BWS, genetically confirmed in blood. However, the methylation alteration characteristic of the condition was also found in the almost phenotypically normal sibling, making it challening her management. CONCLUSION: Through our case report we highlight how the diagnosis of BWS can be made without any prenatal suspicion and we propose a review of the literature on how to manage siblings of affected patients in twinning situation.


Assuntos
Síndrome de Beckwith-Wiedemann , Feminino , Criança , Gravidez , Humanos , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/terapia , Genótipo , Fenótipo , Irmãos , Gêmeos
9.
Front Cell Dev Biol ; 11: 1237629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635873

RESUMO

Imprinting disorders are congenital diseases caused by dysregulation of genomic imprinting, affecting growth, neurocognitive development, metabolism and cancer predisposition. Overlapping clinical features are often observed among this group of diseases. In rare cases, two fully expressed imprinting disorders may coexist in the same patient. A dozen cases of this type have been reported so far. Most of them are represented by individuals affected by Beckwith-Wiedemann spectrum (BWSp) and Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus imprinting disturbances (MLID). Here, we report the first case of co-occurrence of BWS and PHP1B in the same individual in absence of MLID. Genome-wide methylation and SNP-array analyses demonstrated loss of methylation of the KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of chromosome 20 suggests that BWSp and PHP1B arose through distinct and independent mechanism in our patient. However, we cannot exclude that the rare combination of the epigenetic defect on chromosome 11 and the UPD on chromosome 20 may originate from a common so far undetermined predisposing molecular lesion. A better comprehension of the molecular mechanisms underlying the co-occurrence of two imprinting disorders will improve genetic counselling and estimate of familial recurrence risk of these rare cases. Furthermore, our study also supports the importance of multilocus molecular testing for revealing MLID as well as complex cases of imprinting disorders.

10.
Mol Genet Genomic Med ; 11(12): e2264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519217

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome and Silver-Russel syndrome are two imprinting disorders caused by opposite molecular alterations in 11p15.5. With the current diagnostic tests, their molecular diagnosis is challenging due to molecular heterogeneity and mosaic occurrence of the most frequent alterations. As the determination of precise (epi)genotype of patients is relevant as the basis for a personalized treatment, different approaches are needed to increase the sensitivity of diagnostic testing of imprinting disorders. METHODS: We established methylation-specific droplet digital PCR approaches (MS-ddPCR) for the two imprinting centers in 11p15.5, and analyzed patients with paternal uniparental disomy of chromosome 11p15.5 (upd(11)pat) and other imprinting defects in the region. The results were compared to those from MS-MLPA (multiplex ligation-dependent probe amplification) and MS-pyrosequencing. RESULTS: MS-ddPCR confirmed the molecular alterations in all patients and the results matched well with MS-MLPA. The results of MS-pyrosequencing varied between different runs, whereas MS-ddPCR results were reproducible. CONCLUSION: We show for the first time that MS-ddPCR is a reliable and easy applicable method for determination of MS-associated changes in imprinting disorders. It is therefore an additional tool for multimethod diagnostics of imprinting disorders suitable to improve the diagnostic yield.


Assuntos
Síndrome de Beckwith-Wiedemann , Transtornos da Impressão Genômica , Síndrome de Silver-Russell , Humanos , Metilação de DNA , Impressão Genômica , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Reação em Cadeia da Polimerase Multiplex
11.
Clin Epigenetics ; 15(1): 78, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147716

RESUMO

BACKGROUND: Our previous study suggested that assisted reproductive technology (ART) may be a possible risk factor for the development of epimutation-mediated imprinting disorders (epi-IDs) for mothers aged ≥ 30 years. However, whether ART or advanced parental age facilitates the development of uniparental disomy-mediated IDs (UPD-IDs) has not yet been investigated. RESULTS: We enrolled 130 patients with aneuploid UPD-IDs including various IDs confirmed by molecular studies and obtained ART data of the general population and patients with epi-IDs from a robust nationwide database and our previous report, respectively. We compared the proportion of ART-conceived livebirths and maternal childbearing age between patients with UPD-IDs and the general population or patients with epi-IDs. The proportion of ART-conceived livebirths in patients with aneuploid UPD-IDs was consistent with that in the general population of maternal age ≥ 30 years and was lower than that in the patients with epi-IDs, although there was no significant difference. The maternal childbearing age of patients with aneuploid UPD-IDs was skewed to the increased ages with several cases exceeding the 97.5th percentile of maternal childbearing age of the general population and significantly higher than that of patients with epi-IDs (P < 0.001). In addition, we compared the proportion of ART-conceived livebirths and parental age at childbirth between patients with UPD-IDs caused by aneuploid oocytes (oUPD-IDs) and that by aneuploid sperm (sUPD-IDs). Almost all ART-conceived livebirths were identified in patients with oUPD-IDs, and both maternal age and paternal age at childbirth were significantly higher in patients with oUPD-IDs than in patients with sUPD-IDs. Because maternal age and paternal age were strongly correlated (rs = 0.637, P < 0.001), higher paternal age in oUPD-IDs was explained by the higher maternal age in this group. CONCLUSIONS: Different from the case of epi-IDs, ART itself is not likely to facilitate the development of aneuploid UPD-IDs. We demonstrated that advanced maternal age can be a risk factor for the development of aneuploid UPD-IDs, particularly oUPD-IDs.


Assuntos
Impressão Genômica , Dissomia Uniparental , Feminino , Humanos , Masculino , Gravidez , Dissomia Uniparental/genética , Metilação de DNA , Sêmen , Aneuploidia , Medição de Risco , Mães , Oócitos , Técnicas de Reprodução Assistida/efeitos adversos
12.
Appl Clin Genet ; 16: 41-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051256

RESUMO

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are genetic imprinting disorders resulting from absent or reduced expression of paternal or maternal genes in chromosome 15q11q13 region, respectively. The most common etiology is deletion of the maternal or paternal 15q11q13 region. Methylation is the first line for molecular diagnostic testing; MS-MLPA is the most sensitive test. The molecular subtype of PWS/AS provides more accurate recurrence risk information for parents and for the individual affected with the condition. Management should include a multidisciplinary team by various medical subspecialists and therapists. Developmental and behavioral management of PWS and AS in infancy and early childhood includes early intervention services and individualized education programs for school-aged children. Here, we compare and discuss the mechanisms, pathophysiology, clinical features, and management of the two imprinting disorders, PWS and AS.

13.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046605

RESUMO

CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.

14.
Eur J Med Genet ; 66(1): 104671, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402267

RESUMO

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with characteristic features, such as overgrowth, macroglossia, and exomphalos. Hypomethylation of the KCNQ1OT1:TSS-differentially methylated region (DMR) on the 11p15.5 imprinted region is the most common etiology of BWS. KCNQ1 on 11p15.5 is expressed from the maternally inherited allele in most tissues, but is biparentally expressed in the heart, and maternal KCNQ1 transcription is required to establish the maternal DNA imprint in the KCNQ1OT1:TSS-DMR. Loss of function variants in KCNQ1 result in long QT syndrome type 1 (LQT1). To date, eight patients with BWS due to KCNQ1 splice variants or structural abnormalities involving KCNQ1 but not the KCNQ1OT1:TSS-DMR have been reported (KCNQ1-BWS), and four of them had LQT1. We report a Japanese boy with BWS and LQT1 presenting with extreme hypomethylation of the KCNQ1OT1:TSS-DMR caused by a de novo 215-kb deletion including KCNQ1 but not the KCNQ1OT1:TSS-DMR on the maternal allele. He was born by emergency cesarean section due to suspicion of placental abruption at 30 weeks of gestation. His birth weight and length were +1.6 SD and +1.0 SD, respectively. His placental weight was +3.9 SD, and histological examination of his placenta was consistent with mesenchymal dysplasia. He had BWS clinical features, including macroglossia, ear creases and pits, body asymmetry, and rectus abdominis muscle dehiscence, and BWS was therefore diagnosed. LQT1 was first noticed at three months in a preoperative examination for lingual frenectomy. The summarized data of our patient and the previously reported eight patients in KCNQ1-BWS showed more frequent and earlier preterm births and smaller sized birth weight in KCNQ1-BWS cases than those with BWS caused by epimutation of the KCNQ1OT1:TSS-DMR. In addition, in five of nine patients with KCNQ1-BWS, LQT1 was detected, and two of them were identified at school age. In our patient and in another single case with LQT1, the LQT1 was not detected early despite neonatal ECG monitoring. For BWS patients with extreme hypomethylation of the KCNQ1OT1:TSS-DMR, searching for CNVs involving KCNQ1 and mutation screening for KCNQ1 should be considered together with periodic ECG monitoring. (338/500 words).


Assuntos
Síndrome de Beckwith-Wiedemann , Canal de Potássio KCNQ1 , Síndrome do QT Longo , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Síndrome de Beckwith-Wiedemann/genética , Peso ao Nascer/genética , Cesárea , Metilação de DNA , Impressão Genômica , Canal de Potássio KCNQ1/genética , Macroglossia/genética , Placenta/patologia , Síndrome do QT Longo/genética , Deleção de Sequência , Eletrocardiografia , Descolamento Prematuro da Placenta/cirurgia
15.
Clin Genet ; 103(2): 133-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36109352

RESUMO

Assisted reproductive technology may influence epigenetic signature as the procedures coincide with the extensive epigenetic modification occurring from fertilization to embryo implantation. However, it is still unclear to what extent ART alters the embryo epigenome. In vivo fertilization occurs in the fallopian tube, where a specific and natural environment enables the embryo's healthy development. During this dynamic period, major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Over the past decade, concerns relating to the raised incidence of epigenetic anomalies and imprinting following ART have been raised by several authors. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period; therefore, unphysiological conditions, including ovarian stimulation, in vitro fertilization, embryo culture, cryopreservation of gametes and embryos, parental lifestyle, and underlying infertility, have the potential to contribute to epigenetic dysregulation independently or collectively. This review critically appraises the evidence relating to the association between ART and genetic and epigenetic modifications that may be transmitted to the offspring.


Assuntos
Fertilização in vitro , Infertilidade , Feminino , Humanos , Criança , Técnicas de Reprodução Assistida/efeitos adversos , Infertilidade/genética , Epigênese Genética , Fertilização
16.
Clin Epigenetics ; 14(1): 190, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578048

RESUMO

BACKGROUND: Parental imprinting is an epigenetic mechanism that leads to monoallelic expression of a subset of genes depending on their parental origin. Imprinting disorders (IDs), caused by disturbances of imprinted genes, are a set of rare congenital diseases that mainly affect growth, metabolism and development. To date, there is no accurate model to study the physiopathology of IDs or test therapeutic strategies. Human induced pluripotent stem cells (iPSCs) are a promising cellular approach to model human diseases and complex genetic disorders. However, aberrant hypermethylation of imprinting control regions (ICRs) may appear during the reprogramming process and subsequent culture of iPSCs. Therefore, we tested various conditions of reprogramming and culture of iPSCs and performed an extensive analysis of methylation marks at the ICRs to develop a cellular model that can be used to study IDs. RESULTS: We assessed the methylation levels at seven imprinted loci in iPSCs before differentiation, at various passages of cell culture, and during chondrogenic differentiation. Abnormal methylation levels were found, with hypermethylation at 11p15 H19/IGF2:IG-DMR and 14q32 MEG3/DLK1:IG-DMR, independently of the reprogramming method and cells of origin. Hypermethylation at these two loci led to the loss of parental imprinting (LOI), with biallelic expression of the imprinted genes IGF2 and DLK1, respectively. The epiPS™ culture medium combined with culturing of the cells under hypoxic conditions prevented hypermethylation at H19/IGF2:IG-DMR (ICR1) and MEG3/DLK1:IG-DMR, as well as at other imprinted loci, while preserving the proliferation and pluripotency qualities of these iPSCs. CONCLUSIONS: An extensive and quantitative analysis of methylation levels of ICRs in iPSCs showed hypermethylation of certain ICRs in human iPSCs, especially paternally methylated ICRs, and subsequent LOI of certain imprinted genes. The epiPS™ culture medium and culturing of the cells under hypoxic conditions prevented hypermethylation of ICRs in iPSCs. We demonstrated that the reprogramming and culture in epiPS™ medium allow the generation of control iPSCs lines with a balanced methylation and ID patient iPSCs lines with unbalanced methylation. Human iPSCs are therefore a promising cellular model to study the physiopathology of IDs and test therapies in tissues of interest.


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Humanos , Metilação de DNA , Células-Tronco Pluripotentes Induzidas/metabolismo , Impressão Genômica , Epigênese Genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
Clin Epigenetics ; 14(1): 143, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345041

RESUMO

BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impressão Genômica , Metilação de DNA , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Transtornos do Crescimento/genética , Técnicas e Procedimentos Diagnósticos
18.
Clin Epigenetics ; 14(1): 146, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371218

RESUMO

Genomic imprinting is an epigenetic phenomenon of monoallelic gene expression pattern depending on parental origin. In humans, congenital imprinting disruptions resulting from genetic or epigenetic mechanisms can cause a group of diseases known as genetic imprinting disorders (IDs). Genetic IDs involve several distinct syndromes sharing homologies in terms of genetic etiologies and phenotypic features. However, the molecular pathogenesis of genetic IDs is complex and remains largely uncharacterized, resulting in a lack of effective therapeutic approaches for patients. In this review, we begin with an overview of the genomic and epigenomic molecular basis of human genetic IDs. Notably, we address ethical aspects as a priority of employing emerging techniques for therapeutic applications in human IDs. With a particular focus, we delineate the current field of emerging therapeutics for genetic IDs. We briefly summarize novel symptomatic drugs and highlight the key milestones of new techniques and therapeutic programs as they stand today which can offer highly promising disease-modifying interventions for genetic IDs accompanied by various challenges.


Assuntos
Metilação de DNA , Impressão Genômica , Humanos , Epigênese Genética , Genoma
19.
Genes (Basel) ; 13(10)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36292759

RESUMO

Silver-Russell syndrome is an imprinting disorder characterised by pre- and post-natal growth retardation and several heterogeneous molecular defects affecting different human genomic loci. In the majority of cases, the molecular defect is the loss of methylation (LOM) of the H19/IGF2 differentially methylated region (DMR, also known as IC1) at the telomeric domain of the 11p15.5 imprinted genes cluster, which causes the altered expression of the growth controlling genes, IGF2 and H19. Very rarely, the LOM also affects the KCNQ1OT1 DMR (also known as IC2) at the centromeric domain, resulting in an SRS phenotype by an unknown mechanism. In this study, we report on two cases with SRS features and a LOM of either IC1 and IC2. In one case, this rare and complex epimutation was secondary to a de novo mosaic in cis maternal duplication, involving the entire telomeric 11p15.5 domain and part of the centromeric domain but lacking CDKN1C. In the second case, neither the no 11p15.5 copy number variant nor the maternal-effect subcortical maternal complex (SCMC) variant were found to be associated with the epimutation, suggesting that it arose as a primary event. Our findings further add to the complexity of the molecular genetics of SRS and indicate how the LOM in both 11p15.5 DMRs may result from different molecular mechanisms.


Assuntos
Síndrome de Silver-Russell , Humanos , Síndrome de Silver-Russell/genética , Impressão Genômica , Metilação de DNA/genética , Fenótipo , Variações do Número de Cópias de DNA
20.
Cancers (Basel) ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954470

RESUMO

Beckwith-Wiedemann syndrome spectrum (BWSp) is an overgrowth disorder caused by imprinting or genetic alterations at the 11p15.5 locus. Clinical features include overgrowth, macroglossia, neonatal hypoglycaemia, omphalocele, hemihyperplasia, cleft palate, and increased neoplasm incidence. The most common molecular defect observed is hypomethylation at the imprinting centre 2 (KCNQ1OT1:TSS DMR) in the maternal allele, which accounts for approximately 60% of cases, although CDKN1C pathogenic variants have been reported in 5-10% of patients, with a higher incidence in familial cases. In this study, we examined the clinical and molecular features of all cases of BWSp identified by the Spanish Overgrowth Registry Initiative with pathogenic or likely pathogenic CDKN1C variants, ascertained by Sanger sequencing or next-generation sequencing, with special focus on the neoplasm incidence, given that there is scarce knowledge of this feature in CDKN1C-associated BWSp. In total, we evaluated 21 cases of BWSp with CDKN1C variants; 19 were classified as classical BWS according to the BWSp scoring classification by Brioude et al. One of our patients developed a mediastinal ganglioneuroma. Our study adds evidence that tumour development in patients with BWSp and CDKN1C variants is infrequent, but it is extremely relevant to the patient's follow-up and supports the high heterogeneity of BWSp clinical features associated with CDKN1C variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA